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Abstract

We are interested in PDE’s (Partial Differential Equations) in order to smooth multi-valued images in an anisotropic
manner. Starting from a review of existing anisotropic regularization schemes based on diffusion PDE’s, we point out the
pros and cons of the different equations proposed in the literature. Then, we introduce a new tensor-driven PDE, regularizing
images while taking the curvatures of specific integral curves into account. We show that this constraint is particularly well
suited for the preservation of thin structures in an image restoration process. A direct link is made between our proposed
equation and a continuous formulation of the LIC’s (Line Integral Convolutions by Cabral and Leedom [11]). It leads to
the design of a very fast and stable algorithm that implements our regularization method, by successive integrations ofpixel
values along curved integral lines. Besides, the scheme numerically performs with a sub-pixel accuracy and preserves then
thin image structures better than classical finite-differences discretizations. Finally, we illustrate the efficiency of our generic
curvature-preserving approach - in terms of speed and visual quality - with different comparisons and various applications
requiring image smoothing : color images denoising, inpainting and image resizing by nonlinear interpolation.

Keywords : Multi-valued Images, Data Regularization, Anisotropic Smoothing, Diffusion PDE’s, Tensor-valued Geometry,
Denoising, Inpainting, Nonlinear Interpolation.

1 Introduction

Obtaining regularized versions of noisy or corrupted imagedata has always been a desirable goal in the fields of computer
vision and image processing. It is useful, either to restoredegraded images (which is the most direct application of image
regularization methods) or - more indirectly - as a pre-processing step that eases further analysis of the considered data.
Regularization is actually one of the key operations neededby many image analysis algorithms. A lot of image regularization
formalisms have been then already proposed in the literature for this purpose.
Since the pioneering work of Perona-Malik [33] in the early 90’s, the framework of anisotropic diffusion PDE’s (Partial
Differential Equations) has particularly raised a strong interest for data regularization : such equations have the ability to
smooth data in a nonlinear way, allowing the preservation ofsignificant image discontinuities. PDE’s are local formulations
and thus, they are well adapted to deal with degraded images where sources of data corruption are local or semi-local too :
gaussian noise, scratches or compression artefacts are local degradations usually encountered in digital (original or digitized)
images. Therefore, many variants of diffusion PDE’s have been proposed so far for the restoration of image datasets. In
particular, important contributions in this field concern the way the classical isotropic diffusion equation (heat flow) has
been extended to deal with anisotropic smoothing [33, 27, 37, 52], how diffusion PDE’s may be seen as gradient descents
of various energy functionals [4, 13, 16, 23, 36], and the link between regularization PDE’s and the concept of non-linear
scale spaces [1, 28, 30]. Extensions of these techniques to color images and more generally multi-valued datasets have been
also tackled in [38, 44, 48, 53]. More recently, regularization PDE’s under constraints have been proposed in order to deal
with more specific datasets, as fields of unit vectors [18, 24,32, 41], orthonormal matrices [17, 45], positive-definite matrices
[17, 46], or image data defined on implicit surfaces [7, 14, 42].
Despite this wide range of existing constrained and unconstrained PDE formalisms, all regularization methods have some-
thing in common : they locallysmooththe image along one or several directions of the plane that are different at each image
point. Typically, the principal smoothing directions are chosen to be parallel to the image contours, resulting in ananisotropic
regularization that does not destroy edges. As a requirement, defining a correctsmoothing behavioris one of the first aim of
a good regularization algorithm, the second being the precision of the smoothing process itself : it must respect the defined
smoothing geometry as much as possible.
Following this general principle, authors of [48, 52] recently proposed two different PDE-based frameworks able to design
specific regularization processes from a given (user-defined) underlying local smoothing geometry. These methods havetwo
main interests : on one hand, they unify a lot of previously proposed equations into generic diffusion PDE’s and provide
a localgeometric interpretationof the corresponding regularizations. On the other hand, they clearly separate the design
of the smoothing geometry from the smoothing process itself: in a first step, one retrieves the geometry of the structures
inside the image (generally by the computation of the so-called structure tensor fieldG). Then, a local geometry of the
desired smoothing is defined by the mean of a second fieldT of diffusion tensors(depending onG). Finally, one step of
the smoothing process itself (driven byT) is performed through one or several iterations of a specificdiffusion PDE. This
procedure is repeated until the image is regularized enough.

In this article, we first review these two efficient and unifying regularization methods acting on unconstrained multi-valued



images, following our interpretation of separating the smoothing from the geometry (section 2). We particularly pointout
the advantages and drawbacks of each equation in real cases.We propose then a comparable tensor-driven diffusion PDE
that regularizes multi-valued images while respecting specific curvature constraints(section 3). Actually, our equation is
mathematically positioned between the two previous formulations, in a way that it solves the issues inherent to both methods.
Moreover, we propose a theoretical interpretation of our curvature-constrained formalism in terms of LIC’s (Line Integral
Convolutions [11]). This analogy leads to the proposal of a novel numerical scheme that implements our PDE (section 4),
by successive integrations of pixel values along integral lines. This iterative scheme has two main advantages compared to
classical PDE implementations : on one hand, it preserves the orientations of thin image structures, since it naturallyworks
at a sub-pixel accuracy. On the other hand, the algorithm is able to run up to three times faster than classical explicit scheme
since it is unconditionally stable, even for large PDE time steps. Finally, we illustrate the effectiveness of our curvature-
preserving method, in terms of computational speed and visual quality, with results on color image restoration, color image
inpainting and non-linear resizing, among all possible applications in the area of image regularization (section 5).

2 Anisotropic Smoothing of Images with PDE’s : A Review

Let us consider a multi-valued imageI : Ω → R
n (n = 3 for color images) corrupted by noise and defined on a domain

Ω ⊂ R
2. We denote byIi : Ω → R, the scalar channeli of I : ∀X = (x, y) ∈ Ω, I(X) =

(

I1(X) I2(X) ... In(X)

)T
.

