PDE’s on the Space of Patches
for Image Denoising and Registration

lllllllllllll

||||||

David Tschumperlé * - Luc Brun *
Patch-based Image Representation, Manifolds and Sparsity, Rennes/France, April 2009.

* GREYC IMAGE (CNRS UMR 6072), Caen/France



Presentation Layout

Definition of a Patch Space T.

Patch-based Tikhonov Regularization.

Patch-based Anisotropic Diffusion PDE's.

Patch-based Lucas-Kanade registration.

Conclusions & Perspectives.




Presentation Layout

= Definition of a Patch Space T.

e Patch-based Tikhonov Regularization.

e Patch-based Anisotropic Diffusion PDE’s.

e Patch-based Lucas-Kanade registration.

e Conclusions & Perspectives.



Located Patch of an Image

o Considering a 2D image I: Q C R? — R" (n = 3, for color images).

e An image patch P(Ix ) Is a discretized p x p neighborhood of I,
which can be ordered as a np*-dimensional vector :

73(Ia:,y) — (Il(fv—q,y—q)’ o Di@rgy+a) L2(a—qy—q) - -+ In(w+q,y+q))

— N

=

N G(0,0)
ﬂ - G(1,0)

i?;.(9,10)
B(10,10)

Patch 11x11 (x3) V_ector 2

color image |

o We define a located patch as the (np? + 2)-D vector (z, v, )\P(Ix y))
(A > 0 balances importance of spatial/intensity features).




Space I' of Located Patches
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Space I' of Located Patches
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e The Euclidean distance between two points p{, ps € I' measures a
spatial & intensity dissimilarity between corresponding located patches :

d(p1,p2) = v/ (21 — 72)2 + (y1 — y2)2 + A\2SSD(P1, P2)

(SSD = Sum of Squared Differences)
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Mapping an Image 1T on the Patch Space T @ g L

o We defineI: I — R”p2+1, a mapping of the image I onI':
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Mapping an Image 1 on the Patch Space T

o We defineI: I — R”p2+1, a mapping of the image Ion I :

voer. 1o —J Papl) I p=@uPe,)
) 0 elsewhere

o The last value of I, models the meaningfulness of a located patch p.
All patches coming from the original image I have the same unit weight.
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— T is a patch-based representation of I in I, as an implicit surface.



Inverse Mapping to the Image Domain 2

e Question : Is it possible to retrieve I from I ?
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Inverse Mapping to the Image Domain () 0 h—;

e Question : Is it possible to retrieve I fromI? YES!

= (1) Find the most significant patches p = (z,y, P) € I for each location (z,y) € Q:
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Inverse Mapping to the Image Domain () @ h—;

= (2) Get the central pixel of these patches, and normalize it by its meaningfulness :

j p2+1 ($, yapl )

A ip2 425 sig(z,y)

V(z,y) € Q Liwy) = — :
Inp2+1(33’ Y, Piz’g(flﬁ,y))
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(Other solutions may be considered, for instance : averaging spatially-overlapping
meaningful patches).



From Non-Local to Local processing
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e Local or semi-local measures of I in T (gradients,curvatures,...) will be related to
non-local features of the original image I (patch dissimilarity, variance,...).



Main Idea of this Talk

mapping
inT

Color image | ~

: Local processing on |
Non-loca sing on |

Inverse mapping
in 0 s
R(1,0)

R(2,0)

Result image 1

v

— Apply local algorithms on I in order to build their patch-based counterparts

=- Find correspondences between non-local and local algorithms.



What Local Algorithms to Apply in ~ I" ?

= PDE’s and variational methods are good candidates.

They are purely local or semi-local.

They are adaptive to local image informations (non-linear).

They are often expressed independently on the data dimension.

They give interesting solutions for a wide range of different (local) problems.



What Local Algorithms to Apply in ~ I" ?

= PDE’s and variational methods are good candidates.

They are purely local or semi-local.

They are adaptive to local image informations (non-linear).

They are often expressed independently on the data dimension.

They give interesting solutions for a wide range of different (local) problems.

