
3D Color CLUT Compression by Multi-Scale

Anisotropic Di�usion

David Tschumperlé1, Christine Porquet1, and Amal Mahboubi1

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France
http://www.greyc.fr

Abstract. 3D CLUT s (Color Look Up Tables) are popular digital mod-
els used in image and video processing for color grading, simulation of
analog �lms, and more generally for the application of various color trans-
formations. The large size of these models leads to data storage issues
when trying to distribute them on a large scale. Here, a highly e�ec-
tive lossy compression technique for 3D CLUT s is proposed. It is based
on a multi-scale anisotropic di�usion scheme. Our method exhibits an
average compression rate of more than 99%, while ensuring visually in-
distinguishable di�erences with the application of the original CLUT s.

Keywords: 3D CLUT s · generic color transformations · compression of
smooth data · anisotropic di�usion.

1 Introduction

Color calibration and correction tools are generally used in the �elds of pho-
tograph retouching, video processing and other artistic disciplines, in order to
change the color mood of digital images. CLUT s (Color Look Up Tables) are
among the most popular digital models used for color calibration and alteration.
Let RGB be the continuous domain [0, 255]3 ⊂ R3 representing the 3D color
cube (of discretized resolution 2563). A CLUT is a compact color function on
RGB, modelled as a 3D associative array encoding the precomputed transform
for all existing colors [1].

(a) CLUT, visualized in 3D (b) Original image (c) Image after transformation

Fig. 1. Application of a 3D CLUT to a 2D image for a color alteration (here, to
simulate vintage color fading).

http://www.greyc.fr

2 D. Tschumperlé et al.

Let F : RGB → RGB be a 3D CLUT.
Applying F to a color image I : Ω → RGB is done as follows:

∀p ∈ Ω, Imodi�ed
(p) = F(IR(p), IG(p), IB(p))

where IR, IG and IB are the RGB color components of I. It should be noted
that, most often, a CLUT is a volumic function that is continuous or, at worst,
piecewise continuous (Fig. 1a).

Original image �Color Negative� �60's� �Ilford Delta 3200� �Late Sunset�

Fig. 2. Generic nature of color transformations allowed by 3D CLUT s.

Fig. 2 exhibits a small set of various colorimetric modi�cations done with CLUT s,
taken from [2,10]. It illustrates the large diversity of the e�ects that CLUT s al-
low, e.g. color fading, chromaticity boost, color inversion, hue shift, black-and-
white conversion, contrast enhancement, etc.

Usually, a CLUT is stored, either as an ASCII zipped �le (with extension �le
.cube.zip) which maps a color triple F(X) to each voxel X of the RGB cube
(in �oat-valued format), or as a .png image corresponding to the set of all col-
ors F(X) unrolled as a 2D image (Fig. 3b). In both cases, the large amount of
color voxels composing the RGB cube implies a storage size often larger than
a megabyte (Mb) for a single CLUT, even when the RGB space is subsam-
pled (typically to sizes 323, 483, 643, . . .). There arises the issue of storing and
delivering CLUT s �les at a large scale (several hundreds at a time).

Here, this issue is addressed: an e�cient technique for CLUT compression is
put forward, as well as the corresponding decompression method. Our algorithm
takes a CLUT F as input and generates a smaller representation Fc. The recon-
struction algorithm operates on Fc to generate a reconstructed CLUT F̃. Our
compression scheme is said to be lossy [11], as F̃ is di�erent from F, but with
an error that remains visually unnoticeable.

Surprisingly, very few references dealing with CLUT compression can be found
in the literature. In [4], a lossless CLUT compression method is proposed; it is
based on two di�erent predictive coding schemes, the former being di�erential

3D Color CLUT Compression by Multi-Scale Anisotropic Di�usion 3

a) CLUT visualized in 3D b) Storage as a 2D image

Fig. 3. Storage of a CLUT as a .png �le: The 643 colors of the CLUT are here unrolled
as a 2D image of size 5122. Despite the apparent continuity of the 3D function, the 2D
resulting image exhibits lots of discontinuities, which make its compression harder.

hierarchical coding and the latter cellular interpolative predictive coding. In both
cases, a prior preprocessing step for data reorganization is needed. However,
experimentations are only made on small-sized CLUT s (resolution 173), and the
lossless method leads to compression rates (around 30%) that are much less
e�ective than what we get with our approach.