RegularizingI can be done by one among the large variety of existing diffusion PDE’s. We will focus anyway on the recent
works in [48, 52], which are unifying approaches.

2.1 Local Geometry and Diffusion Tensors

Basically, PDE-based regularization may be seen as the local smoothing of an imageI along defined directions depending
themselves on the local configuration of the pixel intensities. One wants to smoothI while preserving its edges (discon-
tinuities in image intensities), i.e. performs a local smoothing mostly along directions of the edges, avoiding smoothing
orthogonally to these edges. Naturally, this means that onehas first to retrieve thelocal geometryof the imageI. It consists
in the definition of these important features at each image point X = (x, y) ∈ Ω :

• Two orthogonal directionsθ+(X) , θ
−
(X) ∈ S1 (unit vectors ofR2) directed along the local maximum and minimum

variations of image intensities atX. The directionθ− generally corresponds to the edge direction, when there is one.

• Two corresponding positive valuesλ+
(X) , λ

−
(X) measuring effective variations of the image intensities alongθ+(X) and

θ−(X) respectively.λ−, λ+ are related to the localstrengthof an edge.

For scalar imagesI : Ω → R, this local geometry{ λ+/−, θ+/− | X ∈ Ω} is usually retrieved by the computation of
the gradient field∇I, or smoothed gradient field∇Iσ = ∇I ∗ Gσ whereGσ is a2D gaussian kernel, with a varianceσ.
Thus,λ+ = ‖∇Iσ‖2 is a possible measure of the local strength of the contours, while θ− = ∇I⊥σ /‖∇Iσ‖ gives the contours
direction. It is worth to notice that{ λ+/−, θ+/− | X ∈ Ω} can be represented in a more convenient form by a fieldG :

Ω → P(2) of 2 × 2 symmetric and semi-positive matrices, namedtensors: ∀X ∈ Ω, G(X) = λ− θ−θ−
T

+ λ+ θ+θ+
T .

Eigenvalues ofG are indeedλ− andλ+ and corresponding eigenvectors areθ− andθ+. For instance, the local geometry of
scalar-valued imagesI can be expressed with the tensorG(X) = ∇I(X)∇IT

(X).

For multi-valued imagesI : Ω → R
n, the local geometry can be retrieved in a similar way, by the computation of the fieldG

of structure tensors. As noticed in [21, 52], this extends naturally the gradientfor multi-valued images :

∀X ∈ Ω, G(X) =
n
∑

i=1

∇Ii(X)∇IT
i(X) where ∇Ii =





∂Ii

∂x

∂Ii

∂y



 (1)

A gaussian-smoothed versionGσ = G ∗ Gσ is usually computed to retrieve a more coherent geometry.Gσ(X) is a good
estimator of the local multi-valued geometry ofI atX : its spectral elements give at the same time the vector-valued variations
(by the eigenvaluesλ−, λ+ of Gσ) and the orientations (edges) of the local image structures(by the eigenvectorsθ−⊥θ+ of
Gσ), σ being proportional to the so-called noise scale.



Once the local geometryGσ of I has been determined this way, authors of [48, 52] proposed todesign a particular field
T : Ω → P(2) of diffusion tensorswhich specifies the local smoothing geometry that should drive the regularization process.
Of couse,T depends on the local geometry ofI, and is thus defined from the spectral elementsλ−, λ+ andθ−, θ+ of Gσ :

∀X ∈ Ω, T(X) = f−
(λ+,λ−) θ

−θ− + f+
(λ+,λ−) θ

+θ+
T

(2)

Basically,f+/− : R
2 → R designates two functions which set the strengths of the desired smoothing along the respective

directionsθ−,θ+. Several choices forf−, f+ are possible, depending on the considered application. Forimage denoising, a
possible choice is (proposed in [16, 44, 48]) :

f−
(λ+,λ−) =

1

(1 + λ+ + λ−)p1
and f+

(λ+,λ−) =
1

(1 + λ+ + λ−)p2
with p1 < p2

At this point, the desired smoothing behavior is intended tobe :

• If a pixel X is located on an image contour (λ+
(X) is high), the smoothing onX would be performed mostly along the

contour directionθ−(X) (sincef+
(.,.) << f−

(.,.)), with a smoothing strength inversely proportional to the contour strength.

• If a pixelX is located on a homogeneous region (λ+
(X) is low), the smoothing onX would be performed in all possible

directions (isotropic smoothing), sincef+
(.,.) ≃ f−

(.,.) and thenT ≃ Id (identity matrix).

This is one possible choice forf−, f+ in order to satisfy basic image denoising requirements. In [52], the same kind of
considerations leads to similar diffusion functions. Actually, this is quite natural to design a smoothing behavior from the
image structurebeforeapplying the regularization process itself.
Pre-defining the smoothing geometryT for each PDE iteration is the first stage of regularization algorithms proposed in
[48, 52]. The corresponding smoothing must be applied then.The important differences between all existing regularization
methods lie first on the definition ofT, but also on the form of the diffusion PDE that will be used to perform the smooth-
ing. Choosing different smoothing functionsf−, f+ and diffusion PDE’s detailed below leads to the unification of most
unconstrained image regularization methods proposed in the literature [1, 4, 7, 8, 13, 15, 16, 23, 28, 30, 33, 36, 37, 38].

2.2 The divergence-based PDE

Considering a corrupted multi-valued imageI : Ω → R
n and a local smoothing geometryT : Ω → P(2) defined as a field

of diffusion tensors (2), the following divergence PDE can be used to anisotropically smoothI “along” T :

∀i = 1, .., n,
∂Ii
∂t

= div (T∇Ii) (3)

This classical equation in PDE-based regularization has been introduced by Weickert in [52], and adapted for
color/multivalued images in [53]. Note that the tensor fieldT is the same for all image channelsIi, ensuring that allIi
are smoothed by acommon multi-valued geometrywhich takes the correlation between image channels into account (since
T depends onG), contrary to a uncorrelated channel-by-channel approach. The notable characteristics of (3) are :

(a) Pros : It unifies a lot of existing scalar or multi-valued regularization approaches and proposes at the same time two
interpretation levels of the regularization process :

• local interpretation: (3) may be seen as the physical law describing local diffusion processes of the pixels individually
regarded as temperatures or chemical concentrations in an anisotropic environment which is locally described byT.

