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Abstract

We address the problem of estimating complex diffusion models from high angular res-
olution diffusion MRI images (also known as HARDI datasets). Rather than considering
a classical 2nd-order tensor to model the water molecule diffusion in tissues, we describe
each voxel diffusion by a model-free orientation distribution function (ODF) expressed as a
set of spherical harmonics coefficients. We propose to estimate the ODFs volume directly
from the raw HARDI data by minimizing a nonlinear energy functional which considers the
non-gaussianity of the MRI Rician noise as well as introduces a regularity constraint on the
estimated field. The estimation is thus performed by a set of multi-valued partial differen-
tial equations composed of both robust estimation and discontinuity-preserving regularization
terms. We show that fiber-tracking is more accurate when using this regularized estimation as
opposed to non-regularized methods. We finally illustrate the importance of these constraints
in the ODFs estimation process through both synthetic and real HARDI datasets.

1 Introduction

Diffusion Magnetic Resonance Imaging (dMRI) [16] is a non-invasive method which allows to
observe the Brownian motion of water molecules in the brain tissuesin vivo. As this motion is
constrained by nearby fibers in brain white matter, dMRI enables to collect local informations
on the wiring structures inside the human brain. In this setting, Diffusion Tensor Imaging (DTI)
is a well-known particular case of such a modality which maps each voxel signal to a 2nd-order
tensor model [3, 19, 29]. Anyway, doing this implicitly assumes that the diffusion is locally Gaus-
sian, which leads to limitations when estimating intra-voxel structures different from single fiber
configurations : a Gaussian function has only a single directional maximum and therefore cannot
retrieve possible multiple maxima of the diffusion function, including patterns like crossing or
kissing fibers. As the brain white matter is known to have such complex arrangements, the inade-
quacy of the DTI classical tensor model leads to imprecise estimation of the underlying fiber map
structure. In order to overtake this significant shortcoming, numbers of higher order models have
been proposed in the literature.

Actually, these models better consider the physics behind the MRI acquisition : the measured
signal originates from protons of hydrogen nuclei, which are mostly found in water molecules.
When presented to a specific magnetic field, the rotating magnetisation vectors of the spins induce
an electromotive force which constitutes the MR signal. LetP (x,x0) be the conditional diffusion
probability density function (PDF) which describes the probability for a spin to displace from
positionx0 to positionx in the experimental diffusion timeτ [5]. The observed signal is the
average over all spins within a voxel. So, the resulting ensemble average propagator of a relative
motionr can be expressed as

P (r) = P (x− x0) =

∫
P (x,x0)ρ(x0)dx0

2



whereρ(x0) is the initial spin density [5]. Stejskal and Tanner [23] proposed a spin echo sequence
which gives a relation between the signal attenuationS(q) and the diffusion probability density
functionP (r),

S(q)

S0

=

∫
P (r)e−2πiqT rqdr = F [P (r)] (1)

whereF denotes the 3D Fourier transform,q the diffusion wave-vector andS0 the baseline image
taken without any gradient. The latter is defined asq = γδg/(2π) whereγ is the gyromagnetic
ratio for the proton nucleus,δ is the diffusion gradient duration, andg the diffusion gradient
vector. S0 stands for the baseline image, which is a MR image acquired without any preferred
diffusion gradient.

Equation (1) naturally suggests to use the inverse Fourier transform to estimate the PDF. This
technique proposed by Tuch in [25] is known as Q-Space Imaging (QSI), but has significant
restrictions as it cannot retrieve the PDF fromin vivo acquisition [5, 25]. First, phase diffu-
sion signal is often corrupted by biological motion mostly due to cardiac pulsations. Tuch [25]
proposed to solve this problem by the use of the modulus Fourier transformP (r) = F [|S(q)|]
instead, since the diffusion signal is real and positive. Nevertheless, a sufficient sampling of the
PDF needs numerous acquisitions in the diffusion signal space (known as Q-Space) and therefore
requires a huge acquisition time meanwhile the patient should remain motionless. Finally, QSI
requires higherq values than standard scanners values and consequently requires higher gradient
g which creates eddy current distortions in the magnetic field. As a result of QSI limitations, High
Angular Resolution Diffusion Imaging (HARDI) [25] comes as an interesting alternative. Instead
of sampling the diffusion signal all over the space, the acquisition is made on the single sphere
following ns discrete gradient directions. The radial component of the three-dimensional PDF is
lost, but it provided only details on tissue microstructures, and did not give valuable informations
about the diffusion orientation. Hence, diffusion orientation can be measured through theOri-
entation Distribution Function(ODF) defined as the radial projection of the spherical diffusion
function.