In essence, our CLUT compression technique relies on the storage of a set of
color keypoints in RGB, associated to a fast interpolation algorithm perform-
ing a dense 3D reconstruction using anisotropic di�usion PDEs. It should be
noted that the idea of compressing/decompressing 2D image data by di�usion
PDEs has already been proposed in [8], but the discontinuous aspect of natural
images used for their experiments makes it actually harder to achieve high com-
pression rates. In our case, the di�usion model proves to be perfectly suited for
interpolating colors in the RGB cube, thanks to the clear continuity of the 3D
dense functions we are trying to compress.

The paper is organized as follows: in Section 2, our CLUT reconstruction al-
gorithm is described and the corresponding compression scheme is developed in
Section 3. Our method is evaluated on a large variety of CLUT s, and compres-
sion/reconstruction results are �nally discussed in Section 4.

2 Reconstruction of a 3D CLUT from a set of keypoints

First, let us assume we have a set K = {Kk ∈ RGB × RGB | k = 1 . . . N}
of N color keypoints, located in the RGB cube, such as K provides a sparse
representation of a CLUT F : RGB → RGB.
The kth keypoint of K is de�ned by vector

Kk = (Xk,Ck) = (xk, yk, zk, Rk, Gk, Bk),

4 D. Tschumperlé et al.

where Xk = (xk, yk, zk) is the 3D keypoint position in the RGB cube and
Ck = (Rk, Gk, Bk) its associated color.

Reconstruction scheme: In order to reconstruct F from K, we propose to
propagate/average the colors Ck of the keypoints in the whole RGB domain
through a speci�c di�usion process. Let dK : RGB → R+ be the distance func-
tion, giving for each point X = (x, y, z) of RGB, the Euclidian distance to the
set of keypoints K, i.e.

∀X ∈ RGB, dK(X) = infk∈0...N‖X−Xk‖

F is then reconstructed by solving the following anisotropic di�usion PDE :

∀X ∈ RGB, ∂F

∂t
(X) = m(X)

∂2F

∂η2
(X) (1)

where η =
∇dK(X)

‖∇dK(X)‖
and m(X) =

{
0 if ∃k, X = Xk

1 otherwise

From an algorithmic point of view, this PDE can classically be solved by an Euler
method, starting from an initial estimate Ft=0 as close as possible to a solution
of (1). A quite good estimate for Ft=0 is actually obtained by propagating the
colors Ck inside the Voronoï cells associated to the set of points Xk (for instance
by watershed -like propagation [5]), then by smoothing it by an isotropic 3D
gaussian �lter (Fig. 4b). A more e�cient multi-scale scheme for estimating Ft=0

is detailed hereafter.

From a geometric point of view, the di�usion PDE (1) can be seen as a local
color averaging �lter along the lines connecting each point X of the RGB cube
to its nearest keypoint [14]. This �ltering is done for all points X of RGB, except
for the keypoints Xk which keep their initial color Ck throughout the di�usion
process. Fig. 4 below shows the reconstruction of a dense CLUT with (1), from
a set K composed of 6 colored keypoints.

Spatial discretization: Numerically, dK is e�ciently computed (in linear time)
by a distance transform, such as the one proposed in [9]. The discretization of
the di�usion directions η requires some care, as the gradient ∇dK is not formally
de�ned on the whole RGB domain. Actually, dK is not di�erentiable at the peaks
of the distance function, i.e. at the points that are local maxima. Therefore, the
following numerical scheme for the discretization of ∇dK is put forward:

∇dK(X) =

maxabs(∂ for
x dK, ∂

back
x dK)

maxabs(∂ for
y dK, ∂

back
y dK)

maxabs(∂ for
z dK, ∂

back
z dK)

 (2)

where

maxabs(a, b) =

{
a if |a| > |b|
b otherwise

3D Color CLUT Compression by Multi-Scale Anisotropic Di�usion 5

(a) Set K of keypoints (b) Initial state Ft=0

(c) Di�usion orientations (d) State at convergence

Fig. 4. Reconstruction of a 3D CLUT F from a set of keypoints K using anisotropic
di�usion PDE (1) (here, from 6 keypoints).

