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Abstract. Nonlinear partial differential equations (PDE) are now widely
used to regularize images. They allow to eliminate noise and artifacts
while preserving large global features, such as object contours. In this
context, we propose a geometric framework to design PDE flows act-
ing on constrained datasets. We focus our interest on flows of matrix-
valued functions undergoing orthogonal and spectral constraints. The
corresponding evolution PDE’s are found by minimization of cost func-
tionals, and depend on the natural metrics of the underlying constrained
manifolds (viewed as Lie groups or homogeneous spaces). Suitable nu-
merical schemes that fit the constraints are also presented. We illustrate
this theoretical framework through a recent and challenging problem
in medical imaging: the regularization of diffusion tensor volumes (DT-

MRI).

Introduction

In the last decade, variational methods and nonlinear PDE’s have been widely
used to tackle computer vision problems, such as image restoration [19,24, 26,
35], segmentation [22], stereo-based 3D reconstruction [12], image inpainting [4,
6], or image matching and optical flow estimation [1,2,11] (among other exam-
ples). Solutions to these problems, whether they are curves, surfaces, or images,
are obtained by continuously deforming an initial estimation through a flow de-
fined by a PDE. The corresponding evolution equations derive either from simple
local heuristics or from cost functional minimizations. In the context of image
and data restoration, which is considered in this paper, the idea is to achieve a se-
lective smoothing that removes noise while preserving large global features, such
as object contours (discontinuities of the signal). For this purpose, one generally
uses anisotropic nonlinear diffusion PDE’s, which often derive from variational
principles (such as the ¢-function formulation [7,19, 24, 25] which has proven its
efficiency for gray-valued image restoration).

Generalizing these algorithms to multi-valued datasets is now attracting a
growing interest. In effect, the increase of computer performances has made
possible the implementation of PDE’s acting on large fields of vectors or matrices.
Recent works point toward this direction, with the definition of methods for color
image restoration [26, 28, 31, 35], or direction field regularization [5,17, 23,29, 33].
A flow on multi-valued data is generally not a straightforward generalization



of its scalar counterpart, and new theoretical developments are involved. For
instance, in the case of direction field restoration, vectors are constrained to
have a unit norm. This yields a significant modification of the corresponding
diffusion PDE’s by introducing a coupling term between vector components.

The aim of this paper is to provide some formal and numerical tools to deal
efficiently with this type of problems, with a particular emphasis on flows of
matrix-valued functions undergoing orthogonal and spectral constraints. Our fi-
nal objective concerns the restoration of diffusion tensor images of the human
brain (DT-MRI) [21], modeled as fields of symmetric positive definite matri-
ces (i.e. constrained to have positive eigenvalues). We start from the fact that
most evolution PDE’s can be viewed as ordinary differential equations (ODE)
on a suitable function space. When nonlinear constraints are involved, the cor-
responding flows belong to an infinite dimensional submanifold! of the initial
search space. Usually, this geometric viewpoint is hidden behind the use of La-
grange multipliers in constrained variational principles. It also appears implicitly
in the nonlinear heat equation, borrowed from harmonic map theory, which has
been recently proposed to regularize direction fields [5, 29]. The interest of a fully
geometric interpretation of the suitable function space is twofold. First, it pro-
vides a simple and unified framework to build constrained flows for matrix-valued
functions, whether or not they derive from variational principles. Second, it nat-
urally yields, through the use of exponential maps, suitable numerical schemes
that are also constraint preserving.

This approach is presented as follows. Section 1 introduces a geometric setting
to define constrained flows and their proper numerical implementations. Section
2 discusses the application of these methods to the definition of three different
regularization techniques for DT-MRI datasets. Finally, section 3 presents results
of numerical experiments on a real DT-MRI volume of the brain, leading to the
construction of regular tissue fiber maps in the white matter.

