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Abstract

We are interested in PDE’s (Partial Differential Equatjoimsorder to smooth multi-valued images in an anisotropic
manner. Starting from a review of existing anisotropic tagmation schemes based on diffusion PDE’s, we point ot th
pros and cons of the different equations proposed in thetitee. Then, we introduce a new tensor-driven PDE, regihar
images while taking the curvatures of specific integral earnto account. We show that this constraint is particyag!|
suited for the preservation of thin structures in an imaggoration process. A direct link is made between our progpose
equation and a continuous formulation of the LIC’s (Lineeltal Convolutions by Cabral and Leedom [11]). It leads to
the design of a very fast and stable algorithm that implement regularization method, by successive integrationsxef
values along curved integral lines. Besides, the schemericaly performs with a sub-pixel accuracy and preseriies t
thin image structures better than classical finite-difiess discretizations. Finally, we illustrate the efficien€our generic
curvature-preserving approach - in terms of speed and MigLadity - with different comparisons and various applioas
requiring image smoothing : color images denoising, infi@nand image resizing by nonlinear interpolation.

Keywords : Multi-valued Images, Data Regularization, Anisotropic&thing, Diffusion PDE’s, Tensor-valued Geometry,
Denoising, Inpainting, Nonlinear Interpolation.

1 Introduction

Obtaining regularized versions of noisy or corrupted imdgt has always been a desirable goal in the fields of computer
vision and image processing. It is useful, either to restlegraded images (which is the most direct application ofjena
regularization methods) or - more indirectly - as a pre-psasing step that eases further analysis of the considetaed da
Regularization is actually one of the key operations neégaedany image analysis algorithms. A lot of image regulditza
formalisms have been then already proposed in the litexditurthis purpose.

Since the pioneering work of Perona-Malik [33] in the earys9 the framework of anisotropic diffusion PDE’s (Partial
Differential Equations) has particularly raised a strongeiiest for data regularization : such equations have thityaio
smooth data in a nonlinear way, allowing the preservatiosigiificant image discontinuities. PDE’s are local forntiolas

and thus, they are well adapted to deal with degraded imabesavsources of data corruption are local or semi-local too :
gaussian noise, scratches or compression artefacts atelegradations usually encountered in digital (origimaligitized)
images. Therefore, many variants of diffusion PDE’s havenbgroposed so far for the restoration of image datasets. In
particular, important contributions in this field concehe tway the classical isotropic diffusion equation (heat fitnas
been extended to deal with anisotropic smoothing [33, 2753}, how diffusion PDE’s may be seen as gradient descents
of various energy functionals [4, 13, 16, 23, 36], and th& letween regularization PDE’s and the concept of non-linea
scale spaces [1, 28, 30]. Extensions of these technique&ddoimages and more generally multi-valued datasets haga b
also tackled in [38, 44, 48, 53]. More recently, regulaimaiPDE’s under constraints have been proposed in orderab de
with more specific datasets, as fields of unit vectors [1832441], orthonormal matrices [17, 45], positive-definitatrices

[17, 46], or image data defined on implicit surfaces [7, 14, 42

Despite this wide range of existing constrained and uncaim&d PDE formalisms, all regularization methods haveesom
thing in common : they locallgmooththe image along one or several directions of the plane tieadifferent at each image
point. Typically, the principal smoothing directions ateesen to be parallel to the image contours, resulting iarasotropic
regularization that does not destroy edges. As a requirgmefining a correcsmoothing behaviois one of the first aim of

a good regularization algorithm, the second being the pi@tiof the smoothing process itself : it must respect thanddfi
smoothing geometry as much as possible.

Following this general principle, authors of [48, 52] retteproposed two different PDE-based frameworks able tagmes
specific regularization processes from a given (user-dé¥imederlying local smoothing geometry. These methods haoe
main interests : on one hand, they unify a lot of previoushpmsed equations into generic diffusion PDE’s and provide
a localgeometric interpretatiorof the corresponding regularizations. On the other hanely thearly separate the design
of the smoothing geometry from the smoothing process itsilifa first step, one retrieves the geometry of the structures
inside the image (generally by the computation of the stedaitructure tensor fields). Then, a local geometry of the
desired smoothing is defined by the mean of a second Tietd diffusion tensorgdepending orG). Finally, one step of
the smoothing process itself (driven ) is performed through one or several iterations of a spediffasion PDE. This
procedure is repeated until the image is regularized enough

In this article, we first review these two efficient and unifyiregularization methods acting on unconstrained maliiked



images, following our interpretation of separating the sthing from the geometry (section 2). We particularly panot

the advantages and drawbacks of each equation in real cAfepropose then a comparable tensor-driven diffusion PDE
that regularizes multi-valued images while respecting#igecurvature constraintgsection 3). Actually, our equation is
mathematically positioned between the two previous foatioihs, in a way that it solves the issues inherent to bothoust
Moreover, we propose a theoretical interpretation of ouvaiure-constrained formalism in terms of LIC’s (Line Igtel
Convolutions [11]). This analogy leads to the proposal obaeh numerical scheme that implements our PDE (section 4),
by successive integrations of pixel values along integnalsl. This iterative scheme has two main advantages conhpare
classical PDE implementations : on one hand, it preseneestilentations of thin image structures, since it natunatbyks

at a sub-pixel accuracy. On the other hand, the algorithrblesta run up to three times faster than classical explid¢ieste
since it is unconditionally stable, even for large PDE tineps. Finally, we illustrate the effectiveness of our ctuve-
preserving method, in terms of computational speed andbauality, with results on color image restoration, colmage
inpainting and non-linear resizing, among all possibleligppons in the area of image regularization (section 5).

