
G'MIC 2.3.6
10 Years of Open Source Image Processing!

David Tschumperlé — August 29 , 2018

The IMAGE team of the GREYC laboratory is happy to celebrate

the 10th anniversary of G’MIC with you, an open-source

(CeCILL), generic and extensible framework for image

processing. GREYC is a public research laboratory on digital

technology located in Caen, Normandy/France, under the

supervision of 3 research institutions: the CNRS (UMR 6072), the

University of Caen Normandy and the ENSICAEN engineering

school.

G’MIC-Qt, the main user interface of the G’MIC project.

This celebration gives us the perfect opportunity to announce

the release of a new version (2.3.6) of this free software and to

th

https://www.greyc.fr/?page_id=443&lang=en
https://www.greyc.fr/?page_id=27&lang=en
http://gmic.eu/
http://www.cecill.info/
https://en.wikipedia.org/wiki/Digital_image_processing
http://www.cnrs.fr/
http://www.unicaen.fr/home-578581.kjsp?RH=1291198060074&RF=UNIV-EN
http://www.ensicaen.fr/
https://gmic.eu/download.shtml
https://gmic.eu/download.shtml

share with you a summary of the latest notable changes since

our last G’MIC report, published on PIXLS.US in February 2018.

Related links:

The G’MIC project

Twitter feed

Announcement of the �rst version of G’MIC on LinuxFr.org [fr]

Previous article about G’MIC on PIXLS.US

(Click on the images of the report to display them in full

resolution)

1. Looking back at 10 years of development

G’MIC is a multiplatform framework (GNU/Linux, macOS,

Windows…) providing various user interfaces for manipulating

generic image data, such as 2D or 3D hyperspectral images or

image sequences with �oat values (thus including “normal” color

images). More than 1000 different operators for image

processing are included, a number that is extensible at will since

users can add their own functions by using the embedded script

language.

It was at the end of July 2008 that the �rst lines of G’MIC code

were created (in C++). At that time, I was the main developer

involved in CImg, a lightweight open source C++ library for image

processing, when I made the following observation:

The initial goal of CImg, which was to propose a “minimal” library of functions to

help C++ developers to develop image processing algorithms, was broadly

achieved; most of the algorithms I considered as essential in image processing

were integrated. CImg was initially meant to stay lightweight, so I didn’t want to

include new algorithms ad vitam æternam, which would be too heavy or too

speci�c, thus betraying the initial concept of the library.

However, this would only cater to a rather small community of people with both

C++ knowledge and image processing knowledge! One of the natural evolutions

of the project, creating bindings of CImg to other programming languages, didn’t

appeal much to me given the lack of interest I had in writing the code. And these

https://pixls.us/blog/2018/02/g-mic-2-2/
https://pixls.us/blog/2018/02/g-mic-2-2/
https://pixls.us/blog/2018/02/g-mic-2-2/
https://pixls.us/blog/2018/02/g-mic-2-2/
https://gmic.eu/
https://twitter.com/gmic_ip
https://linuxfr.org/news/gmic-un-nouvel-outil-libre-de-manipulation-dimages
https://pixls.us/blog/2018/02/g-mic-2-2/
http://gmic.eu/reference.shtml
http://cimg.eu/
https://en.wikipedia.org/wiki/Language_binding
https://en.wikipedia.org/wiki/Language_binding

potential bindings still only concerned an audience with some development

expertise.

My ideas were starting to take shape: I needed to �nd a way to

provide CImg processing features for non-programmers. Why

not attempt to build a tool that could be used on the command

line (like the famous convert command from Imagemagick)? A

�rst attempt in June 2008 (inrcast, presented on the French

news site LinuxFR), while unsuccessful, allowed me to better

understand what would be required for this type of tool to easily

process images from the command line.

In particular, it occurred to me that conciseness and coherence

of the command syntax were the two most important things to

build upon. These were the aspects that required the most

effort in research and development (the actual image processing

features were already implemented in CImg). In the end, the

focus on conciseness and coherence took me much further than

originally planned as G’MIC got an interpreter) of its own

scripting language, and then a JIT compiler for the evaluation of

mathematical expressions and image processing algorithms

working at the pixel level.