1 Geometric Interpretation of Constraint Preserving
Flows

1.1 Flows on Manifold

Let us consider the smooth trajectory ¢ — p(t) of a point moving on an arbitrary
manifold M. Any such trajectory can be defined, at least locally, as the integral
curve of a smooth vector field V', and satisfies the evolution equation

op(t

20 _ v (where p(0) € M). 1)
Recall that since V is a vector field, we have V p € M, V(p) € T,M, where
Tp,M denotes the tangent space of M at p. An example of such an integral
curve, induced by a vector field on a sphere, is illustrated in Fig. 1la.

! Thoughout this paper, we borrow some tools from differential geometry and Lie
group theory. We refer to [18, 20] for the corresponding background.



Despite its simplicity, eq. (1) contains the key elements to build all the con-
strained flows presented below. Let us assume that M is a submanifold corre-
sponding to some nonlinear constraints on its embedding space P. Then, we can
say that a flow is constraint preserving if it is tangent to M. Its form follows
readily from the expression of the tangent space at any point p of the constrained
set. This argument is valid for both finite and infinite dimensional manifolds. For
our application, we will consider manifolds of the form M = F(Q,/N), where
F(Q,N) is a set of functions X : @ — N, defined on an open subset Q of the
Euclidean space, and which take values in a constrained matrix manifold V.
This infinite dimensional manifold of mappings could be define on a suitable
Banach or Hilbert space [16,18,20]. For a given point X € F(Q,N), its tangent
space is identified to the set of functions:

TxF(Q,N) = {z — V(x), such that V(z) € Tx )N},
where T'x () is the tangent space to N at X (x).

In the following, M is viewed as a submanifold of the linear space P =
F(Q,R™*™), where R**™ denotes the set of n x n real matrices?. Note that in the
definition of the tangent space, we assumed that 7 (£, ') inherits its constrained
geometry directly from its codomain /. We do not consider additional structural
contraints, such as invertibility, which would yield more complex families of
mappings (see for instance the groups of diffeomorphisms used in the image
matching context [30]). In this setting, an evolution equation on F(Q, ) must
satisfy:

0X(2) — y(z), with V(2) € TxmN,
Vi>0,VaeQ, (2)
X() = X(t:(]) S f(Q,N)

In order to specialize this equation to the practical cases studied in this paper,
we can also notice that a wide range of orthogonal and spectral constraints on
matrices define Lie groups and homogeneous spaces. They are submanifolds of
R™*™ which present some nice algebraic properties. In particular, the tangent
space at any given point of a matrix Lie group is easily defined in terms of its
tangent space at identity (its Lie algebra) [18]. This is particularly important
since equation (2), together with the expression of the tangent space at any point
on N, will yield directly the constrained flows we are looking for. Regardless of
the type of constraints discussed in the section 2, we will describe each point on N/
in terms of its extrinsic coordinates in R™*™. The main reason is that a suitable
parametrization of a constrained set is generally difficult, since several charts
are often necessary to cover the underlying manifold. The constraint set may
even have several connected components (the group of orthogonal matrices, for

2 We naturally extend to F(Q,R**™) all the operators existing on R"*™. Let
X,Y,Z € F(Q,R™™™), the expression Z = XY corresponds to the equality
Z(z) = X(2)Y (z), Vz € Q (product of matrices).



instance, has two connected components: the sets of rotations and anti-rotations
(we call “anti-rotation” a reflection combined with a rotation)).

1.2 Gradient Flows and Cost Functionals

One way of building a constraint preserving flow (2) for a specific purpose is to
minimize a cost functional f. The corresponding evolution equation is usually
defined as a gradient flow that follows the direction of steepest descent toward the
nearest critical point. To build such a flow, M is endowed with a Riemannian
metric (,-), which defines for all p € M a scalar product between any two
vectors of the tangent space T, M. Recall that the gradient is then defined as
the unique vector field V f such that

VoveT,M, dfp(v) =(Vf(p),v),,

where df,(v) denotes the first variation® of f at p in the direction v. The corre-
sponding minimizing flow is given by

op(t
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When M is a linear function space equipped with the L2-metric defined by
(v,w) = [qv(z) - w(z) dz, the equation Vf(p) = 0 corresponds to the usual
Euler-Lagrange equation of variational calculus.