2 Anisotropic Smoothing of Images with PDE’s : A Review

Let us consider a multi-valued imade 2 — R™ (n = 3 for color images) corrupted by noise and defined on a domain
Q c R% We denote by; : © — R, the scalar channélofI: VX = (z,y) € Q, Ix)= (li(x) L2x) - In(x))T.
Regularizingl can be done by one among the large variety of existing ddfuBIDE’s. We will focus anyway on the recent
works in [48, 52], which are unifying approaches.

2.1 Local Geometry and Diffusion Tensors

Basically, PDE-based regularization may be seen as thédowaothing of an imagé along defined directions depending
themselves on the local configuration of the pixel inteasitiOne wants to smoolhwhile preserving its edges (discon-
tinuities in image intensities), i.e. performs a local sthirtg mostly along directions of the edges, avoiding smiogth
orthogonally to these edges. Naturally, this means thatasdirst to retrieve thimcal geometnof the imagd. It consists
in the definition of these important features at each imagetpo = (x,y) € Q :

e Two orthogonal directioné&) , 9(3() € St (unit vectors ofR?) directed along the local maximum and minimum

variations of image intensities 2. The directiord— generally corresponds to the edge direction, when theneds o

e Two corresponding positive valua%() , )\(X) measuring effective variations of the image intensitiwgp&) and
9(3() respectivelyd~, AT are related to the locatrengthof an edge.

For scalar image$ : Q — R, this local geometry{ A*/~ 61/~ | X € Q} is usually retrieved by the computation of
the gradient fieldv I, or smoothed gradient fielef I, = VI x G, whereG,, is a2D gaussian kernel, with a varianee
Thus, A\t = | VI, |? is a possible measure of the local strength of the contodnite @~ = V11 /|| VI,| gives the contours
direction. It is worth to notice thag A*/—, 6%/~ | X € Q} can be represented in a more convenient form by a f&Id
2 — P(2) of 2 x 2 symmetric and semi-positive matrices, nanesors VX € Q, Gx) = A~ 0-6-" + At oto+".
Eigenvalues of are indeecd\~ and\™ and corresponding eigenvectors éreandd*. For instance, the local geometry of
scalar-valued imagescan be expressed with the ten€erx) = VI(X)VI&).

For multi-valued imagek : 2 — R™, the local geometry can be retrieved in a similar way, by tiragutation of the field>
of structure tensorsAs noticed in [21, 52], this extends naturally the gradfenimulti-valued images :

VX €Q, G = Z VIx)VIix) Wwhere VI, = 1)
=1

A gaussian-smoothed versi@h, = G * G, is usually computed to retrieve a more coherent geomeiry.x, is a good
estimator of the local multi-valued geometrylait X : its spectral elements give at the same time the vectoredalariations
(by the eigenvalues—, AT of G,) and the orientations (edges) of the local image structiimgthe eigenvectoré~ 10" of
G,), o being proportional to the so-called noise scale.



Once the local geometréx, of I has been determined this way, authors of [48, 52] propose@s$mn a particular field
T : Q — P(2) of diffusion tensorsvhich specifies the local smoothing geometry that shouldedtie regularization process.
Of couse T depends on the local geometrylpfand is thus defined from the spectral elementsA™ andd—, 0T of G, :

_ o T
VX €Q,  Tix)=fiiay 00 + [\, 070" (2)

Basically, f T/~ : R? — R designates two functions which set the strengths of theetsimoothing along the respective
directionsd—,0". Several choices fof —, f* are possible, depending on the considered applicationintame denoising, a
possible choice is (proposed in [16, 44, 48]) :

1

Foaean) = L+ AT + A ) with p; < p2

1
+ _
and f(>\+7>\7) (AT )P

At this point, the desired smoothing behavior is intendeloleo

o If a pixel X is located on an image conto@r&) is high), the smoothing oX would be performed mostly along the
contour directiom(‘x) (sincef(’f_) << f(f_)), with a smoothing strength inversely proportional to tbatour strength.

o If a pixel X is located on a homogeneous regiaq‘g& is low), the smoothing oiX would be performed in all possible
directions (isotropic smoothing), sing‘g) ~ f(f__) and therT" ~ 1, (identity matrix).

This is one possible choice fgi—, f+ in order to satisfy basic image denoising requirements.58, [the same kind of
considerations leads to similar diffusion functions. Asdly this is quite natural to design a smoothing behavionfithe

image structuréeforeapplying the regularization process itself.

Pre-defining the smoothing geomeflyfor each PDE iteration is the first stage of regularizatiaqgoathms proposed in
[48, 52]. The corresponding smoothing must be applied thd&e.important differences between all existing regulaidra
methods lie first on the definition @, but also on the form of the diffusion PDE that will be used &fprm the smooth-
ing. Choosing different smoothing functiorfs’, f* and diffusion PDE’s detailed below leads to the unificatibmost

unconstrained image regularization methods proposecititérature [1, 4, 7, 8, 13, 15, 16, 23, 28, 30, 33, 36, 37, 38].

