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Located Patch of an Image

• Considering a 2D image I : Ω ⊂ R
2 → R

n (n = 3, for color images).

• An image patch PI
(x,y) is a discretized p × p neighborhood of I,

which can be ordered as a np2-dimensional vector :

PI
(x,y) =

(

I1(x−q,y−q), . . . , I1(x+q,y+q), I2(x−q,y−q), . . . , In(x+q,y+q)

)

• We define a located patch as the (np2 + 2)-D vector (x, y, λPI
(x,y))

(λ > 0 balances importance of spatial/intensity features).



Space Γ of Located Patches

• Γ = Ω × R
np2

defines a (np2 + 2)-dimensional space of located patches.



Space Γ of Located Patches

• Γ = Ω × R
np2

defines a (np2 + 2)-dimensional space of located patches.

• The Euclidean distance between two points p1, p2 ∈ Γ measures a
spatial & intensity dissimilarity between corresponding located patches :

d(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2 + λ2SSD(P1,P2)

(SSD = Sum of Squared Differences)



Mapping an Image I on the Patch Space Γ

• We define Ĩ : Γ → R
np2+1, a mapping of the image I on Γ :

∀p ∈ Γ, Ĩ(p) =

{

(PI
(x,y), 1) if p = (x, y,PI

(x,y))

~0 elsewhere



Mapping an Image I on the Patch Space Γ

• We define Ĩ : Γ → R
np2+1, a mapping of the image I on Γ :

∀p ∈ Γ, Ĩ(p) =

{

(PI
(x,y), 1) if p = (x, y,PI

(x,y))

~0 elsewhere

• The last value of Ĩ(p) models the meaningfulness of a located patch p.
All patches coming from the original image I have the same unit weight.

⇒ Ĩ is a patch-based representation of I in Γ, as an implicit surface.



Inverse Mapping to the Image Domain Ω

• Question : Is it possible to retrieve I from Ĩ ?



Inverse Mapping to the Image Domain Ω

• Question : Is it possible to retrieve I from Ĩ ? YES !

⇒ (1) Find the most significant patches p = (x, y,P) ∈ Γ for each location (x, y) ∈ Ω :

P Ĩ
sig(x,y) = argmax

q∈Rnp2 Ĩnp2+1(x, y,q)



Inverse Mapping to the Image Domain Ω

⇒ (2) Get the central pixel of these patches, and normalize it by its meaningfulness :

∀(x, y) ∈ Ω, Îi(x,y) =
Ĩ
ip2+p2+1

2

(x, y,P Ĩ
sig(x,y))

Ĩnp2+1(x, y,P Ĩ
sig(x,y))

(Other solutions may be considered, for instance : averaging spatially-overlapping
meaningful patches).



From Non-Local to Local processing

• Mapping I in Γ transforms a non-local processing problem into a local one.

• Local or semi-local measures of Ĩ in Γ (gradients,curvatures,...) will be related to
non-local features of the original image I (patch dissimilarity, variance,...).



Main Idea of this Talk

⇒ Apply local algorithms on Ĩ in order to build their patch-based counterparts .

⇒ Find correspondences between non-local and local algorithms.



What Local Algorithms to Apply in Γ ?

⇒ PDE’s and variational methods are good candidates.

- They are purely local or semi-local.

- They are adaptive to local image informations (non-linear).

- They are often expressed independently on the data dimension.

- They give interesting solutions for a wide range of different (local) problems.



What Local Algorithms to Apply in Γ ?

⇒ PDE’s and variational methods are good candidates.

- They are purely local or semi-local.

- They are adaptive to local image informations (non-linear).

- They are often expressed independently on the data dimension.

- They give interesting solutions for a wide range of different (local) problems.

⇒ In this talk :

• Diffusion PDE’s for image denoising.

• PDE’s for image registration , coming from a variational formulation.
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Tikhonov Regularization in Γ

• We minimize the classical Tikhonov regularization functional for Ĩ in Γ :

E(Ĩ) =

∫

Γ

‖∇Ĩ(p)‖2 dp

where ‖∇Ĩ(p)‖ =

√

∑np2+1
i=1 ‖∇Ĩi(p)‖2



Tikhonov Regularization in Γ

• We minimize the classical Tikhonov regularization functional for Ĩ in Γ :

E(Ĩ) =

∫

Γ

‖∇Ĩ(p)‖2 dp

where ‖∇Ĩ(p)‖ =

√

∑np2+1
i=1 ‖∇Ĩi(p)‖2

• The Euler-Lagrange equations of E give the desired minimizing flow for Ĩ :











Ĩ[t=0] = Ĩnoisy

∂Ĩi
∂t

= ∆Ĩi

⇒ Heat flow in the high-dimensional space of patches Γ.