In our framework, we choose to endow M = F(Q,N) with the metric
(U,Vx = [ (U(x),V(x))/)\(/(m) dz, where (-,-)ﬁf denotes a suitable Rieman-
nian metric on N, usually an invariant or a normal metric in the case of Lie
groups and homogeneous spaces [15]. In practice, when the L?-gradient is known
for an arbitrary cost functional f on F(Q,R™*™), we will be able to reuse its
expression to define the gradient of the restriction of f to F(Q,N). Up to a
change of metric, the corresponding transformation is an orthogonal projection
on the suitable tangent space.

1.3 Exponential Maps and Numerical Schemes

Standard numerical methods for differential equations are usually not suitable
for constrained flows. Note that with a simple Euler method, the numerical
integration of equation (1) yields the explicit scheme

P(t+dt) = P(¢) + V(p(t)) dt where Po = P(t=0) €M, (3)

where dt > 0 corresponds to the integration step. Since we are using extrinsic
coordinates, there is a risk of stepping out from M for each (non infinitesimal)
displacement. In fact, by writing (3) we implicitly assumed that the integral
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the first variation of f from the definition df,(v) = %

3 For an arbitrary curve p. on M, such that po = p and = v, one computes

e=0

E:O-
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Fig. 1. (a) Integral curve of a vector field on a manifold M, (b) Geodesic steps on a
Riemannian manifold.

curve lies in a linear space. In our situation, we must adjust the integration
method to accommodate the true constrained geometry of M. The first idea is to
project after each step the point p(;1.q¢) on the underlying manifold. We propose
here to avoid this post-processing using a geometric integration step relying
on exponential maps, following directly a geodesic path between each iteration.
This technique is borrowed from existing numerical methods on Riemannian
manifolds [15,27]. It consists of replacing (3) by

P(etdr) = €xpy, (dt V(pr))) po € M, (4)

where exp,, denotes the exponential map at p € M. Recall that for a given point
p on a (finite dimensional) manifold M, and a vector v € TpM, there exists a
unique geodesic t — v, (t) such that

Y(0)=p and 7,(0) =v.

The exponential map exp, : T, M — M is then defined by exp,(v) = 7,(1)
(V v such that ~,(1) exists). For dt sufficiently small, equation (4) corresponds
to a geodesic step of length

1/2
16tV (Pl = (Y (b)) dV (pio))),,

in the direction of V(p(y)) (see Fig. 1b).
In general, the equation of a geodesic satisfies a second order differential equa-
tion. In this paper, we use the fact that for simple matrix manifolds, closed form
solutions are often available (and thus the exponential map). Note that on linear
manifolds endowed with the Euclidean metric, geodesics are straight lines. For
instance, the tangent space at X in R™*" is defined by Tx R**™ ~ R**™ and
we have VX,V € R**", expx V = X + V. Then, equation (4) reduces to the
original Euler integration method.

In our framework, these ideas extend naturally to the definition of a numerical
integration scheme on 7 (2, ). Given exp,, : T,A + N the exponential map on



N, we introduce on F(Q,N) a step-forward operator expxV : Tx F(Q,N) —
F(Q,N) defined by

Vr € Q, z— (expxV)(z) = expx(,) V().

One can easily check that expxV yields a consistent numerical integrator (in
time) for the continuous equation (2), such that

X(tar) () = (eXPXm dt V(t)) (z) = €XPXx ;) () dt Vig (), (5)
with V(t)(l') S TX(t)(z)N and X € f(ﬂ,./\f)

Regarding the discretization in space of V{;) (on ), finite difference schemes
developed for unconstrained equations still apply. Actually, constraints on the
codomain A of F(2, N) only change the time discretization scheme. If we had
to deal with functions @ — R™*™ whose spatial domain Q was an arbitrary
manifold (for instance an implicit surface defined by a level set function), we
could combine this technique with the framework introduced in [3].