2.2 The divergence-based PDE

Considering a corrupted multi-valued imabe)? — R™ and a local smoothing geometly : 2 — P(2) defined as a field
of diffusion tensors (2), the following divergence PDE ca&nused to anisotropically smoakialong” T :

01;
ot

This classical equation in PDE-based regularization hasn bietroduced by Weickert in [52], and adapted for
color/multivalued images in [53]. Note that the tensor fidllds the same for all image channdls ensuring that all/;
are smoothed by eommon multi-valued geometmhich takes the correlation between image channels intouatqsince

T depends o16z), contrary to a uncorrelated channel-by-channel approHoeé notable characteristics of (3) are :

Vi=1,..,n,

= div(TVI) 3)

(a) Pros : It unifies a lot of existing scalar or multi-valued regulatibn approaches and proposes at the same time two
interpretation levels of the regularization process :

e local interpretation: (3) may be seen as the physical law describing local diffugrocesses of the pixels individually
regarded as temperatures or chemical concentrations inismti@pic environment which is locally described By

e global interpretation the problem of image regularization is often expresseti@astinimization of a specific energy
functional E(I), depending on the spatial variationsIof4, 7, 13, 14, 16, 17, 23]. Findingthat minimizesE(I) is
usually done by a gradient descent (i.e. a PDE), coming fleerBuler-Lagrange equations BI), resulting in a
particular case of (3). In [44, 48], we demonstrated thahtir@mization of the general multi-valueg-functional

E() = /sz()ﬁ, A7) dQ  where ¢ :R* - R (4)



is done by the divergence PDE (3) with= 8‘1—‘11 0-60-" + a‘i—‘ﬁ 6+6+" . In this case, the,, A\_ are the two positive
eigenvalues of theon-smoothedtructure tensor fiel@ = Y. VI;VIT, while thef_ , 6_ are the two corresponding
orthonormal eigenvectors d&&. Similar results have been demonstrated for scalar-valmedes [4, 16, 26] (and

references therein).

(b) Cons :Strictly speaking, the PDE (R)oes not fully respect the geometfy The smoothing performed is not always the
one that could be expected. We illustrate this fact by cansid the simple case of single direction smoothing. Suppos
we want to anisotropically smooth a scalar imdge2 — R everywhere along the gradient directi% with a constant
strengthl. This is of course for illustration purposes, since all imagscontinuities would be destroyed with such a smooth-

T
ing geometry. Intuitively, we should defifB as : VX € @, T(x) = (%) (%) , leading to the simplification
of (3) as4l = div (W VIVITVI) = div(VI) = AI, whereATl = % + % stands for the Laplacian df. As

noticed in [25], the evolution of this so-callbgat flow equatiors similar to the convolution of the imageby a normalized
gaussian kernel,, with a variancer = /2 t. This choice ofanisotropictensorsT leads to ansotropicsmoothing, without
preferred directions. Note that choosiig= I; (identity matrix) would give exactly the same result : diéfat tensors fields

T with very different shapes (isotropic or anisotropic) defihe same regularization behavior. Indeed, the divergisrae
differential operator, so (3) implicitly depends on #patial variationsof T. Thus, the divergence equation (3) hampers the
design of a pointwise smoothing behavior (see [44, 48] foremietails on this particular point).

2.3 The trace-based PDE

In order to respect the local smoothing geomé&Erywe have proposed in [44, 48] a regularization PDE, verylsintd the
divergence equation (3), but based admeece operator :

8’1, 8L,
oI, ) Ox2 oxdy
Vi=1,.,n, = trace(TH;) with H, = (5)
ot %I, %I,
Ozdy 8y2’

H; stands for the Hessian &f. The equation (5) is a tensor-based expression of the folp®RDE, expressed with simulta-
neous oriented and weighted Laplacians :

ol _
Fr fo- oy Tomo- + f(Jf\77,\+) Ip+o+
wherely-4- = 639—2 represents the second directional derivativd afongd— (the same fo¥™). Particular cases of (5)

have been proposed in [4, 26, 27, 12, 37, 38, 44, 48] for soalawulti-valued images. Note that each chanhelf I is also
smoothed with a common tensor fiéld

(a) Pros : As demonstrated in [44, 48], the evolution of (5) has an gging geometric interpretation in terms of local
filtering with oriented and normalized gaussian kernelmadl be seen locally as the application of a very small coniariu
around eactX with a gaussian mask? orientedby the tensofl x) :

1 XTT-1X
T _
G = meXp(‘iu )

This ensures that the smoothing performed by (5) is trulgrded along the pre-defined smoothing geon&tris the trace
is not a differential operator, the spatial variatiorilbfloes not trouble the diffusion directions here and two déffié tensor
fields will necessarily lead to different smoothing behasidNote that under certain conditions, the divergence F)Eay
be also developed as a trace formulation (5). In this casetetisors inside the trace and the divergeareenot the same
[44, 48].

(b) Cons : Contrary to the divergence formulations (3), trace-baspgagons (5) are very local formulations and thus,
are rarely connected to global formulations expressed eriergy functionals such as (4). This is particularly trueemh
considering multi-valued images, despite recent papiedtio explore such links [44, 48]. For scalar-valued imgges 1),



some correspondences are known anyway [4, 16, 20, 26]. Isdfeels, we will mainly focus on the local behavior of
regularization PDE's.

Note that the trace equation (5) behaves locally as an edegaussian smoothing whose strength and orientationgsthir
related to the tensdF (). But on curved structures (like corners), this gaussiaraieh is not desirable : when the local
variation of the edge orientatiah is high, a gaussian filter tends tound corners, even by conducting it only alofig.
This is due to the fact that an oriented gaussian mask is meédiitself. This classical behavior is also best known as th
“mean curvature flow” effect, characterized by the P@E: 880—2}2. This problem is illustrated on Fig.1b and Fig.2b where
(5) has been applied on synthetic and real color imag€elahds been defined as (2) (thgn # 0). One can easily see how
image structures are subject to the mean curvature flowteféeilting in rounding the corners of the square in Figatlin
blending parallel thin curved structures in Fig.2b.

