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ABSTRACT

The restoration of noisy and blurred scalar images has been ) . . o
widely studied, and many algorithms based on variational [N [19], this expression was interpreted e directional
or stochastic formulations have tried to solve this ilpas 1D heat flowswith different diffusion intensities :
problem [2, 4, 10, 7, 33, 20, 19, 18, 22, 1, 26, 24, 9, 28, , ' (|V1])

29, 6, 30, 35, 37]. However, only few methods exist for e =9 (IVI]]) and cg = W
multichannel/color images ([7, 29, 16, 36]). Here, we pro-
pose a newector image restoration PD&hich removes  in the corresponding directiongand . A diffusion ®-
the noise and enhances blurred vector contours, thanks tdunction must verify these natural properties :

a vector generalisation of scal@rfunction diffusions and
shock filters. A local and geometric approach is proposed,
which uses pertinent vector informations. Finally, we ex-
tend this equation toonstrained norm evolution: order

e When||VI| ~ 0, the local geometry is flat and doesn’t
contain any edges, the diffusion must be isotropic :

to restore direction fields and chromaticity noise on color ey 2ege 21 = o e+ Iny = Al
images.
e When||VI| > 0, the current point may be located on
1. PRINCIPLE OF ANISOTROPIC DIFFUSION an edge, the diffusion must be anisotropic (oriented
by the edge) :

We consider acalar image/ (M) : @ — R (Q € R?). oI
Scalar image restoration usidgfunctions classically con- Cee > Cpy — B = et Iee
sists in minimising the following functional :
o Many ®-functions were proposed in the literature : Total
min/ — (I —1p)* + @(|VI|]) d variation [27], Perona & Malik [24], Geman & McClure
rJg 2 [31], Green [13], Hebert-Leahy [14],.

where® : R — R is a regularisation function that penalizes N [19], the authors also proposed to fix directly the smooth-
high gradients, while preserving edges. The minimisation ing intensities «,,, = g-(|VI||) (decreasing function) and
can be performed via the Correspondmg'sotropic PDE Cee = 1. It ensures a permanent noise removal, but tends to

evolution coming from the Euler-Lagrange equations : smooth sharp corners. .
Geometrically speaking, a PDE restoration process must

oI (e (IvI|) adapt its diffusion behaviour to tHecal geometry of the
57 = @llo = 1) +div IV VI image For the scalar case, this geometry is given by an
edge indicatoV(I) = ||VI||, and the associated directions
which can be also written as : n and¢, respectively orthogonal and parallel to the edges. A
, vector image diffusion process needs to define such equiv-
or _ o (Vi) Tee + & (IVI])) Iy + a(lo — 1) alent vector attributes : wector gradient normv (I), and
ot IV the corresponding smoothing directionst for the whole

o . - image components, taking the coupling into account. Using
wherel,, = 5z = V(VIn). with 1 = o and 3 channel by channel approach is then useless : each chan-
&=nt. nel of the image evolves with different smoothing direction




and intensities. The diffusion is not coherent withiexctor
geometryand edges tend to be smoothed (Fig.1).

b) decoupled PDEs

a) noisy image
Fig. 1. Channel by channel approach vs coupled PDEs, on a noisy

color image (in the RGB space).
This paper is organised as follow : We first show how to

define a local vector geometry, using the classic Di Zenzo

method [38], then we compare and interpret some recent

vector diffusion PDEs. This comparison yields a new geo-
metric and intuitive vector restoration PDE (eq.(7)) We fi-
nally extend this idea to norm constrained evolutions, and
propose some results.

2. DEFINING A VECTOR GEOMETRY

Now, we are interested wector imaged(M) : R? — R".
I' denotes theé'” image channell(< i < n). We want to
define a vector gradient norf¥i(I) and variation directions
n and¢, corresponding to a local vector geometry.

2.1. First approach : scalar conversion

The first idea is to find a functioff : R* — R so that
the imagef (I) is representative of the human perception of
vector edges (for instancg¢,= L*, the luminance, for color
images). Them can be chosen to be the directioof (I),
andN(I) = |V f(D)].

The choice of such functions is not an easy task ! However,
there are mathematically no functions detecting all pdssib
vector variations. For the color example, it wouldn’t beeabl
to detect iso-luminance contours.