2 Application of Constraint Preserving Flows to Diffusion
Tensor Regularization

2.1 Context and Notations

We propose now to use the previous tools to address the problem of diffusion ten-
sor regularization. Let P(n) and O(n) denote respectively the sets of symmetric
positive definite, and orthogonal real matrices of size n x n. Recall that

VX €P(n), X,; =X;;, and VaeR"\{0}, a'Xa>0, (6)
VXeO(n), XXT'=XTX=1, (Iistheidentity matrix). (7)

We are mainly interested in regularizing fields X : @ — P(3) of diffusion
tensors coming from DT-MRI imaging. This recent and non-invasive 3D medical
imaging modality consists in measuring the water molecule motion in the tissue
fibers, using magnetic resonance techniques. Each voxel X (x) € P(3) of the
acquired image X is defined by a symmetric and positive definite 3 x 3 matrix
that defines the local water molecule motion (i.e. the fiber orientations) [9, 10,
21,14, 34]. These fiber structures are not explicitly given by the matrices X (z),
but can be retrieved by spectral decomposition X (z) = U(z)D(z)U(x)T, where
U :Q — 0O(3) is the field of 3 x 3 orthogonal matrices composed of the unit
eigenvectors of X, and D is the field of the 3 x 3 matrices D(z) = diag(A1, A2, A3)
corresponding to its positive eigenvalues. Actually, the spectral decomposition
splits the diffusion tensor field X into an orientation feature U (main directions
of the water motion) and a diffusivity feature D (velocity of the water motion).
A natural representation of X is then produced using ellipsoids whose axes
and radii are respectively given by the eigenvectors in U and the corresponding



Fig. 2. View of a 3D diffusion tensor field X : Q@ — P(3).

positive eigenvalues A1, A2, A3 (see Fig. 2).

In the following, the mathematical reasoning developed in section 1 is applied
through a progressive analysis of the diffusion tensor regularization problem. We
refer to the research report version of this paper [8] for a detailed derivation of
the results presented below. Note that this framework allows us to generalize
previous regularization methods acting directly on the matrix representation of
DT-MRI data [9, 10, 32].

2.2 Symmetric Positive Definite (SPD) Constraint

By analogy with scalar image regularization methods, the first idea to restore a
DT-MRI field is to find a matrix-valued flow minimizing a regularization func-
tional f,

o
i X)= VoX —(X — X)%dn, 8
i )= [ o(IVaX )+ G- Xo) ®)
(where [V X[ = /37, . [IVeX,;[> and Vo = (6%, 3%, %)T is the spatial gra-

dient in 2), while preserving the symmetric positive definite constraint (6). The
fixed parameter a > 0 prevents the expected solution from being too different
from the given noisy field Xy, while ¢ : R — R is an increasing function which
controls the regularization behavior (this ¢-function formulation was first intro-
duced in the context of scalar image regularization with edge preservation [7, 19,
24]). Note that the functional (8) is invariant by matrix transposition and thus
takes into account implicitly the symmetry property of the evolving matrices.

Constraint preserving flow: The simplest way to introduce flows on F(2, P(n))
is to consider the factorization of any symmetric positive definite matrix X into
a product RTR where R € GL(n, R), the Lie group of invertible n x n real ma-
trices. Its Lie algebra gl(n) is the set of real valued matrices, and we can identify
any tangent vector W at point R € GL(n,R) with a vector V' of gl(n) through
W = RV. This leads to flows on F(, GL(n)) which are given by

% =RV where V€ F(Q,R™™) and Ry—q) = Ro € F(Q,GL(n)).



One simply combines this expression with the factorization of X to obtain flows
that act directly on F(Q,P(n)).