To avoid this over-smoothing effect, most regularizati@&?3 try to stop their action on corners (by vanishing tes&y,
there,i.ef — = f* = 0). But this implies the detection of curved structures orsyair corrupted images, which is generally
a hard task. Conversely, image under-smoothing on edgesotay when limiting the diffusion too much on regions with
high intensity variations (Fig.1c). There is a difficultdexoff between complete noise removal and preservationmwid
structures, when using trace-based PDE'’s (5).

(b) Applying trace-based PDE (5), (c) Applying trace-based PDE (5), gtljz)AppIylng our constrained PDE
with p1 =0.5,ps =1.2. with p1 = 0.9,p2 = 1.2. !

(a) Noisy synthetic color image
with p1 = 0.5, p2 = 1.2.

Figure 1:Problems encountered when using trace-based PDE’s (5)reactimage structures (details are shown on the second row).

Actually, this kind of regularization processes does not edout theurvatureof the smoothing directions, and by extension,
of the curvature of the image contours. Taking this cunetato account is a very desirable goal and has motivated tinke w
presented in the sequels : in section 3, we propose a hewdflasee-based regularization PDE’s that smooth an inlage
along a tensor field, while implicitly taking curvatures of specific integral as of T into account Roughly speaking,
we want to locally filter the image witburved gaussian kernelghen necessary, in order to better preserve image stragcture
For illustration purposes, results of our curvature-pnésg equation is shown on Fig.1d and Fig.2c.*

3 Curvature-Preserving PDE’s

3.1 The single direction case

To illustrate the general idea of curvature-preserving BP®e first focus on image regularization along/ector field
w : Q) — R? instead of a tensor field. We consider then a local smoothing everywhere along aestdigdactionﬁ, with

a smoothing strengtfiw||. We denote the two spatial componentsoby wx), = (ux) v(x))".



N N

) . (b) Applying trace-based PDE (5), (c) Applying our constrained PDE (14),
(a) Image of a fingerprint with p; = 0.5, ps = 1.2. with p1 = 0.5, ps = 1.2.

Figure 2:Comparisons between trace-based PDE’s (5) and our newtateyareserving PDE’s (14) on a real image.

We propose to define the followirayirvature-preservingegularization PDE that smoothkalongw by :

ol;
Vi=1,...,n, AT trace(ww’ H;) + VI J,w (6)
wherel,, stands for the Jacobian ef , andH; is the Hessian of;.
du  Ou %L, 9L
Oxr Oy Ox2 Oz O
Jw = and H, =
v v 2%, 9L
oz Oy Oz 0y Oy?

The PDE (6) adds a terfi I J,, w to the trace-based equation (5) that smoolha®ngw with locally oriented gaussian
kernels (see section 2.3). This extra term naturally dependhe variation of the vector fielat. Let us explain how (6) is
related tow.

Let C(f) be the curve defining thiategral curveof w, starting fromX and parameterized hye R :

X
C(O) = X
)
ack
5 = W)

Whena — 4o the integral curv€(’§) is trackediorward, andbackwardwhena — —oo (Fig.3). We denote by the family
of integral curves ofv.
A second-order Taylor development@)(ﬁ) arounda =0 is :

ac, h2 0°C%
da la=0 2 0a% |a=0

Chy = Cl+h +O(h?)

h2
X + hW(X) + 7 Jw(x)W(X) + O(h3)
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(b) Example of integral curves whan is the lowest eigenvector of the

(@) Integral curve of a general fieis. structure tenso6 of a color imagd (one block is one color pixel).

Figure 3: Integral curvéX of vector fieldsw : Q — R2,

with h — 0, andO(h™) = h™ €,. Then, we can compute a second-order Taylor developmeh(@@i)) arounda = 0,
which corresponds to the variations of the image intensigrX when following the integral curvéX :

2

h
Ii(c()}(l)) = I <X + hW(X) + 5 JW(X)W(X) + O(h3)>

2

h h
= LX) +hVLT) (W) + 5 Jweo W) + 5trace(wi wi Higx) ) + O(h)

2
The term trac{w(x)w{X)Hi(x)) awg corresponds to the second directional derivativé; @longw.

The second derivative of the functian— I; (C( )) ata = 0isthen:

0?L;(CX)) 1
"\ (a) _ 1 X
T & [1(€08) + 1) = 2135
= Jim o {h2 VI Jwi Wix) + h? trace( W x)W () Hi(x )+O(h3)}
= traCE(W(X)W’(TX)Hi(X)) + VIZ-TJW(X)W(X) (8)

Note that this is exactly the right term in our curvaturesem¥ing PDE (6).

Actually, (6) can be seen individually for all integral cessof 7 instead of each poiniK € Q : consider another point
Y < C*X. Then, there exist € R such thafy = C(’E(). Indeed,C* andCY describe the same curve (7) with different

izati As (6) is verified onY, then Z-C) — _ P1CG)  hisis obvious]
parameterizationsVa € R, C( C(E+a s (6) is verified onY, then—z7==| = —=*= | _ . Thisis obviously

true fore € R since (6) is verified for all point¥ lying on the integral curvé®. Then, the PDE (6) may be also written as :

OLi(Cy) *I;(Cay)
ot - Oa? ©)

We recognize in (9) ane-dimensional heat flow constrained@nThis is actually very different from a heat-flooviented

by w, as in the formulatim% = giv’;' since the curvatures of integral curvesvafare now implicitly taken into account.
In particular, our constrained equation has the interggtioperty to vanish when image intensities are perfecthstant on
the integral curve€, whatever the curvature dfis. In this context, defining a field that is tangent everywhere to the image
structures will allow the preservation of these structuesen if they are curved (such as corners). This is not the wih
divergence or trace-based PDE’s (3),(5) classically usémage regularization. This curvature-preserving priypefr(6) is
illustrated on Fig.1d and Fig.2b.

