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Abstract. We address the problem of efficient sampling of the diffusion
space for the Diffusion Magnetic Resonance Imaging (dMRI) modality.
While recent scanner improvements enable the acquisition of more and
more detailed images, it is still unclear which q-space sampling strategy
gives the best performance. We evaluate several q-space sampling distri-
butions by an approach based on the approximation of the MR signal by
a series expansion of Spherical Harmonics and Laguerre-Gaussian func-
tions. With the help of synthetic experiments, we identify a subset of
sampling distributions which leads to the best reconstructed data.

1 Introduction

The random Brownian motion of the water molecules is constrained by the mi-
crostructure of the brain white matter. The Diffusion Magnetic Resonance Imag-
ing (dMRI) modality captures this local average displacement in each voxel us-
ing the pulse gradient spin echo sequence [1] and thus indirectly leads to images
of the brain architecture. These images provide useful information to diagnose
early stages of stroke and other brain diseases [2]. However, this average molecu-
lar displacement is not directly measured. Indeed, as the diffusion gradient pulse
duration δ is negligible compared to the diffusion time ∆, the normalized MR
signal E defined in the q-space is related to the average displacement Probability
Density Function (PDF) P by the Fourier transform [3]

P (p) =
∫
q∈R3

E(q) exp(−2πiqTp)dq, with E(q) =
S(q)
S0

, (1)

where p is the displacement vector and q stands for the diffusion wave-vector of
the q-space. The symbols S(q) and S0 respectively denote the diffusion signal
at gradient q and the baseline image at q = 0.

Eq.(1) naturally suggests one should sample the whole q-space and use the
Fourier transform to numerically estimate the PDF. This technique, known as
Diffusion Spectrum Imaging (DSI) [4], is not clinically feasible mainly because of
the long acquisition duration required to retrieve the whole set of needed q-space
coefficients. As a result of DSI constraints, High Angular Resolution Diffusion
Imaging (HARDI) [5] has come as an interesting alternative and proposes to
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sample the signal on a single sphere of the q-space. Most of the methods of the
literature working on HARDI images [6–9] consider a single shell acquisition and
have thus to assume strong priors on the radial behavior of the signal, classically
a mono-exponential decay for instance.

Sampling schemes on several spheres in the q-space have been only pro-
posed very recently [9–14]. Since the number of samples still remains too low for
computing the Fourier transform, proposed methods rather consider computed
tomography technique [13] or approximations of the MR signal radial attenua-
tion by multi-exponential functions [9, 11]. Note that even if these methods use
a larger set of data, they are still using a-priori models of the radial behavior of
the input signal. In section 2, we first overview the mathematical background of
one previous diffusion features estimation method introduced in [15, 16]. Then,
we review several q-space sampling strategies proposed so far in the literature
and detail the evaluation procedure of the experiments in section 3. We conclude
on the results in section 4.

2 Spherical Polar Fourier Expansion

To be as self-contained as possible, we briefly overview our previous estimation
method introduced in [15, 16] based on the Spherical Polar Fourier (SPF) ex-
pansions. In order to be able to reconstruct the PDF from Eq.(1) even with few
samples, we seek to build a basis in which the acquired signal is sparse.

Let E be the normalized MR signal attenuation. We propose to express it as a
series in a spherical orthonormal basis named Spherical Polar Fourier (SPF) [17]:

E(q) =
S(q)
S(0)

=
∞∑
n=0

∞∑
l=0

l∑
m=−l

anlmRn(||q||)yml
(

q
||q||

)
, (2)

where anlm are the expansion coefficients, yml are the real Spherical Harmonics
functions (SH), and Rn is an orthonormal radial basis function.

The angular part of the signal E then is classically reconstructed by the
complex SH Y ml which form an orthonormal basis for functions defined on the
single sphere. They have been widely used in diffusion MRI [18]. Indeed, as the
diffusion signal exhibits real and symmetric properties, the use of a subset of
this complex basis restrained to real and symmetric SH yml strenghten the ro-
bustness of the estimated reconstruction to signal noise and reduces the number
of required coefficients [18].

Meanwhile, the radial part of the signal E is reconstructed in our approach [15,
16] by the elementary radial functions Rn. A sparse representation of the radial
signal should approximate it in a few radial order N . Based on these observa-
tions, we propose to estimate the radial part of E using the normalized general-
ized Gaussian-Laguerre polynomials Rn:

Rn (||q||) =
[

2
γ3/2

n!
Γ (n+ 3/2)

]1/2

exp
(
−||q||

2

2γ

)
L1/2
n

(
||q||2

γ

)
, (3)



where γ denotes the scale factor and L
(α)
n are the generalized Laguerre polyno-

mials. The Gaussian decay arises from the normalization of the Laguerre poly-
nomials in spherical coordinates.

