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1 et 4 rue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
Yohan.Bentolila@ifp.fr

Abstract

This paper introduces a complete pipeline of image pro-
cessing methods in order to analyze and track the internal
structures of a composite material. As a first step, input X-
ray images are denoised, enhanced, separated into differ-
ent morphological components, and geometrically filtered
in order to isolate the interesting fiber inside the compos-
ite material. This requires the design of specific algorithms
preserving very thin image details while being able to re-
move undesired image regions that may be sometimes large.
For this purpose, we use state-of the-art techniques based
on recent achievements in diffusion PDE’s and modern har-
monic analysis tools. Then, the shapes of the remaining
fibered composite are individually analyzed by the use of a
tensor-based tracking algorithm. We illustrate how this set
of techniques allows the dynamic analysis of the composite
structure when submitted to external mechanical loads.

1. Introduction and Context

Microstructure study of Composite material under stresses
involves many complex mechanical phenomena and raises
a strong interest in the off-shore industry [2, 5]. Composite
structure used as risers are typically made of many layers.
Usually composite material is made of polymer reinforced
with glass or carbon fibers. Due to the use of X-ray technol-
ogy, the composite fiber material has been replaced by steel
in order to visualize the fiber within the composite. Fiber
layers are set with opposite lay angles and are basically used
to sustain tensile loads.
A way of understanding the mechanical phenomena apply-
ing on a composite part submitted to external stresses is to
monitor the behavior of its various layers using an X-ray

camera. For this purpose, devoted mechanical testing equip-
ment has been developed between IFP and CEA 1

and allows to stress the composite periodically, while
recording the behavior of fiber layers using a numerical X-
ray video recorder (Fig. 1).

Figure 1. One of the acquired X-ray image of a composite sample.

The analysis of acquired X-ray images points out several
properties which yield to develop appropriate image pro-
cessing methods to extract patterns of interest. First, the
used X-ray acquisition system adds non-negligible Poisson
noise to the data. Second, the fiber patterns of interest have
a quite low contrast while being at the same time only few
pixels large. Third, black numbers corresponding to refer-
ence elements on the composite structure, hide fiber struc-
tures that exist behind them. Fourth, vertical structures are
clearly visible on the image. They actually correspond to
the underlying metallic frame of the experimental device
and thus, it is caught by the X-ray acquisition. Last but not
least, front and back layers appear as mixed in the acquired

1French Atomic Energy Comission (CEA).
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image. This is due to the fact that the X-ray system ac-
quires the 2D projection of the composite sample (which is
initially a 3D object). This yields to a lot of cross line struc-
tures in two mainly opposite directions. With such condi-
tions, extracting the shapes of fiber structures with accuracy
in this harsh scene is a challenging goal that requires ad-
vanced image processing tools. In this paper, we propose
a set of image enhancing and analysis techniques that are
sequentially applied in order to track such fiber patterns in
good conditions. All these methods will be illustrated on a
real dataset along the article.

2. Proposed image processing pipeline

2.1. Overview of the image processing chain

As pointed out in the introduction, the data of wire struc-
tures are not directly accessible, since a lot of degradations,
artefacts and information mixing are present in the acquired
X-ray images.
We first tackle the denoising problem (section 2.2) by the
use of a specific curvature-preserving regularization PDE,
as proposed in [14]. As we want to enhance and isolate fiber
structures in our images, noise removal has to be the first
process to perform. It simultaneously avoids the enhance-
ment of undesirable image structures and reduces the need
of regularizing terms in image processing techniques used
afterwards. In a second step, a wavelet-based image con-
trast enhancement (section 2.3) is applied in order to put for-
ward fiber structures and prepare the image data for a source
separation step using the so-called Morphological Compo-
nent Analysis (MCA) (see section 2.4). This morphologi-
cal decomposition of the image allows to clearly separate
the image into two morphologically distinct components:
one piece-wise smooth and the other with linear-curvilinear
structures. An additional orientation filtering scheme is fi-
nally applied in order to remove vertical stripes due to the
main metallic frame of the experimental device, and to sep-
arate the front and back fiber layers of the considered object
(section 2.5). As a result of this image processing chain, two
images are obtained corresponding to the two wire structure
directions. In a last step, a fiber tracking process is per-
formed to extract the wire pattern trajectory (section 2.6).