• global interpretation: the problem of image regularization is often expressed as the minimization of a specific energy
functionalE(I), depending on the spatial variations ofI [4, 7, 13, 14, 16, 17, 23]. FindingI that minimizesE(I) is
usually done by a gradient descent (i.e. a PDE), coming from the Euler-Lagrange equations ofE(I), resulting in a
particular case of (3). In [44, 48], we demonstrated that theminimization of the general multi-valuedψ-functional

E(I) =

∫

Ω

ψ(λ+, λ−) dΩ where ψ : R
2 → R (4)



is done by the divergence PDE (3) withT = ∂Ψ
∂λ− θ−θ−

T
+ ∂Ψ

∂λ+ θ+θ+
T . In this case, theλ+, λ− are the two positive

eigenvalues of thenon-smoothedstructure tensor fieldG =
∑

i ∇Ii∇IT
i , while theθ+, θ− are the two corresponding

orthonormal eigenvectors ofG. Similar results have been demonstrated for scalar-valuedimages [4, 16, 26] (and
references therein).

(b) Cons :Strictly speaking, the PDE (3)does not fully respect the geometryT. The smoothing performed is not always the
one that could be expected. We illustrate this fact by considering the simple case of single direction smoothing. Suppose
we want to anisotropically smooth a scalar imageI : Ω → R everywhere along the gradient direction∇I

‖∇I‖ with a constant
strength1. This is of course for illustration purposes, since all image discontinuities would be destroyed with such a smooth-

ing geometry. Intuitively, we should defineT as : ∀X ∈ Ω, T(X) =
(

∇I
‖∇I‖

)(

∇I
‖∇I‖

)T

, leading to the simplification

of (3) as ∂I
∂t = div

(

1
‖∇I‖2 ∇I∇IT∇I

)

= div (∇I) = ∆I, where∆I = ∂2I
∂x2 + ∂2I

∂y2 stands for the Laplacian ofI. As

noticed in [25], the evolution of this so-calledheat flow equationis similar to the convolution of the imageI by a normalized
gaussian kernelGσ with a varianceσ =

√
2 t. This choice ofanisotropictensorsT leads to anisotropicsmoothing, without

preferred directions. Note that choosingT = Id (identity matrix) would give exactly the same result : different tensors fields
T with very different shapes (isotropic or anisotropic) define the same regularization behavior. Indeed, the divergenceis a
differential operator, so (3) implicitly depends on thespatial variationsof T. Thus, the divergence equation (3) hampers the
design of a pointwise smoothing behavior (see [44, 48] for more details on this particular point).

2.3 The trace-based PDE

In order to respect the local smoothing geometryT, we have proposed in [44, 48] a regularization PDE, very similar to the
divergence equation (3), but based on atraceoperator :

∀i = 1, .., n,
∂Ii
∂t

= trace(THi) with Hi =







∂2Ii

∂x2
∂2Ii

∂x∂y

∂2Ii

∂x∂y
∂2Ii

∂y2






(5)

Hi stands for the Hessian ofIi. The equation (5) is a tensor-based expression of the following PDE, expressed with simulta-
neous oriented and weighted1D Laplacians :

∂I

∂t
= f−

(λ−,λ+) Iθ−θ− + f+
(λ−,λ+) Iθ+θ+

whereIθ−θ− = ∂2
I

∂θ−2 represents the second directional derivative ofI alongθ− (the same forθ+). Particular cases of (5)
have been proposed in [4, 26, 27, 12, 37, 38, 44, 48] for scalaror multi-valued images. Note that each channelIi of I is also
smoothed with a common tensor fieldT.

(a) Pros : As demonstrated in [44, 48], the evolution of (5) has an interesting geometric interpretation in terms of local
filtering with oriented and normalized gaussian kernels. Itmay be seen locally as the application of a very small convolution
around eachX with a gaussian maskGT

t orientedby the tensorT(X) :

GT

t (X) =
1

4πt
exp

(

−X
T

T
−1

X

4t

)

This ensures that the smoothing performed by (5) is truly oriented along the pre-defined smoothing geometryT. As the trace
is not a differential operator, the spatial variation ofT does not trouble the diffusion directions here and two different tensor
fields will necessarily lead to different smoothing behaviors. Note that under certain conditions, the divergence PDE (3) may
be also developed as a trace formulation (5). In this case, the tensors inside the trace and the divergenceare not the same
[44, 48].

(b) Cons : Contrary to the divergence formulations (3), trace-based equations (5) are very local formulations and thus,
are rarely connected to global formulations expressed withenergy functionals such as (4). This is particularly true when
considering multi-valued images, despite recent papers tried to explore such links [44, 48]. For scalar-valued images(n = 1),



some correspondences are known anyway [4, 16, 20, 26]. In thesequels, we will mainly focus on the local behavior of
regularization PDE’s.

Note that the trace equation (5) behaves locally as an oriented gaussian smoothing whose strength and orientation is directly
related to the tensorT(X). But on curved structures (like corners), this gaussian behavior is not desirable : when the local
variation of the edge orientationθ− is high, a gaussian filter tends toround corners, even by conducting it only alongθ−.
This is due to the fact that an oriented gaussian mask is not curved itself. This classical behavior is also best known as the
“mean curvature flow” effect, characterized by the PDE∂I

∂t = ∂2
I

∂θ−2 . This problem is illustrated on Fig.1b and Fig.2b where
(5) has been applied on synthetic and real color image andT has been defined as (2) (thenf− 6= 0). One can easily see how
image structures are subject to the mean curvature flow effect, resulting in rounding the corners of the square in Fig.1b,or in
blending parallel thin curved structures in Fig.2b.
To avoid this over-smoothing effect, most regularization PDE’s try to stop their action on corners (by vanishing tensorsT(X)

there, i.ef− = f+ = 0). But this implies the detection of curved structures on noisy or corrupted images, which is generally
a hard task. Conversely, image under-smoothing on edges mayoccur when limiting the diffusion too much on regions with
high intensity variations (Fig.1c). There is a difficult trade-off between complete noise removal and preservation of curved
structures, when using trace-based PDE’s (5).

