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Abstract

This paper deals with the problem of regularizing noisy
fields of diffusion tensors, considered as symmetric and
semi-positive definiten � n matrices (as for instance 2D
structure tensors or DT-MRI medical images). We first
propose a simple anisotropic PDE-based scheme that acts
directly on the matrix coefficients and preserve the semi-
positive constraint thanks to a specific reprojection step.
The limitations of this algorithm lead us to introduce a more
effective approach based on constrained spectral regular-
izations acting on the tensor orientations (eigenvectors)and
diffusivities (eigenvalues), while explicitely taking the ten-
sor constraints into account. The regularization of the ori-
entation part uses orthogonal matrices diffusion PDE’s and
local vector alignment procedures and will be particularly
developed. For the interesting 3D case, a special implemen-
tation scheme designed to numerically fit the tensor con-
straints is also proposed. Experimental results on synthetic
and real DT-MRI data sets finally illustrates the proposed
tensor regularization framework.

1. Introduction

Several PDE based approaches have been proposed in
the last decade to tackle the problem of regularizing noisy
images while preserving possible discontinuities. These ap-
proaches have been proven to be very useful for image en-
hancement, restoration and scale space analysis. Within this
context, and since the pioneering work of Perona and Ma-
lik [21], anisotropic diffusion PDE’s have been widely used
through different approaches and formulations to solve the
problem of scalar image denoising [1, 5, 15, 14, 24, 18, 32].
Some of these methods were recently derived within the
total variation and the�-function frameworks, in order to
deal with vector valued fields, consisting of color images
or geometric features that derive from any other interme-
diate process (image gradient, optical flow). This allowed
to regularize multi-valued fields while taking possible cou-
pling between vector components into account, including
color image restoration [1, 4, 12, 25, 26, 32, 29], regu-

larization of direction fields [6, 20, 27], image inpainting
or interpolation [3, 7], scale space analysis. A more re-
cent and challenging multi-valued regularization problem
is the one related to data known to be constrained to spe-
cific manifolds. This is an important domain that has been
recently addressed for vector directions and color images in
the chromaticity-brightness or HSV spaces (using the har-
monic maps theory [27], the unitary norm total variation
[6] or the geometric Beltrami framework [13]). Other re-
lated works deal with images of probability vectors [19], or-
thonormal vector sets and rotations [30], or data on arbitrary
manifolds [2]. Such constrained minimization problems
usually lead to sets of coupled vector PDE’s where the con-
straints between data are expressed in the Euler-Lagrange
equations.

In this article, we go one step further and study the con-
strained regularization of noisy diffusion tensor fields, i.en�n symmetric semi-positive definite matrices. Important
data can be represented by such images : Structure tensors
or windowed second moment matrix ([32, 9, 17]), Diffusion
Tensor Magnetic Resonance Images (DT-MRI) [16, 22, 31]
and Covariance matrices. We first propose an anisotropic
scheme that acts directly on each matrix coefficient while
preserving the symmetry and semi-positivity constraints of
the tensors, thanks to a simple reprojection step (section 3).
The performance and limitations of this method lead us to
propose a more effective method (section 4), based on a
spectral decomposition of the tensors, followed by a con-
strained regularization of the spectral elements : the ten-
sor orientations and diffusivities. This approach, whose key
idea is the use of a new orthogonal matrix diffusion tech-
nique (section 4.3) coupled with a local direction vector
alignment (section 4.4), constructs a complete and coher-
ent regularization process, avoiding any reprojection to the
tensor space or any reconstruction of the final tensors from
partially regularized data.

Finally, a numerical scheme specially designed for 3D ten-
sor regularization purposes is proposed (section 5) and il-
lustrated with the regularization of noisy synthetic and real
DT-MRI data sets (section 6).