2.2. Image denoising

Let I : Ω → R be one of the acquired X-ray image of the
considered composite. In order to remove the high amount
of noise present in I , we used a technique based on regu-
larization PDE’s (partial differential equations), which are
well known to be able to remove noise while preserving
important discontinuities of the image data (by the mean
of anisotropic filtering) [1, 7, 9, 17]. Here, important im-
age data consist mainly in fiber structures on the composite
sample. There are usually structures that are only few pixel

large. In order to take this particularity into account, we use
the framework of curvature-preserving PDE’s, as proposed
in [14]. We applied the following equation on the input X-
ray images :

∂I

∂t
= trace(TH) +
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√

Taα (ma-
trices of the first and second spatial derivatives), while T is
the field of 2 × 2 diffusion tensors :
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Here, λ+, λ− and θ+, θ− respectively denotes the eigenval-
ues and eigenvectors of the smoothed structure tensor field
G = (∇I∇IT ) ∗ Gσ [17]. User-defined parameters of the
algorithm p+ and p− defines the local smoothing strength.
This recently proposed PDE-based method has the advan-
tage of preserving wire curved structures in the images,
thanks to the constrained term

∫

J√
Taα

√
Taα added to

the second order elliptic term trace(TH) that basically per-
forms a diffusion along the tensor field T [13, 14]. More-
over, this method can be implemented with a smart and fast
numerical scheme, based on Line Integral Convolutions (as
defined in [3]). It allows to perform image denoising with a
sub-pixel accuracy, which is particularly well suited for our
aim of image denoising with preservation of thin fiber struc-
tures. A result of our image denoising method is illustrated
on Fig.2.

Figure 2. PDE-based denoising of X-ray images (details) : Ac-
quired images (left), PDE-regularized images (right).

2.3. Contrast enhancement

The contrast enhancement technique that we propose is
based on multiscale transforms, and more specifically on



the wavelet transform (WT). Basically, the WT can be seen
as a sophisticated multi-scale differential operator that will
capture the edges of the image. Then, a non-linear enhance-
ment function is applied coefficient-wise to each wavelet
sub-band, and an inverse wavelet transform is finally ap-
plied to get the enhanced image.
Several approaches have been developed in the literature for
multiscale image enhancement (see e.g. [12, 6] and refer-
ences therein). Here we use a non-linear global adaptive
gain (GAG) function that will enhance the significant high
WT coefficients and reduce the non-significant small ones
(mainly due to noise). By global, we mean that the GAG
function will have the same expression independently of the
wavelet coefficient location. Towards this goal, the follow-
ing GAG function was designed:

f(d′j,k) = dj
maxa

(

sigm(c(d′
j,k − bj)) − sigm(c(d′

j,k + bj))
)

(2)
sigm(x) is the sigmoid function (1 + ex)−1. d′j,k =

dj,k/dj
max, where dj,k is the wavelet detail coefficient at

scale j and location k, and dj
max is the maximum wavelet

coefficient in magnitude at scale j. c is the gain parameter
(i.e. higher value of c yields more details enhancement). a
and bj are defined as follows:

a = (sigm(c(1 − bj)) − sigm(c(1 + bj)))
−1

, bj =
T

dj
max

bj can be thought of as a ”threshold” below which the
wavelet coefficients are supposed to be negligible. There-
fore, a possible meaningful value would correspond to T =
σ
√

2 logN2, which is best known as the universal threshold
of Donoho and Johnstone. More details can be found in [6].
The results are depicted in Fig.3, where the fine detail struc-
tures have been enhanced. Some faint structures that were
hard to distinguish before this step are now clearly visible.