(a) Noisy synthetic color image
(b) Applying trace-based PDE (5),
with p1 = 0.5, p2 = 1.2.

(c) Applying trace-based PDE (5),
with p1 = 0.9, p2 = 1.2.

(d) Applying our constrained PDE
(14),
with p1 = 0.5, p2 = 1.2.

Figure 1:Problems encountered when using trace-based PDE’s (5) on curved image structures (details are shown on the second row).

Actually, this kind of regularization processes does not care about thecurvatureof the smoothing directions, and by extension,
of the curvature of the image contours. Taking this curvature into account is a very desirable goal and has motivated the work
presented in the sequels : in section 3, we propose a new classof trace-based regularization PDE’s that smooth an imageI

along a tensor fieldT, while implicitly taking curvatures of specific integral curves ofT into account. Roughly speaking,
we want to locally filter the image withcurved gaussian kernelswhen necessary, in order to better preserve image structures.
For illustration purposes, results of our curvature-preserving equation is shown on Fig.1d and Fig.2c.*

3 Curvature-Preserving PDE’s

3.1 The single direction case

To illustrate the general idea of curvature-preserving PDE’s, we first focus on image regularization along avector field
w : Ω → R

2 instead of a tensor fieldT. We consider then a local smoothing everywhere along a single direction w

‖w‖ , with

a smoothing strength‖w‖. We denote the two spatial components ofw by w(X) = (u(X) v(X))
T .



(a) Image of a fingerprint
(b) Applying trace-based PDE (5),
with p1 = 0.5, p2 = 1.2.

(c) Applying our constrained PDE (14),
with p1 = 0.5, p2 = 1.2.

Figure 2:Comparisons between trace-based PDE’s (5) and our new curvature-preserving PDE’s (14) on a real image.

We propose to define the followingcurvature-preservingregularization PDE that smoothesI alongw by :

∀i = 1, . . . , n,
∂Ii
∂t

= trace
(

ww
T

Hi

)

+ ∇IT
i Jww (6)

whereJw stands for the Jacobian ofw , andHi is the Hessian ofIi.

Jw =





∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y



 and Hi =







∂2Ii

∂x2
∂2Ii

∂x∂y

∂2Ii

∂x∂y
∂2Ii

∂y2







The PDE (6) adds a term∇IT
i Jww to the trace-based equation (5) that smoothesI alongw with locally oriented gaussian

kernels (see section 2.3). This extra term naturally depends on the variation of the vector fieldw. Let us explain how (6) is
related tow.

Let CX

(a) be the curve defining theintegral curveof w, starting fromX and parameterized bya ∈ R :











CX

(0) = X

∂CX

(a)

∂a = w(CX

(a))

(7)

Whena→ +∞ the integral curveCX

(a) is trackedforward, andbackwardwhena→ −∞ (Fig.3). We denote byF the family
of integral curves ofw.
A second-order Taylor development ofCX

(a) arounda = 0 is :

CX

(h) = CX

(0) + h
∂CX

(a)

∂a |a=0
+
h2

2

∂2CX

(a)

∂a2 |a=0
+O(h3)

= X + hw(X) +
h2

2
Jw(X)

w(X) +O(h3)



(a) Integral curve of a general fieldw.
(b) Example of integral curves whenw is the lowest eigenvector of the
structure tensorG of a color imageI (one block is one color pixel).

Figure 3: Integral curveCX of vector fieldsw : Ω → R
2.

with h → 0, andO(hn) = hn ǫn. Then, we can compute a second-order Taylor development ofIi(CX

(a)) arounda = 0,

which corresponds to the variations of the image intensity nearX when following the integral curveCX :

Ii(CX

(h)) = Ii

(

X + hw(X) +
h2

2
Jw(X)

w(X) +O(h3)

)

= Ii(X) + h∇IiT(X) (w(X) +
h

2
Jw(X)

w(X)) +
h2

2
trace

(

w(X)w
T
(X)Hi(X)

)

+O(h3)

The term trace
(

w(X)w
T
(X)Hi(X)

)

= ∂2Ii

∂w2 corresponds to the second directional derivative ofIi alongw.

The second derivative of the functiona→ Ii(CX

(a)) ata = 0 is then :

∂2Ii(CX

(a))

∂a2 |a=0
= lim

h→0

1

h2

[

Ii(CX

(h)) + Ii(CX

(−h)) − 2Ii(CX

(0))
]

= lim
h→0

1

h2

[

h2 ∇IT
i Jw(X)

w(X) + h2 trace
(

w(X)w
T
(X)Hi(X)

)

+O(h3)
]

= trace
(

w(X)w
T
(X)Hi(X)

)

+ ∇IT
i Jw(X)

w(X) (8)

Note that this is exactly the right term in our curvature-preserving PDE (6).