1



2. Context and Notations

In this paper, a diffusion tensorT = (Ti;j) is considered as
a symmetric and semi-positive definiten� n matrix :Ti;j = Tj;i and 8x 2 Rn ; (T x : x) � 0 (1)T can be expressed with its eigenvalues�l and its corre-
sponding eigenvectorsu[l℄ = (u[l℄i ). Its spectral decompo-
sition is : T =Pnl=1 �l u[l℄u[l℄T = U D UT
whereU = �u[1℄ j : : : j u[n℄� is then � n orthogonal
matrix of the unit eigenvectors columnsu[l℄, forming anor-
thonormal vector basis, whileD = diag(�1; : : : ; �n) is the
corresponding diagonal matrix of the positive eigenvectors,
supposed ordered :�1 � �2 � � � � � �n � 0.
The spectral decomposition separates theorientation fea-
tureU and thediffusivity featureD of a tensorT.
For the 3D case (n = 3), a natural representation ofT is
then an ellipsoid whose axes and radiuses are respectively
given byu[1℄;u[2℄;u[3℄ and�1; �2; �3.
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Figure 1. View of a 3D diffusion tensor field T .

We are interested in regularizing noisy diffusion tensor
fields T defined on a continuous domain
 of Rp (usu-
ally p = 1; 2; 3). This work is motivated by the restoration
of 3D DT-MRI medical images of the brain (as described
in [16, 22]), but can be used without restriction to general
symmetric and semi-positive definiten� n matrices.

3. A PDE regularization scheme acting on the
tensor coefficients

Image regularization with PDE is often based on the min-
imization of a functional expressed with a measure of the
local data variation. Minimizing the low variations while
preserving the high ones (considered as important discon-
tinuities) leads to anisotropic diffusion PDE’s via Euler-
Lagrange equations, which regularize the image. In our
case, a tensor fieldT could be seen as a multi-valued image
where each point of the field hasn2 components. Then, a
natural idea would be to evolve the tensor componentsTi;j
with classic vector diffusion PDE’s, as for instance :�Ti;j�t = � (T0i;j � Ti;j) + div

��0 (krT k)krT k rTi;j� (2)

coming from the minimization ofE(T ) = R
 � �2 (T � T 0)2 +�(krT k) � d
 (3)

wherekrT k =qPk;l krTk;lk2 is a measure of the local

tensor variation,T 0 is the initial (noisy) matrix field, and�
is a regularization function (see [8, 10, 15, 21, 23, 28] for
the scalar case). Note how the termkrT k inside the diver-
gence operator acts as a coupling term between all the ma-
trix coefficients. It is also easy to see that the PDE (2)intrin-
sically preserves the matrix symmetryand can then be ap-
plied only on the upper triangular part ofT (i.en(n+ 1)=2
components instead ofn2).
As expected, the semi-positive definite constraint needs
more attention. One can re-project at each iteration the reg-
ularized matricesT into the semi-positive space, with re-
spect to the Frobenius norm (see the appendix) :P(T) = U diag( ~�1; :::; ~�n) UT =� ~�l = �l (if �l � 0)~�l = 0 (if �l < 0)
This reprojection step ensures the semi-positive propertyof
the tensors during the PDE flow. However, this technique
has some drawbacks :
- The reprojection requires a spectral decomposition of the
matrix field (to get the�l), at each PDE iteration which is a
very time consuming procedure.
- We do not have a direct control on the spectral elements
of the tensors, which are primordial : They decompose the
tensor informations (and so the noise) and are relevant in-
formations to drive the regularization process. One conse-
quence of a direct matrix diffusion with eq.(2) is the eigen-
value smoothing effect that happens for neighbouring ten-
sors with near orthogonal directions (Fig.2a,b,c, see how the
size of the ellipsoids are not preserved, in Fig.2c).

a) Synthetic 3D tensor fieldT b) With noisy orientations.

c) Direct matrix diffusion (eq.(2)) d) Spectral regularization (eq.(7))

Figure 2. Synthetic tensor field regularization.



4 A spectral regularization approach

More generally, we rather propose to work directly on the
spectral decomposition of the noisy tensor field while pre-
serving the tensor constraintsin the spectral space(Fig.2d).