2.4. Source separation

Morphological Component Analysis (MCA) is a recent
novel approach in modern harmonic analysis proposed by
Starck et al. [11]. Its primary goal is image separation into
several semantic parts (sources), where each component is
sparsely represented in a given image transform. Suppose
that an image I defined on a compact is a linear superpo-
sition of several parts {Si}i=1,...,ns

, where each part has a
parsimonious decomposition in a transform Φi. The union
of all these transforms is usually called a (possibly hyper-)
redundant dictionary. For example, if the image is com-
posed of a piece-wise smooth part and a textured part (the
so-called cartoon+texture model [16]), then two very com-
petitive candidate transforms in the dictionary would be the
wavelet transform (for the piece-wise smooth part) and the
local DCT (for the locally oscillating texture).

Figure 3. Effect of multi-scale contrast enhancement applied to a
PDE-denoised image: top: enhanced image, bottom: zoom of an
image region before (left) and after (right) enhancement.

Using both sparsity and variational mechanisms, the MCA
approach attempts to solve the following optimization prob-
lem:

min
{αi}i=1,...,ns

J(αi) =
1

2
‖X −

ns
∑

i=1

Φiαi‖2
2 + λ

ns
∑

i=1

‖αi‖1

+µ‖Sj‖TV

Here, Sj = Φjαj is known to be the piecewise regular com-
ponent, and ‖.‖TV is the Total Variation norm. Penalizing
with TV, will force the component Sj to be closer to a piece-
wise smooth image and, thus, can be helpful to support the
separation process. In this formulation, beside the data fi-
delity term, the l1 norm penalty on the transform coeffi-
cients promotes the sparsity of the representations.

Optimization issues In [11], the authors proposed a mod-
ification of the Block Coordinate Relaxation (BCR) algo-
rithm to solve the above optimization problem. The inter-
ested reader may refer to [11, 10] for further details.

Candidate dictionaries Our goal is to separate the X-ray
denoised and enhanced into two components: one contain-
ing the curvilinear fiber structures and the other with the
lead markers appearing as black numbers in the X-ray im-
age. These two components will be denoted hereafter Sc

and Sw. Therefore, natural candidate transforms in the dic-
tionary would be the curvelet transform [4] for Sc, which is
very efficient to capture curvilinear structures, and the un-
decimated wavelet transform for the numbers and the piece-
wise constant background component Sw. The TV penalty
will be added to direct the image Sw to fit the piecewise
smooth model.



Fig.4 provides an illustration of the separation provided by
the MCA for the above dictionaries after 30 iterations. The
top row depicts the PDE-denoised and multiscale enhanced
image, the middle and bottom rows give the two compo-
nents Sc and Sw. The MCA performed impressively well.
One can clearly see how it managed to get rid of the num-
bered markers while preserving the curvilinear fibers struc-
ture, and even reconstructing the unobserved fibers parts
that were behind the markers.

Figure 4. Results of the MCA separation step. Top row: PDE-
denoised and multiscale enhanced image. Middle and bottom
rows: components Sc and Sw provided by the MCA.

2.5. Orientation filtering

As stated in the introductory part, the goal of this step is
twofold: (a) separate the wire structures according to their
orientation in the component Sc obtained from the MCA
step, (b) remove all linear structures whose main orienta-
tion is either horizontal or vertical. This amounts to a ”ge-
ometrical” filtering of the component Sc. We then use the
curvelet coefficients to select those coefficients that exhibit
the desired geometrical (orientation) properties, and kill the
others. The inverse curvelet transform is applied only to the
retained coefficients to get the orientation-filtered image(s).
More specifically, the component Sc is efficiently repre-
sented by the curvelet transform, and can be written as:

Sc(x, y) =
∑

γ αc
γφγ(x, y)

where φγ are the curvelet transform atoms indexed by
their scale j, orientation θ and position (k, l) (that is γ =
(j, θ, k, l)). An orientation-filtered version of the image Sc,
where all orientations are kept except θ∗ can be written:

S∗
c (x, y) =

∑

γ∈Γ∗ αc
γφγ(x, y)

where Γ∗ = {(j, θ, k, l) s.t. θ 6= θ∗}, i.e. Γ∗ is the set of
indices γ containing all orientations but θ∗. For example,
in order to remove the horizontal and vertical structures, θ∗

takes the values 0, π and ±π/2. As far as the fiber structures
are concerned, they have global orientations at π/4 and
3π/4. A natural choice for the angle θ∗ is obviously ±π/4
and ±3π/4. However, because of classical discretization is-
sues induced on a Cartesian grid, and also because there can
be some local fluctuations on the fiber orientation, some tol-
erance must be allowed on θ∗ to effectively remove all un-
desirable oriented structures. Furthermore, the number of
orientations in the directional part of the curvelet transform
is scale-dependent (see [4] for details). Thus, the angle tol-
erance on θ∗ must also depend on the scale j. Formally, this
corresponds to the set Γ∗ = {(j, θ, k, l) s.t. θ 6= θ∗±∆θ∗j},
where ∆θ∗j is the scale-dependent angle tolerance. In our

application, we set ∆θj = 2π/nj
θ where nj

θ is the number
of angular directions at scale j.
Results obtained after orientation filtering are shown in
Fig.5. One important consequence of this step is that the
filtered image is free from fiber structures crossings and un-
desired horizontal and vertical structures. This has an im-
portant impact on wire structures tracking.

2.6. Wire Structure Tracking

Having isolated the image data corresponding to interesting
fiber structures on the composite, we are now able to re-
trieve more easily the fibers shape, since a fiber is now rep-
resented by an isovalued curve of the image pixels. Starting
from an user-defined point belonging to a fiber of interest,



(a) Wire structures after MCA (Sc image).

(b) Image of (a) after horizontal and vertical lines were filtered
out.

(c) Image of wire structures in the NW and SE directions.

(d) Image of wire structures in the NE and SW directions.

(e) Zoom of (a),(b),(c),(d).

Figure 5. Results of orientation filtering applied to the Sc MCA
component.

we get its global shape by tracking the curve of constant
image intensities (the color of the seed point) in both for-
ward and backward directions. This is done by computing
the integral curve of the vector field w : R → R

2 defined
as the field of minimal eigenvectors of the smoothed struc-
ture tensor G = (∇I∇IT ) ∗ Gσ . This curve integration is
performed through a 2nd order Runge-Kutta scheme [8].
Using this integration method allows us to find the path of
minimal variations (i.e constant intensity) starting from a
point , while introducing an interesting smoothness con-
straint on the tracked curve by the parameter σ which is the
standard deviation of the structure tensor gaussian smooth-
ing. This regularity prior is justified by the nature of the
tracked object. Results of fiber tracking in one frame (back
and front layers) are illustrated on Fig.6.

Figure 6. Result of fiber tracking on front and back layers of the
composite (green line).

Our scheme is actually similar to the one used in recent
works on fiber tracking in 3D volumetric images of diffu-
sion tensor MRI [15].
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Conclusion & Perspectives

In this paper, we combined elements from PDE-based im-
age processing and modern harmonic analysis to provide an
effective solution to a challenging and complex image pro-



cessing problem: fiber structures tracking on a composite
sample observed at the output of an X-ray image acquisition
system. Because of the low quality X-ray images, and many
other complicating factors (e.g. projection of 3D structure
onto a 2D plane), direct tracking on the original image is
not possible. We then proposed to enhance the quality of
the image and isolate the fiber structures prior to the fiber
tracking step. Towards this goal, a curvature-preserving
PDE-based approach was used for image denoising, while
harmonic analysis with variational tools were proposed to
enhance and separate the fiber structures. Finally, a tensor-
based filamentary structure tracking algorithm was applied
on the enhanced and simplified image. The obtained re-
sults are very precise and the complete pipeline of proposed
image processing methods was successfully validated on a
large database of composite X-ray images. Nonetheless,
at this time, the tracking algorithm is still at a preliminary
stage and deserves a much deeper work. Our ongoing work
is directed towards this aspect.
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