Gradient flow: Now, if we let G denotes the L%-gradient of f on F(2, R3*3).
We show in [8] that the natural gradient flow corresponding to the restriction of
f to F(Q,P(3)) (endowed with its normal metric) satisfies

0X
E:—((G+GT)X2+X2(G+GT)). (9)
In our case, the matrix G = (G, ;) is defined component by component with
(9 (IVeX
Gi,j = OL(XZ',]‘ - Xoi_j) — div (HV()}QJ . (10)

Note that the PDE (9) allows to evolve directly the matrix coefficients while
preserving the symmetric positive definiteness.

Numerical scheme: For equation (9), since the underlying manifold is an open
region of a linear space, a simple Euler step could be used, provided the initial
function X is far enough from the constraint set boundaries. Using the expo-
nential map theory presented before, we can introduce a more suitable scheme:

Xyar) = exp(=X()(G + GT) di)" Xy exp(=X((G + GT) dt), (11)
where exp(A4) = z;.io ‘;‘—, denotes the matriz exponential, numerically imple-
mented using a Padé approximation, as described in [13]. One can easily check by

induction that this scheme satisfies the constraint. Let K(;) = exp(—X( t)(G( o+
G(T;)) dt). If we assume Xy € F(Q,P(n)), we have V2 € Q, Vv € R* \

{0}, vIX(y(z)v > 0. Thus, Vz € Q, Vw € R \ {0},

wTX(t+dt)(l")’w = wTK(q;) () X () (2) K1) (x)w
= (K (@)w)" X () (K (z)w) > 0.

Experiments on synthetic data: An application of the symmetric positive
definite regularizing flow (9) on a noisy, synthetic 3D tensor field is illustrated
in Fig. 3. The tensor field is quite well restored, but suffers from an eigenvalue
swelling effect, despite the anisotropic diffusion obtained with the ¢-function
formulation. Actually, when the noise does not affect the tensor orientations as
much as the diffusivities (which is the case here), a global matrix regularization
process quickly smoothes the diffusivities in regard of the orientations. There-
fore, to avoid this eigenvalue smoothing, we have to split the regularization of
the tensor orientations and diffusivities. Note that the same kind of behavior
appears in color image restoration, where several methods propose to separate
the chromaticity and the brightness information from a color vector, and restore
them with different equations [5,17,29, 31].



(a) Synthetic 3D tensor field (b) Corresponding noisy field (c) Using the SPD flow (9)

Fig. 3. Symmetric positive definite flow on a synthetic tensor field (with ¢(s) =

21+ 5% —2).

2.3 Orthogonal Flow

Eigenvalue over-smoothing can be avoided by regularizing the orientation part
U and the diffusivity part D of a diffusion tensor field X, with different cou-
pled equations. This problem has been already considered in [10, 32]. Note that
the regularization of the diffusivity field D can be handled with classic vector
regularization PDE’s [26, 28,31, 35], which must however satisfy the maximum
principle in order to preserve the eigenvalue positiveness. We can then focus
on the regularization of the orientation feature, i.e. the regularization flow that
minimizes the following ¢-functional:

. a 2
= —(U - 0.
Uefrp&rgm))f(U) /qu(IIVnUIIH 5 (U =Uo)"d

Constraint preserving flow: By definition, O(n) = {X € GL(n,R) / XX =
I}. Tts tangent space at X is TxO(n) = {X A, A € so(n)}, where so(n) denotes
its Lie algebra, the vector space of skew-symmetric matrices. Thus, any flow on
F(Q,0(n)) satisfies an equation of the form

oX A € F(2,s0(n))

— =X A, where {Xo = X(1—0) € F(2,0(n)). (12)

ot

Gradient flow: The gradient flow for the restriction of f to F(Q2,0(n)) with

respect to its bi-invariant metric? is given by (see [8])
X
5 = - V/=-X{X,G}=X GT X -a,

where {A, B} = ATB — BT A denotes the generalized Lie brackets, and G =
(Gs,5) is the usual gradient:

(¢ (IVaUlD)
Gij;=a(Ui;—Up, ) —div| =2 V,U;; | .
sJ ( sJ 0 ,.’I) v ( ”V_QU” 2 J

* (XA, XB)y = — [, Tr(A(z)B(z)) dz,V A, B € F(Q,s0(n)).