and
∂ for
x dK = dK(x+1,y,z) − dK(x,y,z)

∂ back
x dK = dK(x,y,z) − dK(x−1,y,z)

are the discrete forward and backward �rst derivative approximations of the
continuous function dK along the x axis. We proceed similarly along y and z.
By doing so, one avoids locally misdirected estimations of η on the local max-
ima of dK, which systematically happen with the centered, forward or backward
numerical schemes classically used for estimating the gradient, see Fig. 5.
In practice, complying to our spatial discretization scheme (2) has a great in�u-
ence, both on the reconstruction quality of the CLUT F (in comparison with
usual discretization schemes introducing visible artifacts on reconstructed struc-
tures), and on the e�ective time of convergence towards the solution of (1). A
stable state is reached more quickly. This is particularly true with the use of
the multi-scale scheme described hereafter, where reconstruction errors may be
ampli�ed when switching from a low resolution scale to a more detailed one.

Temporal discretization: For the sake of algorithmic e�ciency, the explicit
Euler scheme corresponding to the evolution of (1) becomes the following semi-
implicit scheme:

Ft+dt−Ft
dt = m(X)

[
Ft(X+η) + Ft(X−η) − 2 Ft+dt(X)

]

6 D. Tschumperlé et al.

(a) (b) (c) (d) (e)

Fig. 5. In�uence of our scheme for estimating the di�usion orientations η (shown here
on a small 40 × 40 crop of the distance function dK). Hues displayed at each point
represent the estimated orientations η: (a) Keypoints and distance function dK, (b)
Estimation of η using forward scheme ∂ fordK, (c) Estimation of η using backward
scheme ∂ backdK, (d) Estimation of η using centered scheme 1

2
(∂ fordK+∂ backdK), (e)

Estimation of η using our scheme (2).

which leads to:

Ft+dt(X) =
Ft(X)+dt m(X)[Ft(X+η)+Ft(X−η)]

1+2 dt m(X)

A major advantage of using such a semi-implicit scheme to implement the evo-
lution of (1) is that you can choose dt arbitrarily large, without loss of stability
or signi�cant decrease in quality of the di�usion process (as studied in [6,15]).
Therefore, we get the following simpli�ed temporal discretization scheme:

Ft+dt(X) = Ft(X) if m(X) = 0

Ft+dt(X) = 1
2

[
Ft(X+η) + Ft(X−η)

]
otherwise

(3)

where Ft(X+η) and Ft(X−η) are accurately estimated using tricubic spatial inter-
polation.

Starting from Ft=0, the scheme (3) is iterated until convergence (Fig.4d). It
should be noted that, for each iteration, the computation of (3) can be advan-
tageously parallelized, as the calculations are done independently for each voxel
X of RGB.

Multi-scale resolution: As with most numerical schemes involving di�usion
PDEs [14], it can be observed that the number of iterations of (3) required to
converge towards a stable solution of (1) increases quadratically with the 3D
resolution of the CLUT F to be reconstructed. In order to limit this number of
iterations for high resolutions of CLUT s, we suggest to solve (1) by a multi-scale
ascending technique.

Rather than initializing Ft=0 by watershed -like propagation for computing the
di�usion at resolution (2s)3, Ft=0 is estimated as a trilinear upscaling of the
CLUT reconstructed at half resolution (2s−1)3. The latter is closer to the stable

3D Color CLUT Compression by Multi-Scale Anisotropic Di�usion 7

state of the PDE (1) at resolution (2s)3, and the number of necessary iterations of
(3) to reach convergence is considerably reduced. By performing this recursively,
it is even possible to start the reconstruction of F at resolution 13 (by simply
averaging the colors of all keypoints), then applying the di�usion scheme (3)
successively on the upscaled results obtained at resolutions 23, 43, 83 . . . , until
the desired resolution is reached (Fig. 6).

Fig. 6. Multi-scale reconstruction scheme: A reconstructed CLUT s at resolution (2s)3

is linearly upscaled and used as an initialization for applying the di�usion scheme at a
higher resolution (2s+1)3.