4.1 Motivations and constraints

The spectral elements provide significant structural infor-
mations, that could be used to regularize a tensor field :
- For DT-MRI images,D measures the water molecule ve-
locity in the brain fibers, while the eigenvectorsu[l℄ pro-
vide important clues to the structure and geometric organi-
zation of these fibers. Significant values can then be com-
puted [16] : mean diffusivity :Tr = �1 + �2 + �3, partial

anisotropy :FA = q (�1��2)2+(�1��3)2+(�2��3)22(�21+�22+�23 , vol-

ume ratio :V R = 27 �1�2�3=(�1 + �2 + �3).
- For structure tensors of color images [32],D andU mea-
sure the color variations and their corresponding directions.
- For covariance matrices,D represents the standard devia-
tions of the data dispersion along the main axesU.
These few examples clearly illustrates how well the spec-

tral decomposition of a tensor is directly related to a better
understanding of its structure. Moreover, the tensor con-
straints (1) are easilyexpressed in the spectral domain:�

Semi-positivity : 8l �l � 0
Orthogonality : 8k; l; u[k℄:u[l℄ = Æk;l (4)D ensures the tensor semi-positivity while the orthogonal-

ity of U ensures the symmetry of the corresponding tensor.
Then, our spectral method will be based on two constrained
and coupled regularizations acting onD andU.

4.2 Regularization of the tensor diffusivities

Different anisotropic PDE’s can be used to regularize the
tensor diffusivitiesD = diag(�l), depending on the con-
sidered application. For instance,the following diffusion
schemes could be considered for analysis :
- Process each eigenvalue�l separately:��l�t = � (�0l � �l) + div

��0 (kr�lk)kr�lk r�l�
- Process the vector� = (�l) using vector diffusion PDE’s :��l�t = � (�0l � �l) + div

��0 (kr�k)kr�k r�l�
- Include a-priori spectral informations inside the diver-
gence operator, in order to drive the diffusion process :��l�t = � (�0l��l)+div

��0 (kr�k;FA;V R;:::)kr�k r�l�
Working on the spectral domain allows much more free-
dom in the choice of the diffusion terms, than a direct ma-
trix restoration. The semi-positivity constraint is imposed
by using a discretized scheme that satisfies the maximum

and minimum principle [1], then the tensor eigenvalues will
always be positive. Fig.3 illustrates the regularization of
eigenvalues from a DT-MRI image of the brain.

a) Brain DT-MRI diffusivities b) Regularized diffusivities

Figure 3. Eigenvalues regularization

4.3 Tensor orientation regularization

The difficult part of our spectral regularization method
comes from the preservation of the orthogonality ofU
during the PDE flow. Indeed, using unconstrained vec-
tor diffusion PDE’s, or norm constrained PDE’s (as in
[6, 20, 27, 29]) on each eigenvectoru[l℄ (the columns ofU)
doesn’t preserve intrinsically the orthonormal constraints
(4). Note how the unitary norm is well preserved on Fig.4c,
but not the orthogonal angles.

a) Synthetic orientation
fieldU b) Regularization with an

unconstrained PDE
c) Regularization with a
norm constrained PDE

Figure 4. Classic PDE’s fail to regularize U
Following the idea of our previous regularization work act-
ing on orthonormal vector sets [30], we propose to mini-
mize this general functional with respect tou[l℄,E(U) = R
	(u[1℄; ::;u[n℄; kru[1℄k; :::; kru[n℄k) d

while preserving the spectral orthonormal constraints (4).	 is a free regularization functional (depending on the dif-
fusion behaviour we desire), as for instance the one based
on the�-function formulation (3) :	(:) =Pnl=1 �2 (u[l℄ � u[l℄0 )2 +�(kru[l℄k) (5)