Actually, (6) can be seen individually for all integral curves ofF instead of each pointX ∈ Ω : consider another point
Y ∈ CX. Then, there existǫ ∈ R such thatY = CX

(ǫ). Indeed,CX andCY describe the same curve (7) with different

parameterizations :∀a ∈ R, CY

(a) = CX

(ǫ+a). As (6) is verified onY, then
∂Ii(CX

(a))

∂t |a=ǫ
=

∂2Ii(CX

(a))

∂a2 |a=ǫ
. This is obviously

true forǫ ∈ R since (6) is verified for all pointsY lying on the integral curveCX. Then, the PDE (6) may be also written as :

∀C ∈ F , ∀a ∈ R,
∂Ii(C(a))

∂t
=
∂2Ii(C(a))

∂a2
(9)

We recognize in (9) aone-dimensional heat flow constrained onC. This is actually very different from a heat-floworiented
by w, as in the formulation∂Ii

∂t = ∂2Ii

∂w2 since the curvatures of integral curves ofw are now implicitly taken into account.
In particular, our constrained equation has the interesting property to vanish when image intensities are perfectly constant on
the integral curveC, whatever the curvature ofC is. In this context, defining a fieldw that is tangent everywhere to the image
structures will allow the preservation of these structures, even if they are curved (such as corners). This is not the case with
divergence or trace-based PDE’s (3),(5) classically used in image regularization. This curvature-preserving property of (6) is
illustrated on Fig.1d and Fig.2b.



Our constrained equation (6) is anelliptic PDE since the matrixww
T is positive definite. The existence and unicity of the

solutions of (6) are not directly approached in this article. Anyway, in next section 3.2, we show that its solution can be
approximated by the technique of line integral convolutions, which is a well-posed analytical approach.

3.2 Curvature-Preserving PDE’s and Line Integral Convolutions

Line Integral Convolutions (LIC) have been first introducedin [11] as a technique to render a textured imageI
LIC that

represents a vector fieldw : Ω → R
2. The idea, originally expressed as a discrete form, consists in smoothing an image

I
noise - containing only noise - by averaging its pixel values alongthe integral curves ofw. Actually, a continuous formulation

of a LIC is then :

∀X ∈ Ω, I
LIC
(X) =

1

N

∫ +∞

−∞
f(p) I

noise(CX

(p)) dp (10)

wheref : R → R is an even function (strictly decreasing to0 on R
+) andCX is defined as theintegral curve(7) of

w throughX. The normalization factorN allows the preservation of the average pixel value alongCX and is equal to
N =

∫ +∞
−∞ f(p) dp.

As noticed in section 3.1, our curvature-preserving PDE (6)can be seen as the one-dimensional heat flow (9) constrained on
the integral curveCX ∈ F . Using the variable substitutionL(a) = I(CX

(a)), (9) can be also written as∂L

∂t (a) = L
′′

(a). The

solutionL
[t] at timet is known to be the convolution ofL[t=0] by a normalized gaussian kernelGt (see [20, 25]) :

L
[t]
(a) =

∫ +∞

−∞
L

[t=0]
(p) Gt(a−p) dp with Gt(p) =

1√
4πt

exp

(

−p
2

4t

)

(11)

SubstitutingL in (11) witha = 0, and remembering thatCX

(0) = X andGt(−p) = Gt(p) :

∀X ∈ Ω, I
[t]
(X) =

∫ +∞

−∞
I
[t=0](CX

(p)) Gt(p) dp (12)

The equation (12) is a particular form of the continuous LIC-based formulation (10) with a gaussian weighting function
f = Gt. Here, the normalization factor isN =

∫ +∞
−∞ Gt(p) dp = 1. Intuitively, the evolution of our curvature-preserving

PDE (6) may be seen as the application of local convolutions by normalized one-dimensional gaussian kernelsalong integral
curvesC of w. This kind of anisotropic image smoothing considers then acurvedfiltering, instead of just an oriented one.
Applying this setting on a multi-valued imageI, with w being the lowest eigenvector of the structure tensor fieldG (i.e.
the contour direction) allows the anisotropic smoothing ofI with edge preservation, even if these edges are curved. This
is illustrated on Fig.3b, where few integral linesCX are computed, around a typical T-junction structure. Note how the
streamlines rotate when arriving at the junction, with a sub-pixel precision. The streamlines have been computed with a
2nd-order Runge-Kutta scheme.

Note that (12) is an analytical solution of (6) whenw does not evolve over time. This property is generally not verified
when dealing with general nonlinear regularization PDE’s,where the smoothing geometry is re-evaluated at each time step
(this defines a temporal non-linearity). In order to get thiskind of non-linearity, we will then to perform several successive
iterations of our LIC scheme (12), where the vector fieldw is updated at each iteration. This is actually a good way of ap-
proximating (6). Classical explicit schemes usually consider the smoothing geometryw as constant between two successive
PDE iterationsI[t] andI[t+dt]. Thus, our curvature-preserving equation (6) will be efficiently discretized by several iterations
of our LIC formulation (12) (section 4).
Note also that PDE-based algorithms performing vector flow visualization with textures have been already proposed in
[6, 34], mainly inspired by the popular LIC technique, but notheoretical links between PDE-based formulations and LIC’s
have been done. Moreover, the use of divergence-based equations proposed in these paper does not ensure the correctnessof
the smoothing directions, as pointed out in section 2.2.

3.3 Between Traces and Divergences

We illustrate here how our curvature-preserving PDE (6) maybe regarded compared to trace and divergence expressions (3),
(5), for the case of single direction smoothingT = ww

T .



In this case, the divergence PDE (3) may be developed as :

div
(
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T ∇Ii

)
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i w

Thus, we recognize in these three different terms :

• The first term corresponds to the trace PDE (5), that smootheslocally I alongw.

• The two first terms correspond to ourcurvature-constrainedregularization PDE (6), that smoothes locallyI alongw

while taking the curvature of integral curvesC of w into account.

• The three terms together correspond to the classical divergence PDE (3) that performs local diffusions ofI along
w. This last term div(w)∇IT

i w is mainly responsible for the perturbations of the effective smoothing direction, as
described in section 2.2. It is not desirable for image regularization purposes.