Comparison with RBF reconstruction: The reconstruction of a dense func-
tion from a set of isolated keypoints is an interpolation problem which has been
already well documented in the literature [3,12]. Most traditional solutions to
this problem propose to model the function to be reconstructed as a weighted
sum, whose number of terms is equal to the number of available keypoints. For
instance, the popular RBF (Radial Basis Function) method applied to CLUT re-
construction estimates each color component Fi of F (i = R,G or B) by:

∀X ∈ RGB , Fi(X) =

N∑
k=1

wik φ(‖X−Xk‖),

with φ : R+ → R, a given function (e.g. φ(r) = r2 ln r, for a thin plate spline

interpolation [7]). The weights wik are obtained by solving a linear system, in-
volving the known values of the keypoints Ck and a matrix whose coe�cients
are φ(‖Xp−Xq‖), calculated for all possible pairs (p, q) of keypoints. This recon-
struction technique generates 3D interpolations of good quality, and is simple to

8 D. Tschumperlé et al.

implement, as it can be calculated directly at full resolution. Unfortunately, its
algorithmic complexity is expressed as O(N3 + N r3) for the reconstruction of
a CLUT of resolution r3, which becomes prohibitive when the number of key-
points increases notably (e.g. N > 300, which happens frequently in our case,
see Fig. 8).

Conversely, the complexity of one single iteration of our di�usion scheme (3) is
expressed as O(r3), regardless of the number of keypoints. Thanks to our multi-
scale approach that speeds up convergence towards a stable state, no more than
twenty di�usion iterations per reconstruction scale are necessary in practice.
This ensures a reconstruction of a decent size CLUT (e.g. resolution 643) in less
than one second on a standard multi-core computer (for several tens of seconds
with a RBF approach), and this, with an equally good reconstruction quality.

3 Generation of keypoints

Now that the reconstruction of a dense CLUT F from a set of color keypoints
K has been detailed, let us consider the inverse problem, i.e. given only F, is it
possible to �nd a sparse set of keypoints K that allows a good reconstruction
quality of F?

First of all, it is worth mentioning that a CLUT being practically stored as a 3D
discrete array, it is always possible to build a set K allowing an exact discrete

reconstruction from F at resolution r3, by simply inserting all the r3 color voxels
from F as keypoints in K. But as a CLUT is most often a continuous function,
it is actually feasible to represent it fairly accurately by a set of keypoints K the
size of which is much less than the number of voxels composing the discrete cube
RGB. K then gives a compressed representation of F.

The compression algorithm described hereafter generates a set K of N keypoints
representing a given input CLUT F, such that the CLUT F̃N reconstructed
from K is close enough to F, in the sense of two reconstruction quality criteria
(which are set as parameters of the method). These quality criteria are chosen
as: ∆max = 8, the maximum reconstruction error allowed at one point of RGB,
and ∆avg = 2, the average reconstruction error for the entire CLUT F.

The algorithm consists of three distinct steps:

1. Initialization: The set K is initialized with the 8 keypoints located at the
vertices of the RGB cube, with the colors of the CLUT to be compressed, i.e.
K = {(Xk,F(Xk) | k = 1 . . . 8}, for all Xk whose coordinates in x, y and z are
either 0 or 255.

2. Adding keypoints: Let EN : RGB → R+ be the point-to-point error
measurement between the original CLUT F and the CLUT F̃N reconstructed

3D Color CLUT Compression by Multi-Scale Anisotropic Di�usion 9

from K, using the algorithm described in Section 2:

EN(X) = ‖F(X)− F̃N(X)‖

where
Emax = max

X∈RGB
(EN(X)) and Eavg = ĒN

respectively denote the maximum error and the average reconstruction error.
As long as Emax > ∆max or Eavg > ∆avg, a new keypoint

FN+1 = (XN+1,FN+1(XN+1))

is added to K, located at coordinates XN+1 = argmaxX(EN) of the maximum
reconstruction error. In practice, one can observe that these keypoints added
iteratively are scattered throughout the entire RGB domain, so as to jointly
minimize the two criteria of reconstruction quality ∆max and ∆avg (Fig. 7).