VC € F, Va eR,




Our constrained equation (6) is alliptic PDE since the matrixvw” is positive definite. The existence and unicity of the
solutions of (6) are not directly approached in this artichyway, in next section 3.2, we show that its solution can be
approximated by the technique of line integral convolwiomhich is a well-posed analytical approach.

3.2 Curvature-Preserving PDE’s and Line Integral Convoluions

Line Integral Convolutions (LIC) have been first introduded11] as a technique to render a textured ima§é& that
represents a vector fielt : Q@ — R?. The idea, originally expressed as a discrete form, cansissmoothing an image
Im°ise - containing only noise - by averaging its pixel values altvegintegral curves ofs. Actually, a continuous formulation
ofaLICisthen:

1 [tee ,
VXe, IKY= = / fp) Te(CX)) dp (10)

wheref : R — R is an even function (strictly decreasing @oon R*) andCX is defined as théntegral curve(7) of
w throughX. The normalization factoV allows the preservation of the average pixel value aléfgand is equal to

N = [T F(p) dp.

As noticed in section 3.1, our curvature-preserving PDEEéB) be seen as the one-dimensional heat flow (9) constrained o
the integral curv&€® ¢ F. Using the variable substitutid ) = I(C(’;)), (9) can be also written a%’;(a) = L(a). The

solutionL at timet is known to be the convolution df*=° by a normalized gaussian kerr@| (see [20, 25]) :

+oo 2
1 _ [t=0] - _ p
L(a) = [m L(p) Gt(a—p) dp with Gt(p) = \/ﬁ exp (—E) (11)

SubstitutingLL in (11) witha = 0, and remembering tha’fg) =X andGy(_p) = G -

“+o0
VXeQ, T = / 1=0(CE) Gy dp (12)

The equation (12) is a particular form of the continuous bi&sed formulation (10) with a gaussian weighting function
f = G,. Here, the normalization factor 8 = fff: Gi(py dp = 1. Intuitively, the evolution of our curvature-preserving
PDE (6) may be seen as the application of local convolutignsdsmalized one-dimensional gaussian keraédsg integral
curvesC of w. This kind of anisotropic image smoothing considers thearaedfiltering, instead of just an oriented one.
Applying this setting on a multi-valued imade with w being the lowest eigenvector of the structure tensor #eld.e.

the contour direction) allows the anisotropic smoothind efith edge preservation, even if these edges are curved. This
is illustrated on Fig.3b, where few integral liné& are computed, around a typical T-junction structure. Naie the
streamlines rotate when arriving at the junction, with a-piXel precision. The streamlines have been computed with a
2"d_order Runge-Kutta scheme.

Note that (12) is an analytical solution of (6) whendoes not evolve over timeThis property is generally not verified
when dealing with general nonlinear regularization PDisere the smoothing geometry is re-evaluated at each tiepe st
(this defines a temporal non-linearity). In order to get #irsl of non-linearity, we will then to perform several sussige
iterations of our LIC scheme (12), where the vector figlds updated at each iteration. This is actually a good way ef ap
proximating (6). Classical explicit schemes usually cdasthe smoothing geometwy as constant between two successive
PDE iterationd[* andI!**#, Thus, our curvature-preserving equation (6) will be edfitly discretized by several iterations
of our LIC formulation (12) (section 4).

Note also that PDE-based algorithms performing vector flisualization with textures have been already proposed in
[6, 34], mainly inspired by the popular LIC technique, buttheoretical links between PDE-based formulations and4.I1C’
have been done. Moreover, the use of divergence-based@tpiptoposed in these paper does not ensure the correofness
the smoothing directions, as pointed out in section 2.2.

3.3 Between Traces and Divergences

We illustrate here how our curvature-preserving PDE (6) beyegarded compared to trace and divergence expressjons (3
(5), for the case of single direction smoothilig= ww? .



In this case, the divergence PDE (3) may be developed as :

uQ%—l—uv%—Z
div(waVIi) = div
uv%—i—vg%—gj
9 o o
o o o 2u6—g+ua—z+vg—z
2 i i 2 i T
= |u + 2uv +v )—i—VI- o o P
( Ox? Oxdy oy? E 05 +u gy +v gy
u%—i—vg—z u%—i—ug—z
= trace(ww'H;) + VIF +
( 1) g u%—i—vg—z v%—i—vg—z

= trace(ww'H;) + VI Juw + div(w)VIw
Thus, we recognize in these three different terms :

e The first term corresponds to the trace PDE (5), that smoddcasly I alongw.

e The two first terms correspond to oturvature-constrainedegularization PDE (6), that smoothes locdllglongw
while taking the curvature of integral curvé®f w into account.

e The three terms together correspond to the classical dimesgPDE (3) that performs local diffusions bhlong
w. This last term diyw)VI!'w is mainly responsible for the perturbations of the effecmoothing direction, as
described in section 2.2. Itis not desirable for image ragzétion purposes.

It is interesting to observe that our curvature-const@PBE (6) is then “mathematically” positioned between tlaedr(5)
and divergence formulations (3), and allows at the samettiméull respect of the pre-defined smoothing directiensvhile
preserving curved images structures.