The orthonormal constraints are introduced in the mini-
mization functional thanks ton2 Lagrange multipliers�pq ,
leading to theunconstrained minimizationofE�(U; �) = E(U)+Z
 X(p;q)2[1:::n℄�pq (u[p℄:u[q℄ � Æpq) d

with respect tou[l℄ and�pq . Note that, as the dot product
andÆpq are symmetric,�pq and�qp are equal. developing



the Euler-Lagrange equations and solving them with respect
to �pq gives the following set of coupled and constrained
PDE’s acting on the column vectorsu[l℄ of U and preserv-
ing its orthonormal properties (see [30]) :�u[k℄�t = nXl=1 � L(E)[l℄ : u[k℄� u[l℄ � L(E)[k℄ (6)

and if we consider the function	 of eq.(5), we have :L(E)[k℄i = � (u[k℄i � u[k℄i0 )� div

��0 (kru[k℄k)kru[k℄k ru[k℄i �
More generally,L(E)[k℄ 2 Rn is theLagrangian vec-

tor of the unconstrained energyE(U) subject to the vectoru[k℄. The beauty of this formulation is the independence
between the unconstrained Lagrangian and the orthonormal
constrained terms. The choice of the regularization func-
tional is then fully open. Fig.5a,b,c shows the application
of such orthonormal constrained PDE’s on a synthetic 3D
orientation field (the three unit and orthogonal eigenvectorsu[l℄ are represented). Note how the discontinuities are well
preserved by the anisotropic behaviour of the diffusion.

a) Synthetic tensor orien-
tation fieldU b) With orientation noise

(� = 30o)
c) Using orthonormal
constrained PDE’s (6)

Figure 5. Orthonormal constrained PDE’s

This framework can also be used to restore other orientation
features, like fields of rotation matrices, direction vectors,
color chromaticity ([30]).

4.4 A local alignment method

When dealing with diffusion tensors, one has to take
care of the non-unicity of the spectral decompositionT =Pnk=1 �k u[k℄ u[k℄T . Flipping one eigenvector direc-
tion while keeping its orientation (i.e considering�u[l℄ in-
stead ofu[l℄) gives the same tensorT : 2n configurations
can represent its orientationU. This means that a con-
stant tensor field may be decomposed into highly discon-
tinuous eigenvector fields, disturbing the anisotropic regu-
larization process with false discontinuity detections. This
non-unicity problem happens also with other orientation
representations, such as quaternions, Euler angles, or rota-
tion vectors. To overcome this problem, a local eigenvector
alignment process can be made before applying the PDE on
each tensor of the fieldT . The idea is to align the neigh-
bouring eigenvector directions with the current one. This is

done by minimizing the angles between them, constraining
the dot product to be positive by flipping the neighbouring
eigenvectors if necessary :8N 2 V(M); ~u[i℄(N) = sign

�u[i℄(N):u[i℄(M)� u[i℄(N)
whereV(M) is a neighbourhood ofM (Fig.6). This local
operation allows to act on the vector orientations while ig-
noring the direction information. Then, we can apply the or-
thogonal constrained diffusion PDE eq.(6). The importance
of this procedure is shown on Fig.9c, for regularization of
real DT-MRI fields.

neighbooring
Swapping

vectors

Figure 6. Local vector alignment procedure

5 3D implementation issues
Numerical schemes using finite differences are not well
adapted for PDE’s acting on data constrained on curved
manifolds. Fig.7 illustrates the problem for a vector con-
strained to a sphere : The time step has to be very small, in
order to numerically stay on the manifold.

I
(t+1)

(t)
I

(t)
I

dt
dI x dt

dt
dI x dt

Error, on the norm

M

= +

Figure 7. Finite difference schemes and
curved manifolds.