3. Deleting keypoints: Sometimes, the addition of the last keypoint at step 2
leads to a CLUT reconstructed with an higher quality than expected, i.e. with
Emax < ∆max − ε and Eavg < ∆avg − ε and a non negligible ε > 0. In this case,
there is usually a subset of K that also veri�es the reconstruction quality criteria,
with an ε closer to 0. We can therefore try to increase the compression rate while
maintaining the desired quality of reconstruction, by removing a few keypoints
from K. This is simply achieved by iteratively going through all the keypoints
Kk of K (in the order of their insertion, k = 1 . . . N), and checking whether the

deletion of the kth keypoint Kk allows to reconstruct a CLUT F̃N with quality
constraints that still hold. If this is the case, the keypoint Kk is discarded from
K and the algorithm is resumed from where we left it. According to the degree of
continuity of the processed CLUT, this third step sometimes allows to withdraw
up to 25% of keypoints in K (it also happens that no keypoint can be removed
this way).

At the end of these three steps, we get a set or keypoints K representing a
compressed lossy version of a CLUT F, such that a minimum quality of recon-
struction is guaranteed.

4 Results

The performance of our compression method has been evaluated on publicly
available datasets (including [2,10]) for a total of 552 CLUTs at various resolu-
tions (ranging from 333 to 1443) and encoding very diverse color transformations.
In our case, the relevant measurement is the compression rate, de�ned as:

%cRate = 100

(
1− Size of compressed data

Size of input data

)
The set of all the original CLUT data occupies 708 Mb of disk storage (including
593 Mb in .png format and 115 Mb in .cube.zip format). The compression of

10 D. Tschumperlé et al.

Fig. 7. Overview of the �rst 100 iterations of our proposed 3D CLUT s compression
algorithm. Top: Target CLUT F and approximations by iteratively adding keypoints.
Bottom: Evolution of the maximum error (in green) and average error (in red), and of

the PSNR (in blue) of the reconstructed CLUT F̃N with respect to the target CLUT F.

this large dataset by our algorithm generates 552 sets of keypoints, stored in
a single 2.5 Mb �le, representing then an overall compression rate of 99.65%
(despite the fact that the input dataset itself is already in a compressed form!).
A statistical study of the sets of keypoints indicates that the average number
of keypoints is 1078 (minimum: 35, maximum: 2047, standard deviation: 587),
which is high enough to make our fast PDE -based reconstruction technique more
suitable than RBFs.

The table in Fig. 8 provides individual compression measurements for a sample
of 7 CLUT s taken from [2]. It shows the compression rates we get for various

3D Color CLUT Compression by Multi-Scale Anisotropic Di�usion 11

CLUT name Bourbon 64 Faded 47 Milo 5 Cubicle 99 Fusion 88 Sprocket 231 Paladin 1875

Resolution 163 323 483 643 643 1283 1443

Size in .cube.zip 23.5 Kb 573 Kb 3 Mb 1.2 Mb 1.4 Mb 5.6 Mb 5.4 Mb

Size in .png 3.7 Kb 22 Kb 72 Kb 92 Kb 127 Kb 765 Kb 979 Kb

Number of keypoints 562 294 894 394 210 290 59

PSNR 45.8 dB 45.6 dB 45 dB 45.2 dB 46.1 dB 46.4 dB 43.9 dB

Compression time 28 s 92 s 1180 s 561 s 257 s 3003.s 1432 s

Decompression time 67 ms 157 ms 260 ms 437 ms 452 ms 3281 ms 6739 ms

Keypoints in .png 1.9 Kb 1.5 Kb 4.2 Kb 1.9 Kb 1.3 Kb 1.7 Kb 0.44 Kb

%cRate/.cube.zip 92.1% 99.7% 99.8% 99.8% 99.9% ≈ 100% ≈ 100%

%cRate/.png 49.5% 93.3% 94.2% 98% 99% 99.8% ≈ 100%

Fig. 8. Results of our CLUT compression algorithm, on di�erent CLUT s from [2] (with
∆max = 8 and ∆avg = 2).

CLUT s at di�erent resolutions (our sets of N keypoints being stored as color
.png images at resolution 2×N), with respect to the input CLUT data stored
in the usual way, i.e. compressed �les in .png and .cube.zip formats. It is
worth noting that the number of generated keypoints does not depend on the
resolution of the CLUT to be compressed, but rather on its degree of continuity
(the keypoints being naturally located on the most discontinuous areas of the
CLUTs, Fig. 7).