= |n this talk :

e Diffusion PDE’s for image denoising.

e PDE’s for image registration , coming from a variational formulation.
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Tikhonov Regularizationin T’

o We minimize the classical Tikhonov regularization functional for Iin I :

B0 = [ VT dp

~ n 2 ~
where ||V | = /S0 Vi) |2



Tikhonov Regularizationin T’

o We minimize the classical Tikhonov regularization functional for Iin I :

B0 = [ VT dp

~ o2 ~
where ||VI(p)H — \/Ziﬁl—H Hvlz'(p)H2

e The Euler-Lagrange equations of E give the desired minimizing flow for I :
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= Heat flow in the high-dimensional space of patches I'.



Solution to the Tikhonov Regularization in r 0 h"‘

e This high-dimensional heat flow has an explicit solution (at time t) :

[ —fro @, with VpeT, G —

Patch-based representation™

Tikhonov
Regularization




Solution to the Tikhonov Regularization in I

e This high-dimensional heat flow has an explicit solution (at time ¢) :

[ —fro @, with VpeT, G —

o Simplification : As I"°s¥ vanishes almost everywhere (except on the original
located patches of I), the convolution simplifies to :

i[t] :/~n0i8y nois G nois dp dq
(.9, P) a @aPl ") o(p—x,q=y, Pl —P)

= Computing the solution does not require to build an explicit representation of the
patch-based representation 1.



Inverse mapping of the Tikhonov Regularization in I

e Finding the most significant patches in I' : the flow preserves the locations of the
local maxima. The inverse mapping of Il on Q is then :
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Inverse mapping of the Tikhonov Regularization in I b o B

e Finding the most significant patches in I' : the flow preserves the locations of the
local maxima. The inverse mapping of Il on Q is then :

B Jo Xy Wyp.adp dq

v(x7 y) € Q, I[t] _ (r,q)
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= Variant of the NL-means algorithm (Buades-Morel:05)
with an additional weight depending on the spatial distance between patches in ().

= NL-means is an isotropic diffusion process in the space of patches I.



Tikhonov Regularization in the Patch Space T 0 h";
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(Useless) Results (Tikhonov Regularization in I

=
"-'-J-l_ iy Ty

o BT
i

Noisy color image



(Useless) Results (Tikhonov Regularization in I

Tikhonov regularization in the image domain ¢

(= isotropic smoothing)



(Useless) Results (Tikhonov Regularization in I

Tikhonov regularization in the 5 x 5 patch space I'

(= Non Local-means algorithm)
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Behavior of Isotropic Diffusionin T @ h-;

e Isotropic diffusion in I' (NL-means) does not take care of the geometry of the patch
mapping I : The smoothing is done homogeneously in all directions.




. . . . * l 3
What We Want to Do : Anisotropic Diffusion 0 h"‘

e Anisotropic diffusion would adapt the smoothing kernel to the local geometry of
the patch mapping I.

=- This anisotropic behavior can be described with diffusion tensors
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Introducing Diffusion Tensors be o B

e A second-order tensor is a symmetric and semi-positive definite p x p matrix.
(p Is the dimension of the considered space).

e It has p positive eigenvalues \; and p orthogonal eigenvectors ul’ :

T=3 A ullal!’



Introducing Diffusion Tensors

e A second-order tensor is a symmetric and semi-positive definite p x p matrix.
(p Is the dimension of the considered space).

e It has p positive eigenvalues )\; and p orthogonal eigenvectors ul” :

2 x 2 Tensor (e.g. in €2) 3 x 3 Tensor (np® + 2) x (np* + 2) Tensor

e Diffusion tensors describe how much pixel values locally diffuse along given
orthogonal orientations, i.e. the “geometry” of the performed smoothing.