Let us rewrite the orientation diffusion PDE’s (6) for 3D
tensors. For simplicity reasons, we will write :u[1℄ = I,u[2℄ = J andu[3℄ = K :8<: �I�t = LI � (LI:I) I� (LJ:I) J� (LK:I) K�J�t = LJ � (LI:J) I� (LJ:J) J� (LK:J) K�K�t = LK � (LI:K) I� (LJ:K) J� (LK:K) K

(7)
whereLu is the Lagrangian vector given in eq.(6). These
equations can be factorized, using the double cross product
formulau� (v �w) = (u:w) v � (u:v) w :�I�t = ! � I; �J�t = ! � J; and �K�t = ! �K
with ! = I�LI+J�LJ+K�LK . This physically means
that we apply the same infinitesimal 3D rotation vector! dt
in order to compute the displacementsdI; dJ anddK of the
eigenvectors. In this case, a natural scheme is :



- Compute the vector! = I�LI + J�LJ +K�LK.
- Apply the same infinitesimal rotation!dt to I,J andK :I(t+1) = R!dt(I(t)) (using quaternions for instance).
The orthonormal constraints are numerically preserved,
since the error due to(dt 6= 0) only affects the rotation
parameters, which are common for all eigenvectorsu[l℄.
6. Applications
- We first applied our proposed framework, in order to com-
pare the behaviour of the two equations (2) and (6) on a
synthetic 3D tensor field (Fig.8). The noisy image is ob-
tained by adding uniform noise on the tensor orientations
and diffusivities. Note how the eigenvalues are smoothed
with a direct matrix regularization approach eq.(2), while
the spectral regularization allows more control on the ten-
sor diffusion (eq.(6)).
- The main application of interest that we considered is the
restoration of DT-MRI images of the brain. The data were
kindly provided by the SHFJ-CEA, thanks to J.F Mangin.
Computing fiber tracking on regularized images allows to
get more coherent bunch of fibers in the white matter. the
main streamlines are computed (following at each point the
main eigenvectoru[1℄) and displayed with black lines, for
the original data (Fig.9a), the regularized data with the di-
rect approach (Fig.9b), and the regularized data with the
spectral method (Fig.9c,d). Notice that the local alignment
process is essential in the global regularization process.

Conclusions & Perspectives
In this paper, we proposed and compared two different
methods for regularizingn�n diffusion tensor fields, while
preserving the symmetry and semi-positive definite con-
straints of the matrices. We first showed the difficulties
and limitations that a direct matrix regularization approach
causes. Then a spectral regularization method has been pro-
posed, acting on the whole spectral components of the ten-
sors and avoiding any matrix reprojection. We proposed a
solution to solve the main difficulty of this approach : the
regularization of the tensor orientations, thanks to orthonor-
mal constrained diffusions and local vector alignments. For
the 3D case, we proposed an efficient numerical scheme that
follows the constraints, as well as we applied it to restore
DT-MRI images.

Appendix : The reprojection method
LetA = UDUT be a symmetric matrix (U is orthogonal
andD = diag(�l)). We are looking for the semi-positive
definite matrixB that minimize the Frobenius norm :kA�Bk2F = kU D UT �Bk2F = kD�UTBUk2F
(the norm is independent of the basis).UTBU is symmet-
ric. Let us callD0 the matrix of its diagonal elements andS
its lower triangular matrix such as :UTBU = D0+S+ST .

Then, we have :kA�Bk2F = kD�D0k2F + 2 kSk2F .
The minimum is reached whenS = 0, i.eB = UD0UT ,
and thenkA � Bk2F = kD � D0k2F = Pni=1(�l � �i)2,
where�1; : : : ; �n are the positive eigenvalues ofB.kA�Bk2F is minimum() � �i = �l (if �l � 0)�i = 0 (if �l < 0)
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a) Synthetic 3D tensor field. b) Adding random noise.

c) After direct matrix restoration eq.(2). d) After spectral restoration eq.(6).

Figure 8. Synthetic and noisy 3D tensor fields
restoration.

a) Streamlines of a real DT-MRI field. b) Direct matrix restoration eq.(2).

c) Spectral restoration eq.(6)without lo-
cal alignment.

d) Spectral restoration eq.(6) with local
alignment.

Figure 9. Streamlines computation on a real
DT-MRI data set.
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