It is interesting to observe that our curvature-constrained PDE (6) is then “mathematically” positioned between the trace (5)
and divergence formulations (3), and allows at the same timethe full respect of the pre-defined smoothing directionsw, while
preserving curved images structures.
Note that we can also write our curvature-preserving PDE (6)as a divergence-based PDE minus a constraint term :

trace
(

ww
T
Hi

)

+ ∇IT
i Jww = div

(

ww
T ∇Ii

)

− div(w)∇IT
i w

Two particular cases of directionsw are worth studying, in the case of scalar-valued images (n = 1) :

• Whenw = ∇I⊥

‖∇I‖ (isophote direction), then ∇IT
Jww = −Iww, vanishing then the velocity of our curvature-

preserving evolution equation (6), by counterbalancing the trace-based term (which is nothing more than themean
curvature motionin this case). No smoothing will be then performed. This is quite natural since pixel along the
isophotes have constant values, so averaging those values will not change the image. Note by comparison that the
velocity of the corresponding divergence-based expression div

(

ww
T ∇Ii

)

also vanishes here.

• Whenw = ∇I
‖∇I‖ (gradient direction), then ∇IT

Jww = 0, and the velocity of our curvature-preserving PDE (6)
becomes simplyIww, which really corresponds to a smoothing of the image along the gradient direction (the same as
the unconstrained trace-based PDE (5)). Note by comparisonthat the velocity of the corresponding divergence-based
expression is∆I in this case, which corresponds to an isotropic smoothing ofthe image, instead of an anisotropic one.

These two particular cases allows to better understand the difference of regularization behaviors between the trace, divergence
and curvature-preserving formulations.
Note also that in case wherew is a divergence free field (i.e÷(w) = 0), the divergence-based PDE (3) and our curvature-
preserving formulation (6) are strictly equivalent.



3.4 Extension to multi-directional smoothing

We extend our single-direction smoothing PDE (6) so that it can deal with a tensor-valued geometryT : Ω → P(2), instead
of a vector-valued geometryw. As pointed out in section 2.1, a diffusion tensor describesmuch more complex smoothing
behaviors than single directions. In particular, it may represents bothanisotropicor isotropic regularization behaviors. The
extension of our curvature-preserving PDE (6) is not straightforward : the notions of curvature and integral curves of tensors-
valued fieldsT are not as natural as with direction fieldsw.
To tackle this problem, we propose to locally decompose a tensor-driven smoothing process into several vector-driven
smoothing processes along different orientations. We firstnotice that

∫ π

α=0

aαa
T
α dα =

π

2
Id where aα =





cosα

sinα





Then, any2 × 2 tensorT may be written as :
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√
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T. Thus, the tensorT may be decomposed as :
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π

∫ π

α=0

√
Taαa

T
α

√
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T
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π

∫ π
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(
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Taα)(
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We have split the tensorT into a sum ofatomic tensors(
√

Taα)(
√

Taα)T , each being purely anisotropic and directed
only along the direction of the vector

√
Taα ∈ R

2. The equation (13) naturally suggests to decompose any tensor-driven
regularization PDE into a sum of single direction smoothingprocesses, each of them respecting the overall geometryT. For
instance :

• If T = Id (identity matrix), the tensor is isotropic and :∀α ∈ [0, π],
√

Taα = aα. The resulting smoothing will be
then performed in all directionsaα of the plane with the same strength.

• If T = uu
T (whereu ∈ S1), the tensor is purely anisotropic and :∀α ∈ [0, π],

√
Taα = (uT aα)u. The resulting

smoothing will be then performed only along the directionu of the tensorT.

Then, using (13) and considering that each single directionsmoothing must be done with a curvature-preserving approach
(6), we propose the following constrained regularization PDE, acting on a multi-valued imageI : Ω → R

n and driven by a
tensor-valued smoothing geometryT :

∀i = 1, . . . , n,
∂Ii
∂t

=
2

π

∫ π

α=0

trace
(

(
√

Taα)(
√

Taα)T
Hi

)

+ ∇IT
i J√

Taα

√
Taα dα

which can be simplified as :

∀i = 1, . . . , n,
∂Ii
∂t

= trace(THi) +
2

π
∇IT

i

∫ π

α=0

J√
Taα

√
Taα dα (14)

whereaα = (cosα sinα)T , andJ√
Taα

stands for the Jacobian of the vector fieldΩ →
√

Taα. Note that this kind of
smoothing decomposition along all orientations of the plane can be also found in [51]. As in the single direction smoothing
case, (14) may be seen as a trace-based equation (5), where anextra term has been added in order to respect the curvature of
all integral lines passing through the tensor-valued geometry T.



4 Implementation considerations

In order to implement our regularization method (14), we benefit from the LIC-based intepretation of curvature-preserving
PDE’s presented in section 3.2. Indeed, we can explicitely discretize (14) by the following Euler scheme :

I
[t+dt] = I

[t] +
2dt

N

(

N−1
∑

k=0

R(
√

Taα)

)

whereα = kπ/N (in the interval[0, π]), dt is the usual temporal discretization step andR(w) represents a discretization of
the mono-directional smoothing PDE velocity (6) that preserve curvatures along a vector fieldw. If we write this expression

as :I[t+dt] = 1
N

(

∑N−1
k=0 I

[t] + 2dt R(
√

Taα)
)

, we may express it as the averaging of different gaussian-ponderated LIC’s

along vector fields
√

Taα :

I
[t+dt] =

1

N

(

N−1
∑

k=0

I
[t]

LIC(
√

Taα)

)

,

where each gaussian variance has a standard deviationdt.
Basically, the difficulty here is the LIC computation, whichneeds the tracking of integral curves of a vector field. Here,we
used a very simple method based on the classical Runge-Kutta[35] integration scheme. Faster LIC implementations have
been proposed in [40] but do not deal with gaussian ponderation functions, as needed here.
This simple observation leads then to the following fast algorithm for the implementation of one iteration of our curvature-
preserving PDE (14) :

1. Compute the smoothed structure tensor fieldGσ from I
[t] :

Gσ = Gσ ∗
n
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σ will depend on the noise scale. We used relatively low values(between0 and1.5) for our experiments in section 5.