Diffusion Tensors in Anisotropic Diffusion PDE’s h-‘

e A tensor field T can describe locally the amplitudes and the orientations of the
desired smoothing.

e The smoothing itself can be performed with the application of this diffusion PDE :

01 (p)
ot

s
Jp) — 8.@@83}']

= trace (T(p)H(p)) (H(;) is the Hessian matrix : H;



Diffusion Tensors in Anisotropic Diffusion PDE’s @ h"

e A tensor field T can describe locally the amplitudes and the orientations of the
desired smoothing.

e The smoothing itself can be performed with the application of this diffusion PDE :

oI (p)
ot

81 p)
8:@8:1:]-

= trace (T, Hp)) (H(,) is the Hessian matrix : H, ;) =

Isotropic tensor field in I" = Isotropic smoothing Anisotropic tensor field in I' = Anisotropic smoothing

= How to design the tensor field T ? = from the structure tensor field J,.



Structure Tensors in the Patch Space T

e The structure tensor field J, : Q — P(np* + 2) tells about local geometric features
(local contrast, structure orientation) of I :

np2—|—1

J,= > VIL,VI] where VI, =VI xG,
1=1

= Very useful extension of the notion of “gradient” for multi-dimensional datasets.

(Silvano Di-Zenzo:86, Joachim Weickert:98) used it for 2D images.

= Here, we consider a np? x np? structure tensor !



Structure Tensors in the Patch Space T

e The structure tensor field J, : Q — P(np? + 2) tells about local geometric features
(local contrast, structure orientation) of I :

np2+1

J,= Y VI,VI] where VI, =VI xG,
1=1

e The diffusion tensor field T is then designed from J,, :

) 1 o
Vp c F, D(p) — — <Id — u(p)u%];))
\/ (% + trace(J,(p))
where 1, is the main eigenvector of J,,,,).



Structure Tensors in the Patch Space T 0

e The diffusion tensor field T is then designed from J,, :

1 -
- (Id - u(p)ua)))

Vp eI, f)(p) =
\/ﬁ2 + trace(J ,(p))

where 1, Is the main eigenvector of ja(p) (=~ normal vector to the patch-surface)




Approximation of the PDE solution @

e Problem : Obtaining the PDE solution requires several iterations.

e But, we cannot afford to store the entire patch space I' in computer memory
(dim(I")=365 for 11x11 color patches).



Approximation of the PDE solution

e Problem : Obtaining the solution requires several iterations.

e But, we cannot afford to store the entire patch space I' in computer memory
(dim(I")=365 for 11x11 color patches).

= Solution of the PDE can be approximated by one iteration [Tschumperle-Deriche:03] :
D
T(t] o [t=0] ~  (P(z,y))
I(p(x,y)) ~ ‘/(k Z)EQ I(k7l> Gdt(p(x,y)_q(k:,l)) dkdl

— Solution approximation + inverse mapping on ¢ can be expressed in the image
domain.



Anisotropic Diffusion in the Patch Space r 0 h“i B
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Anisotropic Diffusion in the Patch Space (Results)
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Anisotropic Diffusion in the Patch Space (Results)

Anisotropic diffusion in the 7 x 7 patch space I'



Anisotropic Diffusion in the Patch Space (Results)

Anisotropic diffusion in the image domain 2



Anisotropic Diffusion in the Patch Space (Results)

Anisotropic diffusion in €2 Anisotropic diffusion in the patch space I



Anisotropic Diffusion in the Patch Space (Results)

Noisy color image



Anisotropic Diffusion in the Patch Space (Results)

FFy fre

Bilateral filtering

(= NL-Means with 1 x 1 patches)



Anisotropic Diffusion in the Patch Space (Results)

Anisotropic diffusion PDE in the image domain €2



Anisotropic Diffusion in the Patch Space (Results)

Isotropic diffusion PDE in the 5 x 5 patch-space I

(= NL-Means with 5 x 5 patches)



Anisotropic Diffusion in the Patch Space (Results)

Anisotropic diffusion PDE in the 5 x 5 patch-space I



Anisotropic Diffusion in the Patch Space (Results) o
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The image registration problem h-‘

e Given two images I'* and I'2, find the displacement field u : O — R? from It to I'2
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The image registration problem

g

o Given two images I'* and I'2, find the displacement field u : 2 — R? from I'! to I*2

Source image I"1

Target image 1'2
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Estimated displacement u

e The Lukas-Kanade registration method is based on the minimization of :

E(u) = / o [ Vg2 + [ Dppiw |12 dp

e Intensity preservation :

The intensity dissimilarity between warped It and I*2 must be minimal.