Other higher order models based also on the Gaussian assumption of the diffusion have been
proposed in the literature: multi-fiber Gaussian tensors which model the signal as a finite number
of Gaussian fibers [25] and spherical deconvolution techniques which use Gaussian kernels to
estimate the diffusion signal [17, 24]. These approaches aremodel-basedmethods, implying a
stronga priori knowledge about the local fiber configuration. On the contrary, Q-Ball Imaging
(QBI) proposed by Tuch in [26] has the advantage of being model-independent.

Q-Ball Imaging (QBI) seeks to reconstruct the ODF from HARDI data. Given a unit spatial
directionu ∈ R3, Ψ(u) is the radial projection of the PDF on the line directed byu. Thus, the
exact ODFΨ can be written without loss of generality withu taken as the z-axis, as

Ψ(u) =

∫ ∞

o

P (αu)dα =

∫
P (r, θ, z)δ(θ, z)rdrdθdz (2)

Tuch [26] showed that the Funk-Radon transform (FRT)G from the raw HARDI data approxi-
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mates the ODF on the Q-space single sphere:

Gq′ [S(q)](u) = 2πq′
∫
P (r, θ, z)J0(2πq

′r)rdrdθdz (3)

whereJ0 stands for the zeroth-order Bessel function. Consequently, the estimated ODF in a
directionu is given by the integral over the diffusion signal on the plane orthogonal tou. This
leads to an interesting model-free method for retrieving orientation diffusion informations. The
FRT (3) is very close to the exact ODF (2), except for the Dirac functionδ replaced byJ0.
Then instead of projecting the diffusion function along a thin line, the projection is done along a
Bessel beam and the largerq′ is, the closer theJ0 approximatesδ. As a consequence, the FRT
from the raw HARDI data is smoother than the exact ODF. Tuch proposed in [26] an algorithm
to reconstruct the FRT, but it implies complex numerical computations such as diffusion signal
interpolation on the sphere using a kernel fit. Yet, Descoteauxet al. proposed in [10] a very
elegant analytical resolution of the ODF leading to a linear estimation technique.

Once having estimated diffusion directions, an interesting application of diffusion MRI con-
sists in retrieving neuronal fibers in brain white matter by the mean of a so calledfiber-tracking
algorithm. This is classically done by computing the integral curve of interpolated DTI dominant
eigenvectors [7, 27]. However, these methods are very sensitive to noise since it always suppose
that the dominant eigenvector is correct. Noise issue was tackled in [8, 9, 27] who proposed to
apply regularization schemes on tensor or principal direction before applying the fiber-tracking
step. One of the main limitation of the DTI model is that it is not able to retrieve several intra-
voxel fiber distributions, leading to wrong or biased estimation of dominant fiber directions. On
the other hand, recent higher order models as ODF fields are promising for estimating correct
neuronal fibers.

In the following sections, we remind the linear estimation technique of the ODFs introduced
by Descoteauxet al. [10] (section2). In section3, we present our contribution,i.e. a new varia-
tional framework for a more robust estimation of ODFs. It has the advantage of being nonlinear,
allowing to estimate and regularize simultaneously a wholevolumeof ODFs. Then, we detailed
our fiber-tracking algorithm in section4. And we finally validate this model by illustrating results
on synthetic and human brain HARDI data (section5).