2. Compute the eigenvaluesλ+, λ− and eigenvectorsθ+, θ− of Gσ.

3. Compute the smoothing geometry tensor fieldT from Gσ : T = 1
(1+λ++λ−)p1

θ−θ−
T

+ 1
(1+λ++λ−)p2

θ+θ+
T

4. For allα in [0, π] (discretized with a user-fixed stepdα) :

• Compute the vector fieldw =
√

T aα.

• Perform a Line Integral Convolution ofI[t] alongCX in the forward and backward directions.

5. Average all LIC’s computed in step 4.

The main parameters of our algorithm arep1, p2, σ, dt and the number of PDE iterationsnb that are applied. The character-
istics of this scheme, compared to the classical finite-difference one is :

• It allows the preservation of thin image structures from a numerical point of view : the smoothing is performed along
integral curves ofw, with a sub-pixel accuracy. Precise Runger-Kutta interpolation is used to track the integral curves
C.

• It allows to choose very large time stepsdt, since the scheme we proposed is unconditionally stable. Indeed,dt simply
corresponds to a smoothing variance of the gaussian-ponderated convolution alongC ∈ F .

• As a result, the regularization algorithm performs very fast. Very few iterations are necessary to get the result, even
if each iteration is more time-consuming. For our applications, presented in section 5, we were even able to choose
nb = 1 iteration with very large time stepsdt. In fact, this leads to a rough approximation of (14), since we lost the
temporal non-linearity property of the PDE. But for images with few noise, this gave suprisingly good results. Actually,
the spatial non-linearity seems to play a more important role than the temporal non-linearity in our scheme.



The smoothing is done as an averaging of multiple LIC’s in different directionsα. The choice of the discretization stepdα

is important in this context. Actually, in regions where thesmoothing needs to be mostly anisotropic, only few values ofα
are necessary since in all cases, the smoothing will be done along the same single direction. But in homogeneous regions
needing isotropic smoothing, a smallerdα will give much better results. Practically speaking, we chosedα = 45o which is
enough to get a good precision for isotropic smoothing.
On Fig.4, we illustrate the efficiency of our new scheme, compared to the classical finite-difference one. A synthetic noisy
image is anisotropically smoothed with our PDE (14), withp1 = 0.01 andp2 = 100 (smoothing mostly along isophotesθ−,
with a strength of1). The LIC-based scheme (Fig.4c) better preserves the structure along timet. This is due to the important
role played by the sub-pixel accuracy property of the underlying LIC computation.

(a) Noisy color image.
(b) Regularization using a finite-difference scheme
(stopped att = 100).

(c) Regularization using our LIC-based scheme
(stopped att = 100).

Figure 4: Comparisons between classical explicit PDE schemes, and LIC-based implementation of our PDE (14).

5 Application Results

We present different application results of our curvature-preserving PDE (14), implemented by the LIC-based scheme and
applied on24bits color imagesI : Ω → [0, 255]3. The(R,G,B) color base has been considered for the PDE evolutions.
All experiments have been performed on a PC2.8 Ghz running Linux (single CPU). The implementation has beendone in
C++, thanks tothe CImg Library[49], a very simple-to-use and powerful image processing library. For each result presented
below, we detail the used parameters and the processing time.

5.1 Color Image Denoising and Regularization

Image denoising is a direct application of regularization methods. Sensor inaccuracies, digital quantifications or compression
artefacts are indeed some of the various noise sources that can affect a digital image, and suppressing them is a desirable
goal. In Fig.5, we illustrate how our curvature-preservingPDE (14) can be successfully applied to remove such artefacts
while preserving the essential structures of the processedimages.

• Fig.5a shows a restoration of the “baboon” color image, artificially degraded by adding uncorrelated gaussian noise on
(R,G,B). This512× 512 color image has been regularized with (14) and a140× 111 portion of the image is shown.
Only one PDE iteration has been necessary, withp1 = 0.5, p2 = 0.7, σ = 1.5 anddt = 50. Processing time is19.3
seconds for the entire image.

• Fig.5b illustrates a real case where a color photograph has been digitized from a grainy paper, leading to the apparition
of watered effects on the digital picture (size=586 × 367). Using our regularization method allows to clearly remove
the grain while preserving quite fine structures (palm tree leafs). Shown image is a152 × 133 portion of the original
one. Only one PDE iteration has been necessary, withp1 = 0.5, p2 = 0.7, σ = 1 anddt = 10. Processing time is11
seconds for the entire image.

• Fig.5c deals with the suppression of compression artefactsin color images. A JPEG version of the “Lena” color image
(size=256×256, where the JPEG quality ratio has been set to10%) is processed by our regularization algorithm. Usual



block effects inherent to the DCT compression are visible onthe compressed image (left). One PDE iteration is applied
then, withp1 = 0.5, p2 = 0.9, σ = 2, dt = 200, in order to get the regularized result (right). Only a100 × 73 portion
of the original image is shown. Processing time is6.4 seconds for the entire image.

• Fig.5d illustrates how our regularization method is used toimprove a digital color image quantified in256 colors by
the Floyd-Steinberg algorithm (size=355× 287). One PDE iteration has been applied, withp1 = 0.5, p2 = 0.8, σ = 1,
dt = 30. A 136 × 118 portion of the image is shown. Processing time is12.8 seconds for the entire image.

• Fig.5e shows a digital photograph shot under low luminosityconditions, leading to the apparition of real digital noise
(poisson noise). Processed color image has size=293 × 306 and has been restored in5.6 seconds (one PDE iteration),
with parametersp1 = 0.2, p2 = 0.5, σ = 2, dt = 120.

• Fig.5f illustrates how exaggerating the smoothing geometry can create interesting painting effects. One PDE iteration
of (14) has been applied, withp1 = 0.5, p2 = 1.2, σ = 4 (which leads to an exaggeratedly smooth geometryT) and
dt = 20. Processing time is26 seconds for this460 × 365 color image.