Note that we can also write our curvature-preserving PDE&$6) divergence-based PDE minus a constraint term :

trace(waHZ—) + VIiTJwW = div (WWT VIZ-) - diV(W)VIZ-TW
Two particular cases of directions are worth studying, in the case of scalar-valued images () :

e Whenw = ”VV—I;H (isophote direction), then VITJ,w = —I,, vanishing then the velocity of our curvature-
preserving evolution equation (6), by counterbalancirgtthce-based term (which is nothing more thanrtrean
curvature motionin this case). No smoothing will be then performed. This i#equnatural since pixel along the
isophotes have constant values, so averaging those vallieotwchange the image. Note by comparison that the
velocity of the corresponding divergence-based exprasﬁio(wa VIi) also vanishes here.

e Whenw = % (gradient direction), then VI7J,w = 0, and the velocity of our curvature-preserving PDE (6)
becomes simplyw, Which really corresponds to a smoothing of the image albagtadient direction (the same as
the unconstrained trace-based PDE (5)). Note by compattistrthe velocity of the corresponding divergence-based
expression i\ [ in this case, which corresponds to an isotropic smoothingefmage, instead of an anisotropic one.

These two particular cases allows to better understandffieesshce of regularization behaviors between the traiserdence
and curvature-preserving formulations.

Note also that in case whewe is a divergence free field (i.e(w) = 0), the divergence-based PDE (3) and our curvature-
preserving formulation (6) are strictly equivalent.



3.4 Extension to multi-directional smoothing

We extend our single-direction smoothing PDE (6) so thaaiit deal with a tensor-valued geomeTy: 2 — P(2), instead

of a vector-valued geometny. As pointed out in section 2.1, a diffusion tensor describbesh more complex smoothing
behaviors than single directions. In particular, it mayresgnts botlanisotropicor isotropic regularization behaviors. The
extension of our curvature-preserving PDE (6) is not shifidggward : the notions of curvature and integral curve®obbrs-
valued fieldsT are not as natural as with direction fields

To tackle this problem, we propose to locally decompose adedriven smoothing process into several vector-driven
smoothing processes along different orientations. Werfoste that

- - Cos o
aaag dao=—=1, where a, =
a=0 2 1
sin o

Then, any2 x 2 tensorT may be written as :

Tzz\/T</:_0aaa£da)\/T

Y

whereVT = /fTuu” + /f—vv" stands for the square root @ = ftuu” + f~vv’. One can easily verify that
(vVT)? = T and(v/T)” = VT. Thus, the tensdT’ may be decomposed as :

2 [T =

T = — / \/Taaaa\/f da
T Ja=0
_ 2 / (VTas)(VTan)T do (13)
T Ja=0

We have split the tensdF into a sum ofatomictensors(v/Ta, )(vTa. )", each being purely anisotropic and directed
only along the direction of the vectalTa, € R2. The equation (13) naturally suggests to decompose angrtenisen
regularization PDE into a sum of single direction smootlpnocesses, each of them respecting the overall georietipr
instance :

e If T = I, (identity matrix), the tensor is isotropic an&/ar € [0, 7], v Ta = a,. The resulting smoothing will be
then performed in all directions, of the plane with the same strength.

e If T = uu’ (whereu € S'), the tensor is purely anisotropic antfer € [0, 7], VTa, = (u”a,)u. The resulting
smoothing will be then performed only along the directioaf the tensofT.

Then, using (13) and considering that each single directinaothing must be done with a curvature-preserving approac
(6), we propose the following constrained regularizati@ERacting on a multi-valued imade: 2 — R"™ and driven by a
tensor-valued smoothing geomefty:

oL, 2 [T r r
= /a . trace((\/Taa)(\/Taa) H) + VI T 5, VTag da

™

ol; 2
Vi=1,... ! — tracdTH;) + —VI!
i=1,...,n, ot race )+ 7TV i /

o=

0J /T, VTao da (14)

wherea, = (cosa sina)7, andJﬁaa stands for the Jacobian of the vector fi€ld— +/Ta,. Note that this kind of
smoothing decomposition along all orientations of the plaan be also found in [51]. As in the single direction smaoughi
case, (14) may be seen as a trace-based equation (5), whextraterm has been added in order to respect the curvature of
all integral lines passing through the tensor-valued gegnie



4 Implementation considerations

In order to implement our regularization method (14), wedsitfirom the LIC-based intepretation of curvature-presegv
PDE’s presented in section 3.2. Indeed, we can explicitislyretize (14) by the following Euler scheme :

N-1
ple+ar _ gl 20t (Z R(VTa )>
_ = .
k=0

wherea = k7 /N (in the intervall0, 7]), dt is the usual temporal discretization step &dv) represents a discretization of
the mono-directional smoothing PDE velocity (6) that preseurvatures along a vector field. If we write this expression

as :Ilt+dtl = L (fo:—ol 11t + 24t R(\/Taa)) , We may express it as the averaging of different gaussiaigrated LIC’s
along vector fields/Ta,, :

N-1
pierar _ 1 Z 1t
N LIC(VTaq) ’

k=0
where each gaussian variance has a standard devi#tion
Basically, the difficulty here is the LIC computation, whickeds the tracking of integral curves of a vector field. Hene,
used a very simple method based on the classical Runge-85ftantegration scheme. Faster LIC implementations have
been proposed in [40] but do not deal with gaussian ponder&iinctions, as needed here.
This simple observation leads then to the following fasbatgm for the implementation of one iteration of our curvat
preserving PDE (14) :

1. Compute the smoothed structure tensor fieldfrom 10 -

2
t t t
. o’ (8@{},] o’
T T Yy
G, =G *E

v S o1l orlt o\ 2

=1 i i i

ox Jy Jy

o will depend on the noise scale. We used relatively low va{besveer) and1.5) for our experiments in section 5.
2. Compute the eigenvalugs, A~ and eigenvectorg™, 6~ of G,,.