By limiting the average reconstruction error, the quality criterion ∆avg = 2
ensures a minimal value of 42.14 dB for the PSNR between an input CLUT F and
its compressed reconstruction F̃. In theory, this criterion alone is not enough to
guarantee visually imperceptible di�erences. However, this is the case in practice,
as our algorithm simultaneously takes into account another quality criterion
∆max = 8 which limits the maximum reconstruction error.
For the purpose of scienti�c reproducibility, our CLUT compression/decompres-
sion algorithms have been integrated into G'MIC, a full-featured open-source
framework for image processing [13].

5 Conclusions

The CLUT compression/decompression techniques we presented in this paper
are surprisingly e�ective. This is mainly due to the perfect adequacy of the pro-
posed 3D di�usion model (1) to the type of data processed (smooth, volumetric,
color-valued). As a result, all the 552 CLUT s compressed by our method and
integrated into G'MIC [13] make it, to the best of our knowledge, the image
editing software that o�ers photographers and illustrators the greatest diversity
of color transformations, and this, for a minimal storage cost. We are convinced
that the integration of these algorithms into other image or video processing
software will trigger the distribution of CLUT -based color transformations at a
much larger magnitude scale than current standards.

12 D. Tschumperlé et al.

References

1. Explanation of what a 3D CLUT is. (accessed 2019-03-21).
http://www.quelsolaar.com/technology/clut.html

2. RocketStock, 35 Free LUTs for Color Grading (accessed 2019-03-21).
https://www.rocketstock.com/free-after-e�ects-templates/35-free-luts-for-color-
grading-videos/

3. Anjyo, K., Lewis, J.P., Pighin, F.: Scattered data interpolation for computer graph-
ics. In: ACM SIGGRAPH 2014 Courses. p. 27. ACM (2014)

4. Balaji, A., Sharma, G., Shaw, M., Guay, R.: Preprocessing Meth-
ods for Improved Lossless Compression of Color Look-Up Ta-
bles. Journal of Imaging Science and Technology 52 (07 2008).
https://doi.org/10.2352/J.ImagingSci.Technol.(2008)52:4(040901)

5. Beucher, S., Meyer, F.: The Morphological Approach to Segmentation: The Water-
shed Transformation. Optical Engineering-New York-Marcel Dekker Incorporated-
34, 433�433 (1992)

6. Duarte-Carvajalino, J.M., Castillo, P.E., Velez-Reyes, M.: Comparative Study of
Semi-Implicit Schemes for Nonlinear Di�usion in Hyperspectral Imagery. IEEE
Transactions on Image Processing 16(5), 1303�1314 (2007)

7. Duchon, J.: Splines minimizing rotation-invariant semi-norms in sobolev spaces. In:
Constructive theory of functions of several variables, pp. 85�100. Springer (1977)

8. Gali¢, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image com-
pression with anisotropic di�usion. Journal of Mathematical Imaging and Vision
31(2-3), 255�269 (2008)

9. Meijster, A., Roerdink, J.B., Hesselink, W.H.: A General Algorithm for Comput-
ing Distance Transforms in Linear Time. In: Mathematical Morphology and its
applications to image and signal processing, pp. 331�340. Springer (2002)

10. RawTherapee: Film Simulation Pack (accessed 2019-03-21).
https://rawpedia.rawtherapee.com/Film_Simulation

11. Salomon, D., Motta, G.: Handbook of Data Compression. Springer Publishing
Company, Incorporated, 5th edn. (2009)

12. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthog-
onal matching pursuit. IEEE Transactions on information theory 53(12), 4655�
4666 (2007)

13. Tschumperlé, D., Fourey, S.: G�MIC: GREYC�s Magic for Image Computing:
A Full-Featured Open-Source Framework for Image Processing. https://gmic.eu/
(2008�2019)

14. Tschumperlé, D., Deriche, R.: Vector-valued Image Regularization with PDE's: A
Common Framework for Di�erent Applications. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27(4), 506�517 (2005)

15. Weickert, J., Romeny, B.T.H., Viergever, M.A.: E�cient and reliable schemes for
nonlinear di�usion �ltering. IEEE transactions on image processing 7(3), 398�410
(1998)

https://doi.org/10.2352/J.ImagingSci.Technol.(2008)52:4(040901)

	3D Color CLUT Compression by Multi-Scale Anisotropic Diffusion