Dpq = (

11 -
1)

I

to

o(q)

) where I =T1"%xG@,




Transposition to the patch-space I

e We propose to solve the Lukas-Kanade problem with a dissimilarity measure
defined in the patch space I', instead of on the image domain ¢
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Transposition to the patch-space I

e We propose to solve the Lukas-Kanade problem with a dissimilarity measure
defined in the patch space I, instead of on the image domain () :

Dpute = (I =
patch(p,a) ( U(paPItl (p)) O‘(q,'PItQ ))

max max(q)

e i.e. Find the best 2D warp between patch representations It and I2.

Patch-based representation 71 Patch-based representation 12
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Transposition to the patch-space T b o B

e We propose to solve the Lukas-Kanade problem with a dissimilarity measure
defined in the patch space I', instead of on the image domain () :

D = (1" -12 )
patch(p,q) it1 it2
J(p’Pmam(p)) J(q’Pmaac(q))

e i.e. Find the best 2D warp between patch representations It and I*2.

= Patch-preservation :
The patch dissimilarity between warped It and I*2 must be minimal.

= Bloc-matching-like dissimilarity measure + Smoothness constraints
(Classical bloc-matching gives the global minimum when smoothness o = 0).
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Minimizing PDE flow h-‘

e The Euler-Lagrange equations give the minimizing flow for the patch-based Lukas-
Kanade functional :

( Ujt=0] = 0
811, -(X)
. (;t = o Au,+

where G =17 .
az(x,P(IX>)

= Local minimum of the functional.

e Resolution is done with a classical multi-scale approach (coarse to fine).



Patch-based Lukas-Kanade (Results)

Source color image



Patch-based Lukas-Kanade (Results)

Target color image



Patch-based Lukas-Kanade (Results)

Estimated displacement

Result of the original
Lukas-Kanade algorithm
(smoothness « = 0.01)




Patch-based Lukas-Kanade (Results)

Estimated displacement Warped source

Result of the original
Lukas-Kanade algorithm
(smoothness « = 0.1)




Patch-based Lukas-Kanade (Results)

Estimated displacement

Result of the
bloc-matching algorithm
(7 x 7 patches)




Patch-based Lukas-Kanade (Results)

Estimated displacement Warped source

Result of the 7 x 7 Patch-Based
Lukas-Kanade algorithm
(smoothness « = 0)




Patch-based Lukas-Kanade (Results)

Estimated displacement

Result of the 7 x 7 Patch-Based
Lukas-Kanade algorithm
(smoothness « = 0.01)
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Conclusions

(1) We proposed a patch representation I of an image I in an Euclidean patch
space I' such that non-local operations become local ones.
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(1) We proposed a patch representation I of an image I in an Euclidean patch
space I' such that non-local operations become local ones.

(2) We show links between local algorithms in I' and non-local methods in €2 :

NL-means and Bilateral Filtering <« Isotropic diffusion in T
Bloc-Matching < Non-smooth Lukas-Kanade in TI'.
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Conclusions h"

(1) We proposed a patch representation I of an image I in an Euclidean patch
space I' such that non-local operations become local ones.

(2) We show links between local algorithms in I' and non-local methods in €2 :

NL-means and Bilateral Filtering <« Isotropic diffusion in T
Bloc-Matching < Non-smooth Lukas-Kanade in TI'.

e (3) We applied more complex local methods on I' to get more efficient non-local
methods in ().

Anisotropic NL-means and Bilateral Filtering
Lukas-Kanade in I' with smoothness constraint.




Perspectives

= More local methods to transpose to the patch-space I' !

e Texture-preserving inpainting (Perez-Criminisi) and Texture synthesis (Wei-Levoy)
< Transport equations in I" ?

e You are welcome to suggest other perspectives...



Questions ?

e Thanks for your patience !