The SPF forms an orthonormal basis where a low order truncation assumes a
radial Gaussian behavior as in [9, 11] and a high order truncation provides model-
free estimations. Besides, the square error between a function and its expansion
in SPF to order n <= N and l <= L converges to zero as N and L go to infinity.
We fit the signal to the SPF by a damped least square minimization procedure.
The best fitting coefficients anlm are thus given by a regularized Moore-Penrose
pseudo-inverse scheme:

A = arg min
A

||E−MA||2 + λl||L||2 + λn||N||2 = (Mreg)−1MTE (4)

where M = (Rn(||qj ||)yml ( qj

||qj || ))nlm×j∈N3×N denotes the SPF basis matrix,
Mreg = MTM + λnNTN + λlLTL and E,A respectively denote the vectors
(E(q1), . . . , E(qns))

T and (a000, . . . , aNLL)T. Since the matrix Mreg is likely to
be ill-conditioned because of the highly reduced number of samples, we use reg-
ularization matrices L and N with entries l2(l + 1)2 and n2(n + 1) along their
diagonal. They penalizes high variations of the angular and radial parts of SPF in
the estimation under the assumption that they are likely to capture signal noise.
The symbols λl and λn respectively denote angular and radial regularization
weights.

3 Material and Methods

The number of data samples is limited because of the restricted acquisition. So
the sampling scheme is actually something critical and should be chosen wisely.
Indeed, given a fixed number of samples (clinical constraint), which repartition
of the q-space samples is the best ? Which radial order truncation N should be
chosen to fit Gaussian or bi-Gaussian MR datasets ? All these questions about
the acquisition protocol are the focus of the following experiments.

3.1 q-space sampling

Let ns ∈ N be the total number of samples and nb ∈ N the number of sampling
sphere. Let f be the number of samples on one sphere x ∈ [1, nb] so that

fx(η) =
qηx∑nb

i=1 q
η
i

ns, and qi(β) =
(
i− 1
nb − 1

)β
(qmax − qmin) + qmin (5)

where qi ∈ [qmin, qmax] refers to the radius of the i-th sphere. For simplic-
ity sakes, the radii are considered as uniformly distributed (β = 1) between
[qmin, qmax] = [1, 30] cm−1. The sampling points on each sphere should be as
evenly spread as possible and are thus computed by electrostatic energy mini-
mization as proposed in [14]. The spheres which possess very few samples are



Table 1: Overview of the different considered strategies for the q-space sampling. From
a fixed number of total samples ns = 300 and spheres nb, the parameter η sets the
spherical repartition of samples in the q-space as described by Eq.(5). The radii of the
spheres are uniformly distributed (β = 1).

η = −2 η = −1 η = 0 η = 1 η = 2 η = 3

nb = 2

nb = 5

nb = 10

randomly rotated to capture more signal (fx(η) ≤ 6 in our experiments). Over-
all, f(η = 0) corresponds to a constant number of samples on each sphere as
described in [13, 15, 19]. f(η = 2) corresponds to a uniform spherical sampling
as introduced in [11, 12].

3.2 Data processing

The following multi-exponential model was used to generate the considered syn-
thetic data,

E(q) = E(q · u) =
Nf∑
k=1

fk exp
(
− (q −mk)2uTDku

2σ2

)
(6)

where
∑Nf

k=1 fk = 1 and ||u|| = 1. The symbol Nf stands for the number of
fibers, mk is the mean diffusion and Dk is a 3 × 3 symmetric definite positive
matrix defining the diffusion anisotropy for the k-th fiber. The scale factor γ was
calculated on the data samples using the Apparent Diffusion Coefficient (ADC)
with a linear least square fit so that γ = (2 ADC)−1. Thus the decay of the SPF
basis eigenfunctions at order n = 0 have the same scale as the sampled data. For
a single fiber configuration as in Fig.1b, diag(Dk) = [1.5; 0.2; 0.2] mm2s−1 and
σ = 5.

In Fig.2, we determine which truncation order is sufficient to capture the
standard data pattern presented in Fig.1. The normalized error of the power
spectrum between the original and reconstructed data is expressed as

Normalized Error =

∑ns

i=1E[qi]2 −
∑N
n=0

∑L
l=0

∑l
m=−l a

2
n,l,m∑ns

i=1E[qi]2
(7)



(a) Isotropic (b) One fiber (c) Crossing fibers (d) Bi-Gaussian

Fig. 1: Some standard pattern of q-space local diffusion data in the human brain white
matter. Data are centered on a volumic image of size 64× 64× 64.
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Fig. 2: Influence of radial truncation order N on the normalized error between the
power spectrum of the original data and its reconstruction in the proposed basis. The
number of samples is ns = 643. The angular truncation order is L = 4.