Solution to the Tikhonov Regularization in Γ

• This high-dimensional heat flow has an explicit solution (at time t) :

Ĩ[t] = Ĩnoisy ∗ Gσ with ∀p ∈ Γ, Gσ(p) =
1

(2πσ2)
np2+2

2

e
−

‖p‖2

2σ2 and σ =
√

2 t.



Solution to the Tikhonov Regularization in Γ

• This high-dimensional heat flow has an explicit solution (at time t) :

Ĩ[t] = Ĩnoisy ∗ Gσ with ∀p ∈ Γ, Gσ(p) =
1

(2πσ2)
np2+2

2

e
−

‖p‖2

2σ2 and σ =
√

2 t.

• Simplification : As Ĩnoisy vanishes almost everywhere (except on the original
located patches of I), the convolution simplifies to :

Ĩ
[t]
(x,y,P) =

∫

Ω

Ĩ
noisy

(p,q,PInoisy

(p,q)
)
G

σ(p−x,q−y,PInoisy

(p,q)
−P)

dp dq

⇒ Computing the solution does not require to build an explicit representation of the
patch-based representation Ĩ.



Inverse mapping of the Tikhonov Regularization in Γ

• Finding the most significant patches in Γ : the flow preserves the locations of the
local maxima. The inverse mapping of Ĩ[t] on Ω is then :

∀(x, y) ∈ Ω, I
[t]
(x,y) =

∫

Ω
I
noisy

(p,q) w(x,y,p,q)dp dq
∫

Ω
w(x,y,p,q) dp dq

with w(x,y,p,q) = 1
2πσ2 e

−
(x−p)2+(y−q)2

2σ2 × 1

(2πσ2)
np2

2

e
−

‖PInoisy

(x,y)
−PInoisy

(p,q)
‖2

2σ2



Inverse mapping of the Tikhonov Regularization in Γ

• Finding the most significant patches in Γ : the flow preserves the locations of the
local maxima. The inverse mapping of Ĩ[t] on Ω is then :

∀(x, y) ∈ Ω, I
[t]
(x,y) =

∫

Ω
I
noisy

(p,q) w(x,y,p,q)dp dq
∫

Ω
w(x,y,p,q) dp dq

with w(x,y,p,q) = 1
2πσ2 e

−
(x−p)2+(y−q)2

2σ2 × 1

(2πσ2)
np2

2

e
−

‖PInoisy

(x,y)
−PInoisy

(p,q)
‖2

2σ2

⇒ Variant of the NL-means algorithm (Buades-Morel:05)
with an additional weight depending on the spatial distance between patches in Ω.

⇒ NL-means is an isotropic diffusion process in the space of patches Γ.



Tikhonov Regularization in the Patch Space Γ



(Useless) Results (Tikhonov Regularization in Γ)

Noisy color image



(Useless) Results (Tikhonov Regularization in Γ)

Tikhonov regularization in the image domain Ω

(= isotropic smoothing)



(Useless) Results (Tikhonov Regularization in Γ)

Tikhonov regularization in the 5 × 5 patch space Γ

(≈ Non Local-means algorithm)
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Behavior of Isotropic Diffusion in Γ

• Isotropic diffusion in Γ (NL-means) does not take care of the geometry of the patch
mapping Ĩ : The smoothing is done homogeneously in all directions.



What We Want to Do : Anisotropic Diffusion

• Anisotropic diffusion would adapt the smoothing kernel to the local geometry of
the patch mapping Ĩ.

⇒ This anisotropic behavior can be described with diffusion tensors .



Introducing Diffusion Tensors

• A second-order tensor is a symmetric and semi-positive definite p × p matrix.
(p is the dimension of the considered space).

• It has p positive eigenvalues λi and p orthogonal eigenvectors u[i] :

T =
∑

i

λi u[i]u[i]T



Introducing Diffusion Tensors

• A second-order tensor is a symmetric and semi-positive definite p × p matrix.
(p is the dimension of the considered space).

• It has p positive eigenvalues λi and p orthogonal eigenvectors u[i] :

T =
∑

i

λi u[i]u[i]T

2 × 2 Tensor (e.g. in Ω) 3 × 3 Tensor (np2 + 2) × (np2 + 2) Tensor

• Diffusion tensors describe how much pixel values locally diffuse along given
orthogonal orientations, i.e. the “geometry” of the performed smoothing.



Diffusion Tensors in Anisotropic Diffusion PDE’s

• A tensor field T can describe locally the amplitudes and the orientations of the
desired smoothing.