2 Linear Estimation

Geometrically speaking, the FRT value at a given directionu is the great circle integral of the
signal on the plane orthogonal tou. Complex numerical schemes [26] have been proposed to
compute this integral and Descoteauxet al. [10] recently proposed an elegant analytical method
based on Funk-Hecke theorem [2] to calculate this integral from a signal expressed in the spherical
harmonics (SH) basis. The spherical harmonicsY m

l of degreel > 0 and phase orderm ∈ [−l, l]
are a set of orthonormal functions and form a basis to describe complex functions defined on the
unit sphere.
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Imaginary and non-symmetric parts of the diffusion signal essentially capture noise, so it is
interesting to force the fitted spherical function to be constraint to be symmetric and real. So
we use a modified basis constrained to be describe orthonormal, symmetric and real spherical
functions only [1, 10, 11]. Let Y m

l be a spherical harmonic of degreel and orderm in the
standard basis,Yj (j = (l2 + l + 2)/2 + m denotes the order) be a spherical harmonic in the
modified basis.

Yj =



√
2Re(Y m

l ) =
√

2
2

((−1)mY m
l + Y −m

l ), if − l ≤ m < 0

Y 0
l , if m = 0

√
2 Im(Y m

l ) =
√

2i
2

((−1)m+1Y m
l + Y −m

l ), if 0 < m ≤ l

(4)

whereY m
l is defined using associated Legendre polynomialsPm

l .
Thus, any functionχ defined on the unit sphere∀(θ, φ) ∈ Ωχ = [0, π]× [0, 2π) , χ : Ωχ → R

can be described as:

χ(θ, φ) =
N∑

j=1

cjYj(θ, φ) (5)

whereN corresponds to the highest degree of the decomposition into modified SH basisYj.
Let S : R3 → ΩS ∈ Rns be the vector field of diffusion signal inns discrete directions on the

sphere (typicallyS(p)(q) = S(q)/S0) andC : ΩC ∈ R3 → RN be the vector of coefficients of
spherical harmonicsat voxelp = (x, y, z). Descoteauxet al. [10] proposed to fit the signal with
a continuous spherical function by a least square minimization

minχ∈Ωχ ||S(p)(θi, φi)− χ(θi, φi)||2 =

minC∈ΩS
||S(p)(θi, φi)− B̃C(p)(θi, φi)||2

(6)

whereθi, φi follow gradient discretization of the diffusion signal on the single sphere , andB̃ is
a matrix of SH functionsYj.

Best fitting coefficientsC are then given by a modified Moore-Penrose pseudo-inverse
scheme.

C(p) = (B̃T B̃ + λL̃)−1B̃TS(p) (7)

whereλ is the weight term on the regularization matrixL, which penalizes high degrees in the
estimation under the assumption that high degrees SH are likely to capture noise. This is somehow
similar to the low-pass filter introduced by Tournieret al. in [24].

At this point, we have a continuous spherical function fitting the diffusion signal. We want
now to recover the ODF which gives the orientation of the diffusion. Descoteauxet al. [10]
showed that the FRT approximating the ODF can be expressed using the SH basis, by:

Gq′ [S(p)(q)] = P̃ B̃C(p) =
∑

j

2πPlj(0)cj(p)
Yj(p)

(8)
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whereP̃ is a transition matrix from Q-space signal to diffusion probability space,Plj are associ-
ated Legendre polynomials at orderlj (value ofl knowingj). Both P̃ andB̃ are independent to
the estimated voxelp.

Descoteauxet al. actually pointed that the spherical harmonics are a powerful tool to recover
an approximation of the ODF. However, it is important to notice that MRI noise distribution
follows a Rice distribution not a Gaussian one. This arises from the Gaussian noise in the original
complex frequency domain of the diffusion signal [12, 14, 15, 22]. Therefore, a least square fit
is definitely not the best choice for such an estimation process. Furthermore, estimation is made
voxel-by-voxel and does not reflect the spatial regularity of the diffusion function.

Our contribution is to propose a variational framework which is adaptable to noise distribution
and is able to use valuable informations given by the neighbour voxels.

