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Abstract. Diffusion-Tensor MRI is a technique allowing the measure-
ment of the water molecule motion in the tissues fibers, by the mean of
rendering multiple MRI images under different oriented magnetic fields.
This large set of raw data is then further estimated into a volume of dif-
fusion tensors (i.e. 3 × 3 symmetric and positive-definite matrices) that
describe through their spectral elements, the diffusivities and the main
directions of the tissues fibers. We address two crucial issues encoun-
tered for this process : diffusion tensor estimation and regularization.
After a review on existing algorithms, we propose alternative variational
formalisms that lead to new and improved results, thanks to the intro-
duction of important tensor constraint priors (positivity, symmetry) in
the considered schemes. We finally illustrate how our set of techniques
can be applied to enhance fiber tracking in the white matter of the brain.

1 Introduction

The recent introduction of DT-MRI (Diffusion Tensor Magnetic Resonance Imag-
ing) has raised a strong interest in the medical imaging community [14]. This non-
invasive 3D modality consists in measuring the water molecule motion within
the tissues, using magnetic resonance techniques. It is based on the rendering
of multiple raw MRI volumes Sk : Ω ⊂ R

3 → R using pulse sequences with
several gradient directions and magnitudes (at least 6 noncolinear directions are
necessary). An additional image S0 is also measured without preferred gradient
direction (Fig.1a). These Sk may be quite noisy, due to the high speed needed for
these multiple MRI acquisitions. This large set {Sk, k = 0...n} of raw volumes
is then estimated into a corresponding volume T : Ω ⊂ R

3 → P(3) of Diffusion
Tensors (i.e 3x3 symmetric and positive-definite matrices) that describe through
their spectral elements, the main diffusivities λ1, λ2, λ3 (with λ1 ≥ λ2 ≥ λ3)
and the corresponding principal orthogonal directions u[1],u[2],u[3] of the water
molecule diffusion in tissues such as bones, muscles and white matter of the brain
(Fig.1b).

∀x, y, z ∈ Ω, T(x, y, z) = λ1u
[1]u[1]T + λ2u

[2]v[2]T + λ3u
[3]w[3]T

Depending on the characteristics of the tissue, the diffusion (and then the es-



(a) Measured raw acquisitions Sk (k = 0...6)
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(b2) Part of the estimated tensor field T, represented with 3D
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Fig. 1. Principle of DT-MRI Imaging

timated tensors) can be isotropic (for instance in the areas with fluids such in
the CSF filled ventricles) or anisotropic as in the white matter of the brain
where the diffusion is mainly performed in the direction of the neuron fibers [15,
30]. DT-MRI is then particularly well adapted to study the brain connectivi-
ties, by tracking the fiber directions given pointwise by the principal eigenvector
u[1](x, y, z) of the tensor T(x, y, z).
Actually, retrieving the fiber bundles from the raw images Sk involves two sub-
jacent processes : First the estimation part, which estimates the diffusion tensors
as gaussian models of the water diffusion, directly from the raw data Sk. Then,
as the obtained tensor field T may be noisy, a specific regularization process can
be necessary to improve the result.
Here we propose a survey of the related methods in the literature and introduce
new variational frameworks that take important tensor structural constraints
into account for these estimation and regularization steps. We highlight the
different advantages of our formulations over the previous ones and we illustrate
how our set of approaches can be used to obtain fiber tracking results from
synthetic and real DT-MRI datasets of the brain.



2 Diffusion Tensor Estimation

2.1 Review of existing methods

The estimation process gathers the informations given by the multiple physical
measures Sk of the diffusion MRI into a field of 3 × 3 symmetric matrices T

which represent gaussian models of the water molecule diffusion. This link is
given through the Stejskal-Tanner equation [21] :

∀(x, y, z) ∈ Ω, Sk(x,y,z)
= S0(x,y,z)

e−bgT
k T(x,y,z)gk (1)

where the b-factor is a constant, depending on the acquisition parameters and
gk ∈ R

3 is a vector representing the pulse gradient magnitude (‖gk‖) and direc-
tion (gk/‖gk‖) used for the acquisition of the image Sk. Classical methods for
computing the tensor T from the images Sk have been already proposed in the
literature :

- Direct tensor estimation : proposed by Westin-Maier [29], this method lies
on the decomposition of T in an orthonormal tensor basis g̃kg̃k

T (with g̃k =
gk/‖gk‖ and k = 1..6). The 6 coordinates of T in this basis (which are dot

products in tensor space), naturally appear in eq.(1), and can then be retrieved :

T =

6
∑

k=1

< T, g̃kg̃k
T > g̃kg̃k

T =

6
∑

k=1

1

b‖gk‖2
ln

(

S0

Sk

)

g̃kg̃k
T (2)

It particularly means that only 7 raw images S0, ..., S6 are used to estimate
the diffusion tensor field T. As illustrated with the synthetic example in Fig.2,
this low number of images may be not sufficient for a robust estimation of T,
particularly if the Sk are corrupted with a high variance noise.