2.2. Differential geometry of surfaces

Di Zenzo [38] considers a vector imadieas a2D — 3D
surface, and looks for the local variations|jofl||? :

||dI||2 — { dxy ]T [ gi1 912 } { dzy ]
dxy giz  g22 dxy
with
_ o1 o
99 = ozi oxj

The two eigenvalues ofg;;) are the extremum offdI||?
and the orthogonal eigenvectorg are the corresponding
variation directions :

_g11+g22E4/(911—922)%2+4 g7,

)\+/ ! 5 (1)
L gi2

n = 5 arctan prrp——

{=n+3

¢) coupled PDEs

Then, severalector gradient normgv(I) can be defined :

e In[29], the authors uses a decreasing funcfioh, — \_)
to weight their diffusion PDE. It can be seen as a func-
tion of a vector variation nornV (1) = /A4 — A_.
Note that this norm fails to detect corners whiere= \_
(see the checkboard intersections in Fig.2).

In [32] and [7], the normN (I) = /A4 + A_ is pro-
posed for a global minimisation process, but can be
also used as a local norm definition. It is very easy to
compute, since

NI = Ay + A

=D IVIF)?
k=1

Note that this norm gives more importance to certain
corners (but not all) (Fig.2).

We propose to us&/(I) = /A, as a direct exten-
sion of the gradient norm definition : the value of
maximum variation. It doesn’t give more or less im-
portance to corners.

VAr s

Fig. 2. Differences between vector variation norms

Color image

Ny

It is worth to mention the work of Kimmel-Malladi-etal
[16], which consider a-D vector image as a surface em-
bedded in a»+2 dimension space. They introduce the in-
"duced metridg; ;) in a Polyakov functional minimisation,

in order to construct a scale space of the vectorimages. This
metric is directly linked to the Di Zenzo approach :

0 ifi#j
9i,; = 0ij +9i; where 6;; = { 1 ifi=j
One may note that the corresponding eigenvalues and eigen-
vector directions are given by :

[0, el

These expressions show the similarity between the two ap-
proaches.

The Di Zenzo equations define then a pertinent vector ge-
ometry with a variation norniV(I) and corresponding di-
rections¢ andn, which can be used in the restoration pro-
cess to take the coupling between image channels into ac-
count. Color edge detection is a direct application of the
vector gradient norm definition : One just has to look for
the local maxima ofV(I) in then direction (fig.3).
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3.2. Blomgren'sT'V,,,, diffusion equation

As defined in [7], thel'V/, ,,, diffusion PDE with a compo-
nent by component writing style is :

oI TV, (I') . [ VI -
- s i P — It
ot = TV, @ <||W||> tal=I) @

with
. . - —— m 2
Original color image Color edges TV, (I) = Z [/ ||VI’»‘||} '
Fig. 3. Color edge detector : Thresholded local maxima,/0f;- k=1 L0
in then direction This PDE comes from a minimisation process, which use
coupling between vector components in the functional ex-
3. DIFFUSION EQUATIONS pression. ,
But, if we introduce th&® direction ¢ 1n* = Hg—ﬁu), then

We analyse now some proposed vector diffusion equations
([29, 7)), in order to introduce our approach and propose 9I° PR Al . TVa(I)

an original and efficient vector diffusion PDE. Comparisons ¢ =a (-1 + IV 1] Teigs ( - TVn,m(I)>
results on synthetic images are shown in the end of this sec- _

tion. The only coupling terms in the final PDE.S, which weight

the diffusion intensity in each image channel. The diffasio

is uni-directional and the smoothing direction is indepen-
dent for each channel, which leads to the problem of decou-
In [29], the authors propose this anisotropéctor diffusion  pled diffusion (Fig.1).

3.1. Sapiro-Ringach’s vector diffusion PDE

PDE:
o1 — g0y —A) 1 ) Despite the uni-directional diffusion, texture effects bss
ot ~ I\ - visible in flat regions, because each channel diffuses in a
whereg(.) is a positive decreasing function with different directiongi. For color images, it corresponds to
a color blending effect Anyway this advantage becomes
lim g¢g(s)=0 a drawback in contour regions : Wcal vector geometry

s—4o0

is not taken into account, and edges evolve individually in
different directions, component by component. Edges tend

andlI, = 0’1 (¢ is found with the Di Zenzo calculus). to be smoothed

ae?