Sketch of Proof: Since Vf € TxF(Q,0(n)), we have Vf = XA, with 4 €
F(9Q,s0(n)). The skew-symmetric matrix function A is then identified from the
different expressions of the first variation (details in [8]).

Numerical scheme: On O(n), we have VV € TxO(n), expyV = XXV =
X eXTV, which yields directly the following implementation of eq. (12):

Xtan = Xexp (=dt {X(),G}).- (13)

Remark: Note that in this case, for 3 x 3 skew-symmetric matrices, the matrix
exponential can be expressed with Rodrigues’ formula:

sinflal| . 1—cos|la|| . 0 —as a
exp(A) = I+ A+ 57— A° where A = [ a3 0 —a;|(€50(3)),
Tal lal e

and a = [a1 a2 a3]T. This equation can be used to improve the computational
efficiency of the numerical implementation of eq. (13).

Experiments on synthetic data: The full regularization process of a diffusion
tensor field X, using an orthogonal flow reads as follows:

1. Retrieve the orientation field U and the diffusivity field D of a tensor field
X,ie. Ve € 2, X(z)=U(z)D(2)U(x)T.

2. Process the orientation field U with our orthogonal-constrained matrix flow
(12). Note that one has to take care of the non-uniqueness of the orientation
field U, as mentioned in [10,9,32]. Flipping one eigenvector u!* (a column of
U) does not change the tensor, but may affect the anisotropic regularization
process. To overcome this problem, a local eigenvector alignment process is
made before applying the PDE on each tensor of the field X. The neighboring
eigenvector directions are aligned with the current one, by constraining the
dot product between them to be positive:

Vy € V(z), ull(y) := sign (ul(z).ull(y)) ul(y),

where V(x) is a neighborhood of x. This local operation allows to act only
on the orientation feature of the tensors. The importance of this alignment
step is shown on Fig. 4c.
3. Finally, process the diffusivity field D with a classic vector scheme, as in
[35]:
o\
ot
where X' is a matrix that drive the diffusion process and may contain some
a-priori physiological information.

=« ()\01 — )\1) + le(EV_Q)\l) ,

As we can see in Fig. 4, the tensor field seems well restored. The final result is
closer to the original image, and does not suffer from eigenvalue swelling. Note
that the restoration of tensor orientations was initially proposed in [9, 10, 32]
using similar continuous flows but different numerical integration methods.



(a) Synthetic 3D tensor (b) Corresponding noisy (c) Orthogonal flow (12), (il% O}‘ttlilolgonzlll l‘ﬂow
field field without local alignement (12), wi ocal aligne-

ment
Fig. 4. Orthogonal flow on a synthetic 3D tensor field.

2.4 Isospectral flow

To avoid the eigenvector alignment step needed by the previous method (12), we
propose here a simple way of regularizing directly tensor orientations. It consists
in applying on the initial tensor field an isospectral flow, i.e. a regularizing flow
that preserves the tensor diffusivities, while regularizing the tensor orientations.

Constraint preserving flow: We first consider the homogeneous space M(Q) =
{HTQH, H € O(n)} of all the matrices orthogonally equivalent to a symmetric
matrix Q. If all the values of X, had the same eigenvalues (the same as the
matrix @), we could model our configuration space as F (2, M(Q)). However, if
we allow the eigenvalues of X, to vary spatially, we need to introduce a slightly
more generic manifold 757, () = {H" X (0)H, H € F(,0(n))}. From the ex-
pression of its tangent space TXF;‘ZO)(Q) ={[X,A], A€ F(Q,s0(n))} (the Lie
brackets [, -] corresponds to the commutator [A, B] = AB — BA), the expected
1sospectral flows must satisfy
0X(t)

5 = X AWM A(t) € F(Q,50(n)).