- Least square estimation, is nowadays the most classical method used for
diffusion tensor estimation since it can use all the available raw volumes Sk (see
for instance [3, 18]). The tensors T are estimated by minimizing the following
least square criterion,

min
T∈M3

n
∑

k=1

(

1

b
ln

(

S0

Sk

)

− gT
k Tgk

)2

(3)

which leads to the resolution of an overconstrained system Ax = B with a
pseudo-inverse solution x = (AT A)−1AT

B (where x is a vector containing
the six unknown coefficients Txx, Txy, Txz, Tyy, Tyz, Tzz of T). The least square
method generally gives better results for noisy datasets, since all the Sk (usually
n >> 7) are used in the estimation process.

Note that no one of both methods takes any prior positive-definite constraints
of the tensors T into account. Nothing prevents the computation of negative



tensors (i.e with negative diffusivities). Practically, one has to check the tensor
positivity after estimation, and reproject the negative tensors into the positive
tensor space. This is generally done by forcing the negative eigenvalues of the
tensors to zero : ∀(x, y, z) ∈ Ω, T̃ = λ̃1uuT + λ̃2vvT + λ̃3wwT , with λ̃i =
max(0, λi) (This projection minimizes the Mahalanobis distance between T and
T̃). Note also that both estimation methods are purely pointwise : no spatial
interactions are considered during the estimation.

2.2 A robust variational estimation

In order to avoid these important drawbacks, we propose a variational approach
that estimates the tensor field T from the raw volumes Sk while introducing
important priors on the tensor positivity and regularity. Our idea is based on
the positive-constrained minimization of a least-square criterion, coupled with
an anisotropic regularization term :

min
T∈P(3)

∫

Ω

n
∑

k=1

(

1

b
ln

(

S0

Sk

)

− gT
k Tgk

)2

+ α φ(‖∇T‖) dΩ (4)

where b is the constant factor depending on the acquisition parameters, gk is
the pulse gradient vector associated to the image Sk, α ∈ R is a user-defined
regularization weight and φ : R → R is a regularizing φ-functional that measures
the tensor field variations through the operator ‖∇T‖ = (

∑

i,j ‖∇Ti,j‖2)
1
2 . The

minimization is then performed by a gradient descent (iterative method), on the

constrained space P(3), representing the set of 3 × 3 symmetric and positive-
definite matrices. Following our previous theoretical work on constrained matrix
flows [9], the matrix-valued PDE minimizing (4) in P(3) with its natural met-
ric is :











T(t=0) = Id

∂T

∂t
= −((G + GT )T2 + T2(G + GT ))

(5)

where Id is the 3 × 3 identity matrix and G = (Gi,j) is the matrix defined as :

Gi,j =

n
∑

k=1

(

1

b
ln

(

S0

Sk

)

− gT
k Tgk

)

(

gkgT
k

)

i,j
− α

2
div

(

φ
′

(‖∇T‖)
‖∇T‖ ∇Ti,j

)

Eq.(5) ensures the positive-definiteness of the tensors T for each iteration of the
estimation process. Moreover, the regularization term α introduces some spatial
regularity on the estimating tensor field, while preserving important physiological

discontinuities thanks to the anisotropic behavior of the φ-function regulariza-
tion formulation (as described in the broad literature on anisotropic smoothing
with PDE’s, see for instance [1, 20, 23, 28] and references therein).

Moreover, a specific reprojection-free numerical scheme based on matrix expo-
nentials can be used for this flow lying in P(3), as described in [9] :

T(t+dt) = AT T(t)A with A = exp
(

−T(t)(G + GT )dt
)



This scheme preserves numerically the positive-definiteness of the estimating
tensors. The algorithm starts then at t = 0 with a field of isotropic tensors that
are iteratively evolving in P(3) until their shapes fit the measured data Sk with
respect to the Stejskal-Tanner model eq.(1) and the positivity and regularity
constraints. The respect of these natural diffusion tensor constraints has a large
interest for DT-MRI, and leads to more accurate results than with classical
methods. It is illustrated on Fig.2, with the estimation of a synthetic field from
noisy images Sk.

(a) Partial set of noisy raw images Sk (3 of 31).
(b) Synthetic true tensor field
(theoretically estimated without
noise.)

(c) Direct estimation of
the Sk with 7 non-colinear
images,eq.(2).