3 Variational Framework

3.1 Theory

The key idea is to estimateand regularize the whole volume of voxels at the same time. Indeed,
it enables to take into account correlation between all parts of the processing pipeline instead of
doing the different parts separately. From the decomposition of the observed dMRI volumeS
into a filtered dMRI volumeSr and noiseε, we seek to reconstructSr = B̃P̃C whereC : ΩC ∈
R3 → RN stands for the volume of spherical harmonics coefficients.N ∈ R is the highest SH
degree and̃P theN -rank order matrix defined by Descoteauxet al. in [10]

P̃ =


...

2πPlj(0)
. ..

 (9)

wherePm
lj

are the Legendre polynomial of degreelj and phase orderm, so thatj = (l2 + l +

2)/2 +m is the index in the modified SH basis [10].
Let ns ∈ R be the number of gradient directions andB̃ be the matrix of size(ns, N)

B̃ =

 Y1(θ1, φ1) . . . YN(θ1, φ1)
...

...
...

Y1(θns , φns) . . . YN(θns , φns)

 (10)

with Yj the modified SH basis functions.
We propose to robustly estimate and regularize the ODF field simultaneously by minimizing

this nonlinear functional energyE defined as:

min
C∈ΩC

{
E(C) =

∫
ΩS

[
ns∑
k

ψ(Srk
)

]
+ αϕ(||∇C||)dΩS

}
(11)
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whereψ(Srk
) stands for the likelihood term which measures the dissimilitudes at voxelp between

the raw signalS and its ODF estimationSr = B̃P̃−1C at gradient directionk, ψ : R → R+ and
ϕ : R → R+ are real and positive functions,α ∈ R is the regularization weight and||∇C|| the
gradient norm defined as

||∇C|| =
∑

j

||∇Cj|| (12)

Note that ifψ(s) = s2 andα = 0 in (11), we minimize the least square criterion (7, cor-
responding to the Descoteaux’s method withλ = 0). As the minimization cannot be computed
straightforwardly, the gradient descent coming from the Euler-Lagrange derivation of (11) leads
to a set of multi-valued partial derivate equation (PDE) (13). In practice, we first setC(t=0) to
U0, an initial estimate of SH coefficients. In order to estimate a solution, SH coefficients velocity
∂C
∂t

giving the direction from the currentC to a solution is computed. The latter is done several
times until convergence (typically whenε ∈ R+, ε→ 0, ∂C

∂t
< ε,).

Ct=0 = U0

∂Cj

∂t
= P−1

j

∑ns

k B̃k,jψ
′(Srk

) + α div(ϕ(||∇C||))
(13)

The initial estimateU0 is computed either by considering a random field or a more structured
one. A good choice is to start from an initial set which is not so far from the global minimum;
so the linear least square estimation (7) seems to be an adequate alternative. Indeed, least square
minimization is the global minimum whenψ(s) = s2 andα = 0. One can expect the mini-
mum to be close enough to the least square minimum through variations ofψ andϕ; and should
consequently bring down the number of iterations required to converge.

It is worth to mention that similar methods have been proposed for the regularization of DTI
[9, 18, 21] and apparent diffusion coefficient (ADC) [6, 28]. Yet none is able to take advantage
of the informations provided by the ODFs, and we propose a new approach for ODFs estimation.

3.2 Likelihood function ψ

The diffusion MR magnitude images are corrupted by noiseε. Yet, as MRI noise follows a Rician
distribution, least square criterion is not the best choice. Theψ function should rather be defined
to support a robust ODF estimation, increasing with the dissimilitudes between the raw signalS
and its reconstructionSr = B̃P̃−1C and having a thresholdr ∈ R+ to stageE for irrelevant data
(cf Fig.1).