Gradient flow: Given the L2-gradient G on F(2, R"*™) (defined by (10)), we
show in [8] that a natural minimizing flow for f on 7% (Q) is defined by

08—); =[X,[X,-(G+GN)]]. (14)

One can also obtain a suitable integration scheme for eq. (14), derived from the
expression of the exponential map on the orthogonal group, and such that

Ve, Xiray(z) = A(t)(x)TX(t)(x)A(t)(x)a with
A (z) = e U[GT(@)+G(2), X1y ()] (15)
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(a) Synthetic 3D tensor field. (b) Corresponding noisy field.

flow (14).

Fig. 5. Isospectral flow on a synthetic 3 x 3 tensor field.

Experimental results: Equation (14) was applied to the usual noisy, synthetic
tensor field. This experiment is illustrated in Fig. 5.

As expected, the results are similar to the ones obtained with the decompo-
sition and the orthogonal constraints. However, the computation cost is signif-
icantly reduced (no local alignement steps are needed anymore for regularizing
tensor orientations). The PDE (14) applies directly on the original matrix coef-
ficients X ;.

3 Results on Real DT-MRI Datasets

We have tested the proposed diffusion tensor regularization PDE’s (9), (12),
(14), on a real 128 x 128 x 56 DT-MRI dataset’ of the brain (Fig. 6a,b). On
the left side of each figure, we represent the tensors as ellipsoids, while the right
side shows the corresponding fibers, tracked by following the main direction of
each tensor. These fibers show the path followed by the water molecules. To
make visualization easier, only one slice of the processed volume is represented.
The computations have been carried out with a Pentium 1Ghz processor, 1Go
RAM, and the corresponding computation times are given for the full volume
restoration process. We noticed that the geodesic step approach allows time
steps to be relatively high, and very few iterations are needed in practice. The
¢-function used for these experiments is the “hypersurface” function, ¢(s) =
2y/1+ s? — 2 proposed in [7]. The results we obtained clearly illustrates the
behavior of the different methods:

— The symmetric positive definite flow (9) tends to swell eigenvalues.

— The orthogonal constrained flow (12) works well with a local alignment step
(Fig. 6e), but fails otherwise (Fig. 6d).

— The isospectral flow (14) has a quite similar behavior, but is more compu-
tationally efficient.

® The authors would like to thank J.-F. Mangin and J.-B. Poline (SHFJ-CEA) for
providing us with the DT-MRI data (this work was partially supported by ARC
MC2). We also thank R. Fournier for his visualization tool “TensView”.



Even if the physiological validation of these results remains to be done, our
methods seem to correct most artifacts (due to the image acquisition process)
and retrieve the main global structures of the fiber network. It opens new per-
spectives to construct an accurate fiber map model of the brain.

Conclusion

In this paper, we proposed a geometric approach to construct general flows act-
ing on constrained matrix-valued images. We also introduced numerical schemes
that naturally fit into this framework thanks to the use of exponential maps. The
efficiency and versatility of this setting has been illustrated with the problem of
diffusion tensor regularization. Three different regularizing flows were introduced
(symmetric positive definite, orthogonal, isospectral). Some of them generalize
and extend previous works in this field. Numerical experiments show promis-
ing results even if, at this time, no physiological a-priori knowledge has been
taken into account (for instance in the choice of a suitable ¢-function). Future
developments will include applications to other computer vision problems.

(a) Slice of a DT-MRI of the (b) Local tensors/streamlines of (c) Regularized with SPD con-
brain (mean diffusivity) a part of (a) (white square) strained flow eq. (9) (24.760 s)
A va L8 ¥

(3L L]
l‘\\\‘ )
60 N

§

(d) Regularized with orthogonal (e) Regularized with orthogonal
flow eq. (12) (without local align-  flow eq. (12) (with local align-
ment) (53.160s) ment) (1m21.360s)

(f) Regularized with isospectral
flow eq.(14) (25.160s)

Fig. 6. Real diffusion tensor dataset (DT-MRI) regularization, using three different
constrained methods (last numbers represent the computation time).
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