(d) Least square estimation of
the Sk, eq.(3) with 41 images.

(e) Our variational estimation
method eq.(5), using positivity
and regularity constraints.

Fig. 2. DT-MRI Estimation : Comparison of our variational method for
diffusion tensor estimation from noisy raw volumes Sk, with classical esti-
mation techniques.

In Fig.2d, notice the presence of false estimations, i.e negative estimated tensors
that needed to be reprojected into the positive tensor space, and that appears
very thin (at least one eigenvalue has been set to zero). These false estimations
naturally disappear with our constrained method (Fig.2e). Raw data that tends
to transform the positive tensors into negative ones are intrinsically ignored by
the algorithm, thanks to the tensor positivity and regularity a-priori.



3 DT-MRI Regularization

During MRI image acquisition, the raw images may be corrupted by noise and
specific regularization methods are needed to obtain more coherent diffusion
tensor maps. Recently, several methods have been proposed in the literature
to deal with this important problem. These methods can be divided into two
classes.

3.1 Non-spectral regularization methods

- Smoothing the raw images Sk : Vemuri-Chen-etal, proposed a scheme
in [27] that regularizes directly the raw images Sk before tensor estimation, by
using a PDE-based regularization scheme that takes the coupling between the
Sk into account.

∀k = 0...n,
∂Sk

∂t
= div

(

g(λ+, λ−)

‖∇Sk‖
∇Sk

)

− µ(Sk − Sk(t=0)
)

The coupling here is done through the two eigenvalues λ± coming from a first
estimation of the tensors T, with a least square method. After regularization,
the tensor field is re-estimated from the regularized version S̃k, resulting in a
smoother version of T.

- Direct matrix smoothing : Another approach, proposed in [5, 9] is to
estimate the tensor field T : Ω → P(n) from the Sk, then consider it as a
multi-valued image with 6 components (i.e the number of different coefficients
in a 3× 3 matrix). This multivalued image is then processed with classic vector-
valued diffusion PDE’s (such as in [13, 20, 22, 25, 26]).

∂Ti,j

∂t
= div

(

D∇T(i, j)
)

(6)

where D is a 3×3 diffusion tensor that drives the regularization process. This ten-
sor D generally depends on T and its spatial derivatives. Moreover, the method
proposed in [9] ensures the tensor positivity constraint, in a theoretical way, as
well as the respect of a natural metric in the positive tensor space.

- Drawbacks : By definition, non-spectral methods cannot have a direct con-
trol on the spectral elements of the tensors, which are however the relevant
features that characterizes the biological tissues. During non-spectral regular-
ization processes, tensor orientations and diffusivities are smoothed at the same

time. Unfortunately, tensor diffusivities are regularizing faster than tensor ori-
entation, resulting in an eigenvalue swelling effect for long time regularization
(Fig.3). Then, a high risk of losing tensor orientation occurs : the tensors are
quite fastly converging to identity matrices.



a) Synthetic tensor field T b) With noisy orientations.

c) Direct matrix diffusion (eq.(6)) d) Spectral regularization (section.3.2)

Fig. 3. Spectral versus Non-Spectral regularization methods.

3.2 Spectral regularization methods

The idea behind spectral regularization methods of diffusion tensor fields lies in
the separate (but eventually coupled) regularization of the tensor diffusivities λl

(three eigenvalues, l = 1..3) and orientations u[l] (three eigenvectors). Actually,
the tensors are decomposed into :

T = U Γ UT where Γ = diag(λ1, λ2, λ3) and U =
(

u[1] | u[2] | u[3]
)

This is for instance the matter of the papers [9, 11, 24]. Indeed, the undesired
eigenvalues swelling effect can be avoided by regularizing tensor eigenvalues more
slowly than tensor orientations. The smoothing process must also consider the
tensor constraints (positivity, symmetry) in the spectral space, which are ex-
pressed as :






Positivity : ∀l λl ≥ 0

Symmetry : ∀k, l, u[k].u[l] = δk,l (U is an orthogonal matrix)
(7)

Different methods have been already propose to regularize these two spectral
fields :



- Regularization of the tensor diffusivities : Tensor diffusivities are con-
sidered as a multi-channel image, with 3 components (λ1, λ2, λ3) and can then
be regularized with anisotropic PDE schemes, already proposed in the literature
for this kind of image [13, 20, 22, 23, 25, 26]). Moreover, one can easily drive the
diffusivities regularization by considering specific DT-MRI indices, like mean
diffusivity, fractional anisotropy, etc. (Fig.4).

∂λl

∂t
= div (D(λi, FA, V R, ...) ∇λl) (8)

The positivity constraint of theses eigenvalues λl is simply ensured by using a
scheme that satisfies the maximum and minimum principle [2].