3. Compute the smoothing geometry tensor fiElfom G, : T = m 0-6-" + m gro+"

4. For allain [0, 7] (discretized with a user-fixed stel) :

e Compute the vector fieldr = T a,.
e Perform a Line Integral Convolution dft! alongCX in the forward and backward directions.

5. Average all LIC’s computed in step 4.

The main parameters of our algorithm axe p», o, dt and the number of PDE iteration$ that are applied. The character-
istics of this scheme, compared to the classical finiteediffice one is :

o It allows the preservation of thin image structures from matical point of view : the smoothing is performed along
integral curves ofv, with a sub-pixel accuracy. Precise Runger-Kutta inteappoh is used to track the integral curves
C.

o It allows to choose very large time steg¥s since the scheme we proposed is unconditionally stabdkeelddt simply
corresponds to a smoothing variance of the gaussian-patediszonvolution along € F.

e As a result, the regularization algorithm performs very.fagery few iterations are necessary to get the result, even
if each iteration is more time-consuming. For our applmasi presented in section 5, we were even able to choose
nb = 1 iteration with very large time step#. In fact, this leads to a rough approximation of (14), sineelast the
temporal non-linearity property of the PDE. But for imagegnew noise, this gave suprisingly good results. Actyally
the spatial non-linearity seems to play a more importarmt tiohn the temporal non-linearity in our scheme.



The smoothing is done as an averaging of multiple LIC’s ifiedléfint directionsy. The choice of the discretization stédp

is important in this context. Actually, in regions where #moothing needs to be mostly anisotropic, only few values of
are necessary since in all cases, the smoothing will be diong the same single direction. But in homogeneous regions
needing isotropic smoothing, a smalt&y will give much better results. Practically speaking, wesshd, = 45° which is
enough to get a good precision for isotropic smoothing.

On Fig.4, we illustrate the efficiency of our new scheme, careg to the classical finite-difference one. A syntheticsyoi
image is anisotropically smoothed with our PDE (14), with= 0.01 andp, = 100 (smoothing mostly along isophotés,

with a strength ofl). The LIC-based scheme (Fig.4c) better preserves thetstaualong time. This is due to the important
role played by the sub-pixel accuracy property of the uryileglLIC computation.

(b) Regularization using a finite-difference scheme(c) Regularization using our LIC-based scheme
(stopped at = 100). (stopped at = 100).

(a) Noisy color image.

Figure 4: Comparisons between classical explicit PDE seseand LIC-based implementation of our PDE (14).

5 Application Results

We present different application results of our curvatoreserving PDE (14), implemented by the LIC-based scherde an
applied on24bits color imaged : Q — [0,255]%. The(R, G, B) color base has been considered for the PDE evolutions.
All experiments have been performed on a P& Ghz running Linux (single CPU). The implementation has béeme in
C++, thanks tahe Cimg Library{49], a very simple-to-use and powerful image processimgly. For each result presented
below, we detail the used parameters and the processing time

5.1 Color Image Denoising and Regularization

Image denoising is a direct application of regularizatiatimods. Sensor inaccuracies, digital quantifications omression
artefacts are indeed some of the various noise sourcesahaffect a digital image, and suppressing them is a desirabl
goal. In Fig.5, we illustrate how our curvature-preservifigk (14) can be successfully applied to remove such argefact
while preserving the essential structures of the proceissages.

e Fig.5a shows a restoration of the “baboon” color imagefieidily degraded by adding uncorrelated gaussian noise on
(R,G, B). This512 x 512 color image has been regularized with (14) anid@x 111 portion of the image is shown.
Only one PDE iteration has been necessary, with= 0.5, po = 0.7, 0 = 1.5 anddt = 50. Processing time i$9.3
seconds for the entire image.

e Fig.5billustrates a real case where a color photographdas thigitized from a grainy paper, leading to the apparition
of watered effects on the digital picture (siZ&6 x 367). Using our regularization method allows to clearly remove
the grain while preserving quite fine structures (palm teséd). Shown image is E52 x 133 portion of the original
one. Only one PDE iteration has been necessary,wyith 0.5, p; = 0.7, 0 = 1 anddt = 10. Processing time i$1
seconds for the entire image.

e Fig.5c deals with the suppression of compression arteffactdor images. A JPEG version of the “Lena” color image
(size=256 x 256, where the JPEG quality ratio has been séi#) is processed by our regularization algorithm. Usual



block effects inherent to the DCT compression are visibléhercompressed image (left). One PDE iteration is applied
then, withp; = 0.5, po = 0.9, 0 = 2, dt = 200, in order to get the regularized result (right). Only@ x 73 portion
of the original image is shown. Processing timé.is seconds for the entire image.

e Fig.5d illustrates how our regularization method is useihtprove a digital color image quantified 256 colors by
the Floyd-Steinberg algorithm (siz855 x 287). One PDE iteration has been applied, with= 0.5, po = 0.8, 0 = 1,
dt = 30. A 136 x 118 portion of the image is shown. Processing timé2s3 seconds for the entire image.

e Fig.5e shows a digital photograph shot under low luminasityditions, leading to the apparition of real digital noise
(poisson noise). Processed color image has 8i¥&x 306 and has been restorediré seconds (one PDE iteration),
with parameterg; = 0.2, po = 0.5, 0 = 2, dt = 120.

e Fig.5fillustrates how exaggerating the smoothing geoynedin create interesting painting effects. One PDE itematio
of (14) has been applied, with = 0.5, p» = 1.2, ¢ = 4 (which leads to an exaggeratedly smooth geom&fjrand
dt = 20. Processing time i86 seconds for thid60 x 365 color image.