The condition number C is an interesting index as it relates the correspon-
dence between the sampling distribution and the reconstruction basis, indepen-
dently of the data. It measures how numerically well-conditioned the regularized
matrix Mreg from Eq.(4) is,

C = ||Mreg||∞||M−1
reg||∞ (8)

Fig.3 shows a comparison between several sampling strategies, which were
generated according to Eq.(5). This figure illustrates the evolution of the recon-
struction quality along with the number of sampling spheres nb and the repar-
tition of samples η on each sphere. Only the crossing fibers data configuration
is illustrated in this experience as we found no significant differences with other
data configuration. Fig.4 illustrates for the same experiment qualitative results
for good and bad reconstruction. Fig.5 shows the comparison of two sampling
schemes: non-uniform and uniform sampling of the q-space, respectively η = 0
and η = 2. The case f(η = 2) corresponds to a uniform sampling considering
spherical coordinates. ns = 300, nb ∈ [1, 10] and the angular truncation order is
set to L = 4.
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Fig. 3: Condition number C evolution with the sampling distribution η and the number
of sampling sphere nb. The lower C is, the more stable the reconstruction is. The
symbol ns denotes the total number of samples. Angular truncation order is L = 4.
Radial truncation order is N = 3, consequently nb ≥ 3 (120 coefficients). (d) Radial
and angular regularization weights: λn = 10−4, λl = 10−6. Data simulates crossing
fibers diffusion signal Fig.1c.

(a) PSNR=40.23 dB (b) PSNR=39.98 dB (c) PSNR=27.54 dB

Fig. 4: Example of some sampling distributions and their respective reconstruction.

4 Results and Discussion

Fig.2 illustrates that a reasonably good radial truncation order N depends on the
MR data pattern (c.f . Fig.1). Nonetheless, in all our experiments with standard
data configurations in the brain white matter, the convergence to the data truth
is achieved with N = 3. Concerning the sampling distribution η, the results
of Fig.3 indicate that the best sampling distribution is η ∈ [−1, 2], especially
in the case of a small number of total samples (c.f . Fig.3(a-c)). This result is
in accordance with the propositions already found in literature [11, 12, 15, 19].
Therefore, Fig.5 shows a deeper comparison of two sampling η = 0 and η = 2.
Fig.5(a) shows the evolution of C the condition number along with the number
of sampling sphere nb and the radial truncation order N . As expected, C is
very high when N > nb and leads to very unstable results. When N ≤ nb,
the condition number increases slowly along with increasing values of N and is
quite constant along variations of nb. Results obtained using the non-uniform
sampling exhibit more monotonous evolutions than with the uniform sampling.

Fig.5(b) and (c) illustrate the PSNR (Peak Signal to Noise Ratio) evolution
of the reconstruction of a Gaussian mixture MR signal. Although the maximum
of the PSNR for all sampling protocols are quite the same (≈ 40) (c.f . Fig.3),
it is clear that the non-uniform sampling protocol (η = 0) is more robust to
wrong values of N and nb. Besides, the robustness to wrong values of the scale
factor γ is illustrated by the lines of Fig.5b. Indeed, the first order N = 0 of
the SPF basis has a Gaussian decay and should entirely capture an isotropic
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Fig. 5: Comparison of uniform (η = 2) vs non-uniform (η = 0) sampling (respectively
left and right image) on Gaussian and bi-Gaussian isotropic datasets. N stands for
the radial truncation in the SPF basis and nb is the number of sampling sphere in the
q-space. (b) Isotropic data with σ2 = 25 (Fig.1a), with erroneous scale factor γ = 5σ2.
(d) The input data are noised with Rician noise (PSNR=18.9 dB).

Gaussian data (c.f . Fig.2). In Fig.5b, we set an arbitrary erroneous scale factor
value γ not adapted to the signal decay σ so that γ/σ2 = 5. The signal is
reconstructed for N ≥ 3 in accordance to Fig.2. Once again, Fig.5b shows that
the non-uniform sampling protocol is the most robust to wrong values of γ.
Finally, Fig.5d shows the results on a bi-Gaussian noisy dataset, estimated using
our damped linear least square method Eq.(4). Besides the lower PSNR average
compared to Fig.5c, it is remarkable that best results of Fig.5d were also obtained
from lower radial truncation order N than Fig.5c. Indeed, a reconstruction using
high N can significantly capture more noise than using lower N .

Out of the results, the non-uniform sampling protocol (η = 0) gives better
global results than the uniform protocol (η = 2). The best reconstructions are
obtained for N ≈ 3 and nb ≈ 4. It confirms that a better reconstruction of
the low q-space frequencies of the MR signal leads to a better reconstruction of
the whole signal since low frequencies really carry the greatest part of the MR
signal. Note that in contrast to our conclusion, Jones et al . in [14] interestingly
observed in the restricted case of DTI with 2 spheres that more samples in the
outer sphere gives the best results. This result might be explained by the strong
restrictions of DTI to capture a Gaussian signal. Nonetheless, it is important to
stress that the optimal parameters in this work are for the SPF basis.



5 Conclusion
In this paper, we proposed a unifying diffusion estimation formalism able to
study the effect of several sampling schemes already proposed in the literature.
We evaluated the influence of these schemes on the quality of the reconstruction
for different shapes of diffusion signal. Out of the results, our findings indicate
it is preferable to favour a high density of samples with low diffusion gradi-
ents rather than high diffusion gradients. We successfully identified a subset of
sampling schemes which gives the best performances in adequacy with realistic
clinical constraints.
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