- Regularization of the tensor orientations : The difficult part of the
spectral regularization methods come from the regularization of the tensor ori-
entations. In [11, 24], the authors propose to regularize only the field of the
principal direction u[1], using a modified version of the norm constrained TV-
regularization, as defined in [7]. Then, the two other tensor directions u[2] and
u[3] are rebuild from the original noisy tensor orientation U and the regularized
principal direction ũ[1].

In [24], we proposed to process directly the orientation matrix U with a spe-
cific orthogonal matrix-preserving PDE flow, that anisotropically regularized the
field :

∂U

∂t
= −L + U LT U

where L is the matrix corresponding to the unconstrained regularization term.

- The orientation swapping problem : However, when dealing with diffusion
tensors, one has to take care of the non-uniqueness of the spectral decomposition

T =
∑n

k=1 λk u[k] u[k]T . Flipping one eigenvector direction while keeping its
orientation (i.e considering −u[l] instead of u[l]) gives the same tensor T. It
means that a constant tensor field may be decomposed into highly discontinuous

orientation fields U, disturbing the anisotropic regularization process with false
discontinuity detections.

To overcome this problem, authors of [11, 24] proposed a local eigenvector align-

ment process that is done before applying the PDE on each tensor of the field T.
However, this is a very time-consuming process which dramatically slows down
the algorithms.

3.3 Isospectral flow and orientation regularization

An alternative method exists, avoiding any eigenvector realignment problems.
The idea lies on the use of an isospectral flow, that regularizes the tensor field
while preserving the eigenvalues of the considered tensors. As a result, only tensor
orientations are regularized. As we measure directly the tensor field variations



from the gradients of the matrix coefficients, no false discontinuities are consid-
ered. The general form of an isospectral matrix flow is (see [9, 10]) :

∂T

∂t
= [T, [T,−(G + GT )]] with [A,X] = AX −XA (9)

Here, we choose the term G to correspond to the unconstrained form of the
desired regularization process. It can be freely chosen. For instance, we used :

G = (Gi,j) with Gi,j = div

(

φ
′

(‖∇T‖)
‖∇T‖ ∇Ti,j

)

where φ(s) =
√

1 + s2 is a classical φ-function leading to discontinuity-preserving
regularization [8]. Note that other regularization terms G may be suitable, as
those proposed in [13, 20, 23, 25, 28], since the the Eq.(9) is a very general for-
malism to work on diffusion tensor orientations.
Like the estimation method, a specific numerical scheme based on matrix expo-
nentials can be used to implement the isospectral PDE flow (9), avoiding any
problems of numerical reprojections (see [9] for details) :

T(t+dt) = AT T(t)A with A = exp
(

−dt[G + GT ,T(t)]
)

This equation allows to speed up the process, since no eigenvector alignment is
no more necessary. Moreover, the genericity of this approach allows to combine
precise and adapted regularization terms with the advantage of the separate
regularization of tensor orientations and diffusivities. The exponential maps-
based scheme is numerically computed using Padé approximations [12] for matrix
exponentials, while the unconstrained regularization term G is discretized with
classical finite differences schemes.

4 Application to real DT-MRI datasets

We applied our proposed isospectral-based regularization algorithm in order to
improve the fiber tracking on a real DT-MRI dataset (consisting in 121 images
128 × 128 × 56, courtesy of CEA-SHFJ/Orsay-France). We first estimated the
diffusion tensor field from the raw images, using our robust tensor estimation
method eq.(5). Then, we regularized this obtained volume of tensors with our
proposed spectral methods (eq.(8) and eq.(9)) (illustration on Fig.4).

Conclusion & Perspectives

We proposed original PDE-based alternatives to classical algorithms used to
solve two crucial problems encountered in DT-MRI imaging. Our estimation
and regularization algorithms ensures the positive-definite constraint of the ten-
sors, thanks to specific constrained variational flows and corresponding numer-
ical schemes based on the use of exponential maps. It leads then to fast and



numerically stable algorithms. Finally, we illustrate these algorithms with fiber
tractography in the white matter of the brain. As a perspective, we are working
on similar constrained variational methods for more coherent fiber tracking, as
proposed in [4, 6, 16, 17, 19, 27].
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(a) Eigenvalues of an original DT-MRI volume (b) Regularized eigenvalues with eq.(8)

(c) Tensors/Fibers from the original data T. (d) Tensors/Fibers from the regularized data Tregul.

(c) Part of the Corpus-callosum (Original) (d) Part of the Corpus-callosum (Regularized)

Fig. 4. DT-MRI Regularization, using constrained spectral methods (eq.(8)
and eq.(9)).