Note that our equation (14) is acting a as intelligent imageather. It is actually not able to perform edge enhancepasnt
divergence-based PDE’s (3) may do. This would be possilyi@ayby adding a classical shock-filter term (such as proghose
in[2, 31] for scalar images and extended in [44, 55] for mu#tiued ones) to our curvature-preserving PDE formulatid@.
Generally, this enhancement is not necessary for noisyasygearticularly since we preserve the edges very well with o
curvature-preserving method.

5.2 Color Image Inpainting

Image inpainting is a very new and challenging applicatigmich consists in filling-in missing (user-defined) imaggioms

by guessing pixel values such that the reconstructed imi#b®sks natural. Basically, the user provides one coloage
I:Q — R3 and onemaskimageM : 2 — {0,1}. The inpainting algorithm must fill-in the regions whev&(X) = 1,

by the mean of some intelligent interpolations. Inpaintihgorithms can be used for instance to remove various sirest

in images (scratches, logos or real objects). Pioneerimyg wo image inpainting has been first proposed as a varidtiona
formulation by Masnou and Morel [29], followed by many PDRskd solutions [8, 9, 15, 48]. It is also worth to cite some
papers related to inpainting without use of PDE’s [19, 2&]pag others.

In this article, we see the inpainting process as a diredtegtjon of our proposed curvature-preserving PDE (14)pl&kmg

the diffusion equation only on the regions to inpaint alldtws neighbor pixels to diffuse inside these regions : a meali
completion of the image data along isophotes directiortaus haturally done, reconstructing the missing parts oirttage.
This kind of PDE-based inpainting technique has been alspgsed in [8, 15, 48]. Note that it is not able to perform textu
reconstructions, and texture synthesis steps will be sorestnecessary [3, 9, 56].

e Fig.6a shows how our PDE-based inpainting technique cais&e to remove real objects from digital photographs. A
500 x 500 color image (left) is inpainted with a user-defined mask @tedl The inpainted image (right) is obtained in
4 minutesl1 seconds, afte?200 iterations of our PDE (14) with parameters = 0.001, po = 100, o0 = 4, dt = 150.
Note thatp; << p2 encourages smoothing only along the isophote directiotisavstrength of 1 everywhere.

¢ Fig.6b shows an application of subtitles removing in a mérdene. Image size i800 x 162 and the inpainted image
has been obtained aft iterations of (14), withp; = 0.001, p. = 100, o = 4, dt = 50, for a total processing time
of 11 seconds.

e Fig.6c illustrates the reconstruction capabilities of myrainting technique. Half of the pixels of3®0 x 246 color
image have been suppressed by masking them with>a 16 checkerboard-shaped mask. Then, the image is recon-
structed using 0 iterations of our PDE (14) inside the inpainting mask, widtigmeters; = 0.001, po = 100,0 = 4
anddt = 50 (processing time i$ minute01 seconds).

For each inpainting result shown in this article, the itiz@tion of the pixel values inside the inpainting masks at 0 has
been done by white noise. Actually, the inpainting algarntis not much dependent of the initialization step : the eiquat
(14) diffuses neighborhood values inside the inpaintingknantil convergence, and there is then a strong border tiondi
We didn’t see much difference between different types dfdlization (noise, zero-filling or linear interpolatian)



(f) Creating painting effects with over-smoothingqedures (26s).

Figure 5: Results of color image regularization using ouvature-preserving PDE’s (14).
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(c) Left : Zoom of (b). Right: Reconstruction of a color image whe¥8% of the pixel values have been suppressed (1mO01s).

Figure 6: Results of color image inpainting using our cuvetpreserving PDE (14).
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Figure 7: Comparisons of image resizing, using Neareghtoar (first row), Linear (second row), Bicubic (third row)da
PDE-based (last row) interpolations.

5.3 Color Image Resizing

The inpainting technique naturally suggests that the neali interpolation implicitly performed by our regulatize PDE
(14) can be also applied to magnify images, just as a replewcetuo classical linear or bicubic interpolations. This id

as follows : starting from a linear or bicubic magnificatioihaocolor image as an initialization, we apply our curvature-
preserving PDE (14) everywhere except on the pixels havikmpwn” intensity values (pixels created from the original
image points). This is actually very similar to image ingiaig with a very sparse grid for the mask.

e Fig.7 illustrates one example of image resizing. An orig220 x 210 color image is resized by a factor2 with
classical nearest-neighbor, linear and bicubic intetpmia, then by our PDE-based technique (14). Our non-linear
regularization filter allows to remove the aliasing effagtsially encountered with simple interpolation methods|evh
correctly preserving the edges of the image.

Notice that we always preserve the values of the points sporading to the original thumbnail image, so that resiziagkb
the image to its original dimension (sub-sampling) resulthe original input data.



5.4 Other Results & Availability
Many application results of our algorithm can be found atftiiewing web page :
http://www.greyc.ensicaen.fr/"dtschump/greycstorati on/

You can also download and test the algorithm on differentitectures. Finally, the source of the algorithm (in C++) is
available as a part of the open sou@leng Library[49].

Conclusion

We proposed a generic constrained regularization formedisle to anisotropically smooth multi-valued images wibhE%
while preserving natural curvature constraints. It can $edun a wide range of image processing applications, imodud
image denoising, inpainting, interpolation among oth&tss formalism makes the link between general diffusion RRiad
Line Integral Convolutions, and leads to the design of a f@stand efficient numerical scheme that implements the adeth
This may ease the introduction of nonlinear diffusion me#himr time-critical applications in the area of multimediaedical
imaging and image processing in general.
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