Nonetheless, the bestψ function is the one specific to the MR scanners, that is to say the Rice
distribution, which probability density function is

p(S|Sr, σ) =
S

σ2
exp

(
−(S2 + S2

r)

2σ2

)
I0

(
S · Sr

σ2

)
(14)
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Figure 1: Example of likelihoodψ functions for robust estimationS = 10 andσ = 5: dot-dashed
is a generic function and solid line is the specific function to Rice noise.

whereσ is the standard deviation of the noise andI0 is the modified zeroth-order Bessel function
of the first kind. We adapt the Rician bias correction filter introduced by Basuet al. in [4] from
2nd-order DTI to complex ODF. It is based on amaximum a posterioriapproach so we construct
the filtered volumeSr that maximizes the log-posterior probability

log p(Sr|S) = log p(S|Sr) + log p(Sr)− log p(S) (15)

wherep(S|Sr) is the likelihood term,p(Sr) is the prior, or the regularization term, andp(S) is the
normalizing constant. We are interested in the likelihood term, thus combining equation (14) and
equation (15) the pointwise loglikelihood becomes

log p(S|Sr, σ) = log
S

σ2
− (S2 + S2

r)

2σ2
+ log I0

(
S · Sr

σ2

)
= ψ(Sr) (16)

Fig.1 illustrates variation of the opposite function with scalar values ofSr whenS = 10 and
σ = 5. The energy is low whenS ≈ Sr and increases with their dissimilitudes. Note thatσ has to
be knowna priori and can be either retrieved as a parameter specific to the MR scanner, or can be
either computed from a uniform area as described by Sijberset al. in [22]. Combining equation
(13) and the derivative of equation (16) with respect toCj gives the PDE adapted to Rician noise,

∂Cj

∂t
=
P−1

j

∑ns

k B̃k,j

σ2

(
−Sr + S

[
I1

(
S · Sr

σ2

)
/I0

(
S · Sr

σ2

)])
+ α div(ϕ(||∇C||)) (17)
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3.3 Regularization functionϕ

Besides, regularization should go strong on homogeneous area (low||∇C||), and preserve con-
tours not only between isotropic and anisotropic regions but also among voxels with different
number of fibers (large||∇C||) (cf Fig.2). Frequential regularization, as described by Descoteaux
et al. in [10] was introduced as a frequential low-pass filterL̃ in (7). We drop this frequential reg-
ularization step since the spatial regularization puts sufficient constraints on the diffusion signal
to be estimated. Our experiments have confirmed that using both spatial and frequential regular-
ization is useless.

Figure 2: Example of possible regularization function forϕ.

4 Fiber-tracking

DTI-based fiber-tracking has been widely used [7, 8, 9, 27] but it has significant drawbacks when
dealing with intra-voxel structures. Indeed, not only DTI cannot model crossing or kissing fibers
but it also estimates wrong directions in the case of multiple fiber configurations. On the contrary,
ODF does not fall into this restrictions. Nevertheless, although the issue of robust fiber-tracking
has received numerous contribution with DTI model it is still an open problem when using ODFs.
In order to illustrate the influence of a robust ODF estimation on fiber-tracking, we propose a
model for retrieving neuronal fiber in brain white matter.

A way to do fiber-tracking is to use estimated displacement due to diffusion which is given
by the ODF in order to find dominant directions. Once directions are retrieved, only one is kept
based on aa priori on the fibers distribution, resulting in a diffusion tensors fieldw. A line
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integration scheme is needed to propagate a fiber along a curveC through the tensors volume (c.f.
Fig.7). One may want to use Euler method

Ca+h = Ca + hwa +O(h2) (18)

wherea is the current position in the curveC andh is the integration step. In practice, Euler’s
method is not stable and precise and so Runge-Kutta [20] comes as an interesting alternative.
This method can be seen as the result of reduction in precision of a curveC ′ more precise thanC
because of a smaller integration step

Ca+h = Ca +
k1

6
+
k2

3
+
k3

3
+
k4

6
+O(h5) (19)

whereki are the slope estimated ina + i/4h. Actually, fourth-order Runge-Kutta is by far the
most precise and is the one we used on our tests.

Besides, we assume that there are no neuronal fibers in water regions of the brain, and con-
sequently there is a need to identify this regions. Generalized Fractional Anisotropy (GFA) (c.f.
bottom of Fig.7.a) as proposed by Tuch in [26] measures the variation within the diffusion as a
spherical function. It can be expressed in the spherical harmonics basis which has the advantage
to be much faster to compute.