• The smoothing itself can be performed with the application of this diffusion PDE :

∂I(p)

∂t
= trace

(

T(p)H(p)

)

(H(p) is the Hessian matrix : Hi,j(p) =
∂2I(p)

∂xi∂xj

)



Diffusion Tensors in Anisotropic Diffusion PDE’s

• A tensor field T can describe locally the amplitudes and the orientations of the
desired smoothing.

• The smoothing itself can be performed with the application of this diffusion PDE :

∂I(p)

∂t
= trace

(

T(p)H(p)

)

(H(p) is the Hessian matrix : Hi,j(p) =
∂2I(p)

∂xi∂xj

)

Isotropic tensor field in Γ ⇒ Isotropic smoothing Anisotropic tensor field in Γ ⇒ Anisotropic smoothing

⇒ How to design the tensor field T ? ⇒ from the structure tensor field Jσ.



Structure Tensors in the Patch Space Γ

• The structure tensor field Jσ : Ω → P(np2 + 2) tells about local geometric features
(local contrast, structure orientation) of Ĩ :

J̃σ =

np2+1
∑

i=1

∇Ĩiσ∇ĨT
iσ where ∇Ĩiσ = ∇Ĩi ∗ Gσ

⇒ Very useful extension of the notion of “gradient” for multi-dimensional datasets.
(Silvano Di-Zenzo:86, Joachim Weickert:98) used it for 2D images.

⇒ Here, we consider a np2 × np2 structure tensor !



Structure Tensors in the Patch Space Γ

• The structure tensor field Jσ : Ω → P(np2 + 2) tells about local geometric features
(local contrast, structure orientation) of Ĩ :

J̃σ =

np2+1
∑

i=1

∇Ĩiσ∇ĨT
iσ where ∇Ĩiσ = ∇Ĩi ∗ Gσ

• The diffusion tensor field T is then designed from Jσ :

∀p ∈ Γ, D̃(p) =
1

√

β2 + trace(J̃σ(p))

(

Id − ũ(p)ũ
T
(p)

)

where ũ(p) is the main eigenvector of J̃σ(p).



Structure Tensors in the Patch Space Γ

• The diffusion tensor field T is then designed from Jσ :

∀p ∈ Γ, D̃(p) =
1

√

β2 + trace(J̃σ(p))

(

Id − ũ(p)ũ
T
(p)

)

where ũ(p) is the main eigenvector of J̃σ(p) (≈ normal vector to the patch-surface)



Approximation of the PDE solution

• Problem : Obtaining the PDE solution requires several iterations.

• But, we cannot afford to store the entire patch space Γ in computer memory
(dim(Γ)=365 for 11x11 color patches).



Approximation of the PDE solution

• Problem : Obtaining the solution requires several iterations.

• But, we cannot afford to store the entire patch space Γ in computer memory
(dim(Γ)=365 for 11x11 color patches).

⇒ Solution of the PDE can be approximated by one iteration [Tschumperle-Deriche:03] :

Ĩ
[t]
(p(x,y))

≈
∫

(k,l)∈Ω

I
[t=0]
(k,l) G

D̃(p(x,y))

dt(p(x,y)−q(k,l))
dkdl

⇒ Solution approximation + inverse mapping on Ω can be expressed in the image
domain.



Anisotropic Diffusion in the Patch Space Γ



Anisotropic Diffusion in the Patch Space (Results)

Original image



Anisotropic Diffusion in the Patch Space (Results)

Anisotropic diffusion in the 7 × 7 patch space Γ



Anisotropic Diffusion in the Patch Space (Results)

Anisotropic diffusion in the image domain Ω



Anisotropic Diffusion in the Patch Space (Results)

Anisotropic diffusion in Ω Anisotropic diffusion in the patch space Γ



Anisotropic Diffusion in the Patch Space (Results)

Noisy color image



Anisotropic Diffusion in the Patch Space (Results)

Bilateral filtering

(≈ NL-Means with 1 × 1 patches)



Anisotropic Diffusion in the Patch Space (Results)

Anisotropic diffusion PDE in the image domain Ω



Anisotropic Diffusion in the Patch Space (Results)

Isotropic diffusion PDE in the 5 × 5 patch-space Γ

(≈ NL-Means with 5 × 5 patches)



Anisotropic Diffusion in the Patch Space (Results)

Anisotropic diffusion PDE in the 5 × 5 patch-space Γ



Anisotropic Diffusion in the Patch Space (Results)

Corresponding PSNR compared to the noise-free version



Presentation Layout

• Definition of a Patch Space Γ.

• Patch-based Tikhonov Regularization.

• Patch-based Anisotropic Diffusion PDE’s.

⇒ Patch-based Lucas-Kanade registration.

• Conclusions & Perspectives.