It was a first step in viewing the importance of coupling in o
a diffusion process. The diffusion factgtA, — A_) and ~ 3-3- Ageometric diffusion PDE approach

the smoothing directiogl contain informations of coupling  Here is our approach, considered as an extension of our pre-
between vector components. A vector geometry is takenyious work [34, 20, 19, 18]. Itis based on a geometric view-
into account : At a given point, all channels evolve in the point of the diffusion process.

same direction and with the same intensity. Edges are thenrpe vector gradient nordv (I) = /X, is a local geometry

not smoothed (but are not perfectly detected, as describegpgicator -

in section 2.2).

Anyway, few problems remain : e N(I)(x) = 0: The point) is in a flat region.

e Along very high gradient edges/(I) > 0), smooth- * N(I)(x) > 0: The pointM is on an edge.
ing may be weak and doesn'tremove the noi§§ ~ 0
(the choice of a functiop which doesn’t decrease too
fast is primordial here).

Following the behaviour ob-function diffusions, we want
an isotropic smoothing wheN (I) ~ 0 and a tangent smooth-
ing along the vector edge elsewhere (inghrection, com-

ing from the Di Zenzo equations). Then, a natural extension

* In homogenous regiond{(I) = 0), the image pixels of ®-functions diffusion for the vector case is :

diffuses only in the directiof, which is very sensitive

to the noise when the geometry is flatdl ~ ¢, I;. oL &' (A\y) "
Undesirable texture effects may appear in these re- T A Le+® (A ) Ly +a(lo—1I) (4)

gions, because of the uni-directional diffusion.
where ®() is one of the®-function used for the classic
» No data attachment term : the PDE evolution must be scalar case. Note that this PDE doesn’t come from a varia-
stopped before convergence for a good result. tional formulation, and diffusion coefficients can be chose



“by hand”, depending on the smoothing behaviour we de-
sire. For instance, the following equation always diffuses
the image, even on high gradients areas :

ol
ot = gr(VA+) Iy + Lee + a (L — 1)

whereg.(.) : R — Ris a decreasing function

g2(5) = exp (—F) (5)

In this caser is a fixed parameter and represents the thresh-
old between anisotropic and isotropic smoothing.
The diffusion behaviour of these PDEs is :

e In homogeneous areag §& 1), the noise is removed
efficiently due to a vector anisotropic diffusion which
doesn’t favour any smoothing direction :

AT
o1 AT?
ot ~ I, + I = Al =

AI™

e Along the edgesy — 0), the diffusion is parallel to
thevector contout :

a) Initial Image

b) Noisy Image

c) Isotropic diffusion d) Sapiro-Ringach eq.2

e) Blomgren TVnm (eq.3)  f) Our proposed PDE

Fig. 4. Comparison on a synthetic color image

133
a cer Lie = ¢ 1525 4. REDUCING THE BLUR EFFECT
or = Cee fee = Cee
I Reducing the blurred edges is a part of the image restoration

process. In this section, we propose to extend the scalar
shock filters method [23] to the vector case, using the ge-
ometric view of vector fields. Then, we couple shock fil-
The coupling is strongly used in order to analyse a ters and vector diffusion in a singkector image restoration
local vector geometrgf the image, and so performa  €duation.

coherent smoothing process. 4.1. Shock filters in vector case

There is noise eliminatioand vector contour conser-
vation.

Weighted data attachment term avoid the solution be- Scalar shock filtersllow to enhance blurred edges with-

ing too different from the initial image. The resultat oyt any knowledge of the convolution mask. It consists in

convergence is not over-smoothed. raising the edges in the gradient directioi : (Osher and
Rudin [23]) :

3.4. Comparisons on a synthetic color image :

We tested the described methods on a very noisy color syn- ET —sign(L,y) [[VI]
thetic image (fig.4). It shows the different behaviours @&f th

diffusion equations.

which has the following effect on the image (Fig.5 repre-
sents a slice of the local image, in tRd direction).

e Pureisotropic PDE clears the noise very well, but also

e Sapiro-Ringach PDE eq.(2) introduces some texture —

e TVnm equation eq.(3) suffers of color blending (par-

edges (fig.4c). I(x.y)

effects in flat regions (fig.4d)

ticularly near the edges).