GFA =
std(Ψ)

rms(Ψ)
=

√
1− c20∑N

j=0 c
2
j

(20)

This gives a convenient way to measure apart isotropic from anisotropic area; therefore we used
it to stop fiber line integration when arriving in water area,i.e. whenGFA is below a threshold.

5 Numerical Experiments

For all our experiments, we used the robust Rician estimation functionψ presented in section3.2
and the discontinuity-preserving regularization functionϕ(s) = 1

1+s2/κ2
, whereκ1 andκ2 are two

thresholds depending on the value range of the original HARDI dataset. We first present results
of our variational framework on synthetic HARDI data. These data are created using a Gaussian
multi tensor model [1] to simulaten fibers crossing:

S(u) =
n∑

k=1

pke
−buT Dku (21)

whereu follows a discretization of the sphere (72 directions obtained from the subdivision of a
regular icosahedron),pk corresponds to the proportion of thekth fiber in the voxel andDk, a 3x3
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matrix, stands for the eigen values of each individual fibers. Our synthetic data simulate horizon-
tal and vertical fibers (respectively bottom left and upper right in Fig.3(a)) crossing (bottom left
in Fig.3(a)) with surrounding water regions (upper left region in Fig.3(a)).

For visualization purposes in Fig.5, ODF are slightly sharpened using Laplace-Beltrami op-
erator∆b as described by Descoteauxet al. in [10], resulting inC(p)sharp

= C(p) − β∆bC(p),
whereβ is the sharpening intensity. As a side effect this sharpening tends to transform isotropic
area into anisotropic ones. This is visible in the left upper part.

It is worth noting that chosen gradient norm||∇C|| is an adequate measure to set apart
isotropic area from anisotropic area as the corresponding gradient has a strong value on signal
discontinuities (cf Fig.3(b)). Subsequently, divergencediv(ϕ||∇C||) performs well in regulariz-
ing homogeneous area without degrading the contours as shown in Fig.3(c).

(a) Synthetic data (b) ||∇C|| (c) div(ϕ||∇C||)

Figure 3: Gradient norm and its corresponding diffusion divergence for the synthetic example.
The brighter the pixel is, the higher||∇C|| is and the stronger the regularization is.

In order to simulate dMRI acquisitions, we add Rician noise [12, 14, 15, 22] of varianceσ
to the signal. Letζ be the PSNR between the noisy and original data. Generalized Fractional
Anisotropy (GFA) (c.f. Fig.4) as proposed in equation20 measures the variation within the dif-
fusion as a spherical function. This comparison demonstrates the need for a regularization within
the estimation process. Indeed, GFA is adequate to have hindsight on global coherence of the
ODF estimation of the volume since every voxel is summarized by a scalar value. When it comes
to noisy input data, regularization greatly improves the spatial coherence of the volume estima-
tion as illustrated in Fig.4. Besides, this gives a convenient way to measure apart isotropic from
anisotropic area; therefore we used it to stop fiber line integration when arriving in water area,
i.e. whenGFA is below a threshold.

We computed statistics on performance of LS and PDE estimation submitted to input HARDI
raw data of PSNRζ ∈ [5, 30], and to several regularization weightα ∈ [0, 1]. For eachζ and
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(a) Anisotropy of
the original data.

(b) Anisotropy of
the Least Square
estimation on
noisy data.

(c) Anisotropy of
the PDE estima-
tion on noisy data.

Figure 4: Comparison of generalized anisotropy. Noisy data withζ = 20.

(a) LS (b) PDE (c) Zoom.
LS/PDE

Figure 5: Crossing fibers surrounded by water. Comparison between Least Square (LS) and our
variational framework estimations on noisy data,ζ = 20. Color indicates the diffusion direction.
For visualisation purposes, ODF are sharpened. (a) Linear LS estimation on noisy data. (b)
PDE estimation on noisy data. (c) Zoom on differences. Left is LS estimation, right is PDE
estimation.