With these ideas, by the end of July 2008, I was happy to

announce the �rst draft of G’MIC. The project was of�cially up

and running!

Fig. 1.1� Logo of the G’MIC project, libre framework for image processing, and its cute mascot

“Gmicky” (illustrated by David Revoy).

A few months later, in January 2009, enriched by my previous

development experience on GREYCstoration (a free tool for

nonlinear image denoising and interpolation, from which a plug-

in was made for GIMP), and in the hopes of reaching an even

larger public, I published a G’MIC GTK plug-in for GIMP. This

https://www.imagemagick.org/script/convert.php
https://www.imagemagick.org/
https://linuxfr.org/users/dtschump/journaux/inrcast-un-autre-outil-de-manipulation-dimages
https://en.wikipedia.org/wiki/Interpreter_(computing
https://gmic.eu/tutorial/basics.shtml
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://linuxfr.org/news/gmic-un-nouvel-outil-libre-de-manipulation-dimages
http://gmic.eu/gmic220/fullsize/logo_gmic.png
http://www.davidrevoy.com/
http://cimg.eu/greycstoration
http://www.gimp.org/
https://linuxfr.org/news/traitement-dimages-quand-gmic-130-sinvite-dans-gimp
http://cimg.eu/greycstoration
http://www.gimp.org/
https://linuxfr.org/news/traitement-dimages-quand-gmic-130-sinvite-dans-gimp

step proved to be a de�ning moment for the G’MIC project,

giving it a signi�cant boost in popularity as seen below (the

project was hosted on Sourceforge at the time).

Fig.1.2� Monthly downloads statistics of G’MIC, between July 2008 and May 2009 (release of the GIMP

plug-in happened in January 2009).

The sudden interest in the plugin from different users of GIMP

(photographers, illustrators and other types of artists) was

indeed a real launchpad for the project, with the rapid

appearance of various contributions and external suggestions

(for the code, management of the forums, web pages, writing of

tutorials and realization of videos, etc.). The often idealized

community effect of free software �nally began to take off!

Users and developers began to take a closer look at the

operation of the original command-line interface and its

associated scripting language (which admittedly did not interest

many people until that moment!). From there, many of them

took the plunge and began to implement new image processing

�lters in the G’MIC language, continuously integrated them into

the GIMP plugin. Today, these contributions represent almost

half of the �lters available in the plugin.

Meanwhile, the important and repeated contributions of

Sébastien Fourey, colleague of the GREYC IMAGE team (and

https://sourceforge.net/projects/gmic/
https://sourceforge.net/projects/gmic/
http://gmic.eu/gmic234/fullsize/stats_plugin.png
https://github.com/dtschump/gmic-community
https://foureys.users.greyc.fr/Fr/index.php
https://foureys.users.greyc.fr/Fr/index.php

experienced C++ developer) signi�cantly improved the user

experience of G’MIC. Sébastien is indeed at the heart of the main

graphical interface development of the project, namely:

The G’MIC Online web service (which was later re-organised by GREYC’s

Development Department).

Free Software ZArt, a graphical interface - based on the _Qt_ library - for the

application of G’MIC �lters to video sequences (from �les or digital camera

streams).

And above all, at the end of 2016, Sébastien tackled a complete rewrite of the

G’MIC plugin for GIMP in a more generic form called G’MIC-Qt. This component,

also based on the _Qt_ library (as the name suggests), is a single plugin that

works equally well with both GIMP and Krita, two of the leading free applications

for photo retouching/editing and digital painting. G’MIC-Qt has now completely

supplanted the original GTK plugin thanks to its many features: built-in �lter

search engine, better preview, superior interactivity, etc. Today it is the most

successful interface of the G’MIC project and we hope to be able to offer it in the

future for other host applications (contact us if you are interested in this

subject!).

Fig.1.3� Different graphical interfaces of the G’MIC project, developed by Sébastien Fourey: G’MIC-Qt,

G’MIC Online and ZArt.

The purpose of this article is not to go into too much detail

about the history of the project. Suf�ce it to say that we have

not really had time to become bored in the last ten years!