Note that our equation (14) is acting a as intelligent image smoother. It is actually not able to perform edge enhancement, as
divergence-based PDE’s (3) may do. This would be possible anyway by adding a classical shock-filter term (such as proposed
in [2, 31] for scalar images and extended in [44, 55] for multi-valued ones) to our curvature-preserving PDE formulation(14).
Generally, this enhancement is not necessary for noisy images, particularly since we preserve the edges very well with our
curvature-preserving method.

5.2 Color Image Inpainting

Image inpainting is a very new and challenging application,which consists in filling-in missing (user-defined) image regions
by guessing pixel values such that the reconstructed image still looks natural. Basically, the user provides one color image
I : Ω → R

3, and onemaskimageM : Ω → {0, 1}. The inpainting algorithm must fill-in the regions whereM(X) = 1,
by the mean of some intelligent interpolations. Inpaintingalgorithms can be used for instance to remove various structures
in images (scratches, logos or real objects). Pioneering work on image inpainting has been first proposed as a variational
formulation by Masnou and Morel [29], followed by many PDE-based solutions [8, 9, 15, 48]. It is also worth to cite some
papers related to inpainting without use of PDE’s [19, 22], among others.
In this article, we see the inpainting process as a direct application of our proposed curvature-preserving PDE (14). Applying
the diffusion equation only on the regions to inpaint allowsthe neighbor pixels to diffuse inside these regions : a nonlinear
completion of the image data along isophotes directions is thus naturally done, reconstructing the missing parts of theimage.
This kind of PDE-based inpainting technique has been also proposed in [8, 15, 48]. Note that it is not able to perform texture
reconstructions, and texture synthesis steps will be sometimes necessary [3, 9, 56].

• Fig.6a shows how our PDE-based inpainting technique can be used to remove real objects from digital photographs. A
500× 500 color image (left) is inpainted with a user-defined mask (middle). The inpainted image (right) is obtained in
4 minutes11 seconds, after200 iterations of our PDE (14) with parametersp1 = 0.001, p2 = 100, σ = 4, dt = 150.
Note thatp1 << p2 encourages smoothing only along the isophote directions with a strength of 1 everywhere.

• Fig.6b shows an application of subtitles removing in a movieframe. Image size is300 × 162 and the inpainted image
has been obtained after20 iterations of (14), withp1 = 0.001, p2 = 100, σ = 4, dt = 50, for a total processing time
of 11 seconds.

• Fig.6c illustrates the reconstruction capabilities of ourinpainting technique. Half of the pixels of a300 × 246 color
image have been suppressed by masking them with a16 × 16 checkerboard-shaped mask. Then, the image is recon-
structed using10 iterations of our PDE (14) inside the inpainting mask, with parametersp1 = 0.001, p2 = 100, σ = 4
anddt = 50 (processing time is1 minute01 seconds).

For each inpainting result shown in this article, the initialization of the pixel values inside the inpainting masks att = 0 has
been done by white noise. Actually, the inpainting algorithm is not much dependent of the initialization step : the equation
(14) diffuses neighborhood values inside the inpainting mask until convergence, and there is then a strong border condition.
We didn’t see much difference between different types of initialization (noise, zero-filling or linear interpolation).



(a) Denoising of the “baboon” color image (19.3s).

(b) Watered effect suppression in a color image (11s).

(c) Suppression of JPEG compression artefacts in the “lena”image (6.4s). (d) Suppression of quantification artefacts in a 8bits color image (12.8s).

(e) Denoising of a digital photograph with digital noise (5.6s). (f) Creating painting effects with over-smoothing procedures (26s).

Figure 5: Results of color image regularization using our curvature-preserving PDE’s (14).



(a) Inpainting a cage (middle) in a color image (left). Inpainted in 4m11s (right).

(b) Removing subtitles from a movie frame (11s).

(c) Left : Zoom of (b). Right : Reconstruction of a color image where50% of the pixel values have been suppressed (1m01s).

Figure 6: Results of color image inpainting using our curvature-preserving PDE (14).



(a) Original color image

Figure 7: Comparisons of image resizing, using Nearest-neighbor (first row), Linear (second row), Bicubic (third row) and
PDE-based (last row) interpolations.

5.3 Color Image Resizing

The inpainting technique naturally suggests that the nonlinear interpolation implicitly performed by our regularization PDE
(14) can be also applied to magnify images, just as a replacement to classical linear or bicubic interpolations. This is done
as follows : starting from a linear or bicubic magnification of a color image as an initialization, we apply our curvature-
preserving PDE (14) everywhere except on the pixels having “known” intensity values (pixels created from the original
image points). This is actually very similar to image inpainting with a very sparse grid for the mask.

• Fig.7 illustrates one example of image resizing. An original 220 × 210 color image is resized by a factor×2 with
classical nearest-neighbor, linear and bicubic interpolations, then by our PDE-based technique (14). Our non-linear
regularization filter allows to remove the aliasing effectsusually encountered with simple interpolation methods, while
correctly preserving the edges of the image.

Notice that we always preserve the values of the points corresponding to the original thumbnail image, so that resizing back
the image to its original dimension (sub-sampling) resultsin the original input data.



5.4 Other Results & Availability

Many application results of our algorithm can be found at thefollowing web page :

http://www.greyc.ensicaen.fr/˜dtschump/greycstorati on/

You can also download and test the algorithm on different architectures. Finally, the source of the algorithm (in C++) is
available as a part of the open sourceCImg Library[49].

Conclusion

We proposed a generic constrained regularization formalism able to anisotropically smooth multi-valued images with PDE’s
while preserving natural curvature constraints. It can be used in a wide range of image processing applications, including
image denoising, inpainting, interpolation among others.This formalism makes the link between general diffusion PDE’s and
Line Integral Convolutions, and leads to the design of a veryfast and efficient numerical scheme that implements the method.
This may ease the introduction of nonlinear diffusion methods for time-critical applications in the area of multimedia, medical
imaging and image processing in general.
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