α, nd = 5 trials have been made. Finally, we compute PSNR (PSNRLS andPSNRPDE)
between the exact data and its estimation. Fig.6 show influence ofζ andα on PSNRPDE −
PSNRLS and highlights the interest of spatial regularization, especially when having low PSNR
input data. Out of the results, the larger the diffusion regularization weightα is, the better the
results of PDE estimation over the linear LS estimation are. Besides, the lowerζ of input data
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is, the larger the difference between linear LS estimation and our variational approach using
regularization. Though PSNR could not be considered as an optimal measure of the quality of
estimation since noise describes a Rician distribution, subjective quality from estimated data (cf
Fig.5) endorse it. Indeed, Fig.5(c) shows that even when a voxel is corrupted, the reconstruction
using neighbourhood helps enhancing reconstruction.

 0  5  10  15  20  25  30 0
 0.2

 0.4
 0.6

 0.8
 0
 2
 4
 6
 8

 10
 12
 14

PSNR(denoised, original)
PDE - LS

PSNR(noised, original)
Regularization weight

PSNR(denoised, original)

Figure 6: Influence of Diffusion weight and PSNR of input data on the difference of PSNR
between LS estimation and original data and PSNR between PDE estimation and original data.

Fiber-tracking was tested on another synthetic data-set which simulate horizontal and vertical
fibers (respectively right and top in Fig.7) merging into one horizontal fiber (left in Fig.7). From
the several fibers distributions estimated, we retrieved one using a simple a priori,i.e. to follow the
direction which is the most vertical. As expected, DTI is not able to retrieve correctly the profile
of any underlying fiber as shown in Fig.(7.b). Instead, it estimates a wrong direction, which is a
mixture of the two main directions from each fiber distribution. Therefore the estimated fiber is a
fictive one since a correct path in this dataset would be either horizontal or going vertical. Fiber-
tracking on ODF does not have this problem, but it is sensitive to noise (c.f. Fig.7.c). However
our variational method successfully estimates the ODFs field from noisy data (PSNR = 15dB),
which leads to good fiber-tracking (c.f. Fig.7.d).

Finally, we test our variational framework on a human brain HARDI dataset. The raw HARDI
data were acquired using a1.5T MRI scanner, withb = 500s/mm2 and 31 gradient directions
resulting on a volume of size 256x256x16. Fig.8 shows primary results, verified against Gray’s
atlas [13], and compared to DTI and LS estimation. The region shown is known to be the cross
of several fibers. Though we used the same sharpening coefficientβ using Laplace-Beltrami op-
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(a) GFA (b) DTI

(c) LS (d) noisy PDE

Figure 7: Crossing fibers distributions: estimation and fiber-tracking.

erator to LS (cf Fig.8(d)) and PDE (cf Fig.8(e)) vizualisation, PDE estimation is sharper in the
presence of fibers crossing (cf Fig.8(f)). This originates in the three-dimensional spatial regular-
ization, i.e. PDE estimation considers neighbour voxels in the same slice and from other slices
which do not appear in Fig.8).

6 Discussion and Conclusion

We have proposed a new and robust variational reconstruction framework to estimate ODFs from
HARDI data in a robust way, and showed that this approach has numbers of advantages. These
include model-independence and more robustness to MRI Rician noise distribution. Further-
more, the ability to reconstruct a voxel taking the whole neighbourhood informations into account
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clearly enhance the spatial coherence of the reconstruction. This last property greatly improve
the ability to recover reliable and accurate intra-voxel fibers distributions within the human brain
and opens promising perspectives for studying more precisely the neuronal fiber network.
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(a) Anisotropy (b) Brain atlas (c) DTI

(d) LS (e) PDE (f) Zoom. LS/PDE

Figure 8: Estimation of human brain white matter fibers, in a region with numbers of fibers cross:
bottom left of image is corpus callosum, upper right is cingulum gyrus and upper right is frontal
gyrus. (a) Colored Fractional anisotropy from DTI. (b) Brain Atlas [13]. (c) DTI estimation.
(d) ODF estimation using LS. (e) ODF estimation using PDE. (f) Zoom on differences. Left is
LS estimation, right is PDE estimation.
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