n

e Our diffusion PDE eq.(4) clears the noise very well in

homogeneous areas, while preserving color edges. Fig. 5. Principle of scalar shock filter



For vector images, we want to raise each vector componenb.1. A geometric formulation
of Iin the same direction of the vector geometry. We also .
add a weighting term that adapts the intensity of the shock | '@ Vector norm must be preserved during the PDE evolu-

filter process in order to enhance only edges and not flat!lo" - ,
regions (We used the functign already defined in eq.(5)) : VM e Qvt, [[I(M)[] = cste
oI Derivating this equation with respecttgives an equivalent
3= (1 —g-(v/ M)) U (6) expression :
oI(M
where VM e QVt, 2I(M). <(9t ) =0
sign(Ly, |13 |
U= | sg)Il It means that the PDEelocity vecto? ™) must be orthogonal
i to the vectod (M), in order to preserve its norm. Suppose
sign(Zy;,)II 23 | then we have a vector PDE of the general form :
Here, 7 is a threshold that decides if the current point is on o1
an edge or in a homogeneous area. 5= B where B € R"
Fig.6 shows the application of this vector shock filter on a
blurred color image. Adding the norm constraint can be naturally donepoy-

jecting the velocity3 to the hyperplane, orthogonal 1o
whichis :

Pﬁmzﬁ—(%ﬁ)l

Then, the following equation ensures that the norni &f
preserved during the evolution :

a) Blurred image b) Enhanced image o _5_ <ﬂ - I> I (8)

ot 12

Fig. 6. Color shock filter application . L .
'9 ! ppicat The geometric explanation is simple (Fig.7).

4.2. Coupling anisotropic diffusion and shock filters o

Tl M
We propose to combine the diffusion term eq.(4) with the LR ~ Pet)
shock filter term eq.(6) in a singlector image restoration

PDE: > B(M)

d= 2P Ly + (I)”(/\+) Lee

ot Ay
+ o, (I-Tp) (7)
= ac(l=g-(/A+)) U Fig. 7. Geometric view of the norm constraint

Free parametera, anda,. weight the importance of the

shock filters and the data attachment towards the diffusionDuring the PDE evolutionI(1/) does apure rotationand
process. preserves its norm. Then, for the particular case of vector

field restorations under constrained norm, we can ch@ose
to be the expression of eq.(7). It allows the use of shock
5. NORM CONSTRAINED RESTORATION filters as well as accurate diffusion for norm constrained
vector fields, and extends naturally previous works on this
Recently, some authors have proposed to smooth vector fielg¢ubject [25, 8, 11, 5].
with a constrained norm [25, 8, 11, 5]. It consists of evolv-
ing a PDE on a field where each_vef:tor kgeps its initial g o Applications of constrained norm PDEs
norm. Here we propose a geometric viewpoint of the prob-
lem, allowing to extend norm constrained evolutions to all We used this equation in order to restore noisy chromatic-
kind of PDEs, in particular shock filters. Then we use our ity color images and normalised 2D optical flow directions.
equation (7), in order to build aorm constrained restora-  The restoration of chromaticity have been studied in [8, 11]
tion PDE for vector images It consists of denoising only chromaticity data of a color



image. Indeed, each vectbfM) = (R, G, B) of a color
image can be decomposed as :

_ I(M) ) .
u(M) = mon; the chromaticity vector
and
[=||I(M)|| :thebrightness

u is normalised and contains only color information of the

pixel. If we know that the noise is only presentaywe can
use the eq.(8) oh, in order to restora and let the intensity
[ of each pixel unchanged.

6. EXPERIMENTAL RESULTS

We used our vector restoration PDE (7) and our norm con-

strained equation (8) for different applications :

¢ Restoration of normalised 2D vector fields, represent-
ing direction flows R? vectors) : Fig.9 shows the
importance of norm constraint on a synthetic image.
Note how the vector norms are smoothed with uncon-
strained PDE (Fig.9.c).

e Restoration of color images in the?, G, B) space
(dealing withR? vectors) withRG B-noise and chro-
maticity noise. The knowledge of the chromaticity
noise model allows to restore very well the initial noisy
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a) With R,G,B Gaussian noise.

b) Our color restoration (eq.7

Fig. 8. Unconstrained Color restoration

¢) With unconstrained PDE(eq.7)

d) With constrained PDE3jeq

Fig. 9. Restoration of direction field
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