The image registration problem

• Given two images It1 and It2, find the displacement field u : Ω → R
2 from It1 to It2

Source image It1 Target image It2 Estimated displacement u



The image registration problem

• Given two images It1 and It2, find the displacement field u : Ω → R
2 from It1 to It2

Source image It1 Target image It2 Estimated displacement u

• The Lukas-Kanade registration method is based on the minimization of :

E(u) =

∫

Ω

α ‖∇u(p)‖2 + ‖D(p,p+u)‖2 dp

• Intensity preservation :
The intensity dissimilarity between warped It1 and It2 must be minimal.

D(p,q) = (It1
σ(p) − I

t2
σ(q)) where Itk

σ = Itk ∗ Gσ



Transposition to the patch-space Γ

• We propose to solve the Lukas-Kanade problem with a dissimilarity measure
defined in the patch space Γ, instead of on the image domain Ω



Transposition to the patch-space Γ

• We propose to solve the Lukas-Kanade problem with a dissimilarity measure
defined in the patch space Γ, instead of on the image domain Ω :

Dpatch(p,q) = (Ĩt1

σ(p,P Ĩt1
max(p)

)
− Ĩ

t2

σ(q,P Ĩt2
max(q)

)
)

• i.e. Find the best 2D warp between patch representations Ĩt1 and Ĩt2.



Transposition to the patch-space Γ

• We propose to solve the Lukas-Kanade problem with a dissimilarity measure
defined in the patch space Γ, instead of on the image domain Ω :

Dpatch(p,q) = (Ĩt1

σ(p,P Ĩt1
max(p)

)
− Ĩ

t2

σ(q,P Ĩt2
max(q)

)
)

• i.e. Find the best 2D warp between patch representations Ĩt1 and Ĩt2.

⇒ Patch-preservation :
The patch dissimilarity between warped It1 and It2 must be minimal.

⇒ Bloc-matching-like dissimilarity measure + Smoothness constraints .
(Classical bloc-matching gives the global minimum when smoothness α = 0).



Minimizing PDE flow

• The Euler-Lagrange equations give the minimizing flow for the patch-based Lukas-
Kanade functional :















































u[t=0] = ~0

∂uj(x)

∂t
= α ∆uj+

np2+1
∑

i=1

(

Ĩ
t1

σi(x,PIt1
(x)

)
− Ĩ

t2

σi(x+u,PIt2
(x+u)

)

)

[∇Gi]j(x+u)

where Gi(x) = Ĩ
t2

σi(x,PIt2
(x)

)
.

⇒ Local minimum of the functional.

• Resolution is done with a classical multi-scale approach (coarse to fine).



Patch-based Lukas-Kanade (Results)

Source color image



Patch-based Lukas-Kanade (Results)

Target color image



Patch-based Lukas-Kanade (Results)

Estimated displacement Warped source

Result of the original
Lukas-Kanade algorithm
(smoothness α = 0.01)



Patch-based Lukas-Kanade (Results)

Estimated displacement Warped source

Result of the original
Lukas-Kanade algorithm
(smoothness α = 0.1)



Patch-based Lukas-Kanade (Results)

Estimated displacement Warped source

Result of the
bloc-matching algorithm
(7 × 7 patches)



Patch-based Lukas-Kanade (Results)

Estimated displacement Warped source

Result of the 7 × 7 Patch-Based
Lukas-Kanade algorithm
(smoothness α = 0)



Patch-based Lukas-Kanade (Results)

Estimated displacement Warped source

Result of the 7 × 7 Patch-Based
Lukas-Kanade algorithm
(smoothness α = 0.01)
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Conclusions

(1) We proposed a patch representation Ĩ of an image I in an Euclidean patch
space Γ such that non-local operations become local ones.



Conclusions

(1) We proposed a patch representation Ĩ of an image I in an Euclidean patch
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Conclusions

(1) We proposed a patch representation Ĩ of an image I in an Euclidean patch
space Γ such that non-local operations become local ones.

(2) We show links between local algorithms in Γ and non-local methods in Ω :

NL-means and Bilateral Filtering ⇔ Isotropic diffusion in Γ.
Bloc-Matching ⇔ Non-smooth Lukas-Kanade in Γ.

• (3) We applied more complex local methods on Γ to get more efficient non-local
methods in Ω.

Anisotropic NL-means and Bilateral Filtering
Lukas-Kanade in Γ with smoothness constraint.



Perspectives

⇒ More local methods to transpose to the patch-space Γ !

• Texture-preserving inpainting (Perez-Criminisi) and Texture synthesis (Wei-Levoy)
⇐⇒ Transport equations in Γ ?

• You are welcome to suggest other perspectives...



Questions ?

• Thanks for your patience !

(42...)