Today, Sébastien and I are the two primary maintainers of the

G’MIC project (Sébastien mainly for the interface aspects, myself

for the development and improvement of �lters and the core

development), in addition to our main professional activity

(research and teaching/supervision).

Let’s face it, managing a free project like G’MIC takes a

considerable amount of time, despite its modest size (~120k

lines of code). But the original goal has been achieved:

thousands of non-programming users have the opportunity to

freely and easily use our image processing algorithms in many

https://gmicol.greyc.fr/
https://github.com/c-koi/zart
https://www.qt.io/
https://github.com/c-koi/gmic-qt
http://www.gimp.org/
http://krita.org/
http://gmic.eu/gmic234/fullsize/gui_seb.png

different areas: image editing, photo manipulation, illustration

and digital painting, video processing, scienti�c illustration,

procedural generation, glitch art…

The milestone of 3.5 million total downloads was exceeded last

year, with a current average of about 400 daily downloads from

the of�cial website (�gures have been steadily declining in

recent years as G’MIC is becoming more commonly downloaded

and installed via alternative external sources).

It is sometimes dif�cult to keep a steady pace of development

and the motivation that has to go with it, but we persisted,

thinking back to the happy users who from time to time share

their enthusiasm for the project!

Obviously we can’t name all the individual contributors to G’MIC

whom we would like to thank, and with whom we’ve enjoyed

exchanging during these ten years, but our heart is with them!

Let’s also thank the GREYC laboratory and INS2I institute of

CNRS for their strong support for this free project. A big thank

you also to all the community of PIXLS.US who did a great job

supporting the project (hosting the forum and publishing our

articles on G’MIC).

But let’s stop reminiscing and get down to business: new

features since our last article about the release of version 2.2!

2. Automatic illumination of �at-colored drawings

G’MIC recently gained a quite impressive new �lter named «

Illuminate 2D shape », the objective of which is to automatically

add lit zones and clean shadows to �at-colored 2D drawings, in

order to give a 3D appearance.

First, the user provides an object to illuminate, in the form of an

image on a transparent background (typically a drawing of a

character or animal). By analyzing the shape and content of the

image, G’MIC then tries to deduce a concordant 3D elevation

map (“ bumpmap “). The map of elevations obtained is obviously

not exact, since a 2D drawing colored in solid areas does not

contain explicit information about an associated 3D structure!

From the estimated 3D elevations it is easy to deduce a map of

normals (“ normalmap “) which is used in turn to generate an

illumination layer associated with the drawing (following a

Phong Shading model).

https://en.wikipedia.org/wiki/Image_editing
https://en.wikipedia.org/wiki/Photo_manipulation
https://en.wikipedia.org/wiki/Digital_painting
https://en.wikipedia.org/wiki/Video_editing_software
https://en.wikipedia.org/wiki/Procedural_generation
https://en.wikipedia.org/wiki/Glitch_art
https://en.wikipedia.org/wiki/Image_editing
https://en.wikipedia.org/wiki/Photo_manipulation
https://en.wikipedia.org/wiki/Digital_painting
https://en.wikipedia.org/wiki/Video_editing_software
https://en.wikipedia.org/wiki/Procedural_generation
https://en.wikipedia.org/wiki/Glitch_art
http://www.cnrs.fr/ins2i/
https://pixls.us/blog/
https://en.wikipedia.org/wiki/Phong_shading

Fig. 2.1� G’MIC’s “Illuminate 2D shape“ �lter in action, demonstrating automatic shading of a beetle

drawing (shaded result on the right).

This new �lter is very �exible and allows the user to have a fairly

�ne control over the lighting parameters (position and light

source rendering type) and estimation of the 3D elevation. In

addition the �lter gives the artist the opportunity to rework the

generated illumination layer, or even directly modify the

elevation maps and estimated 3D normals. The �gure below

illustrates the process as a whole; using the solid colored beetle

image (top left), the �lter fully automatically estimates an

associated 3D normal map (top right). This allows it to generate

renditions based on the drawing (bottom row) with two different

rendering styles: smooth and quantized.

http://gmic.eu/gmic234/fullsize/gmic_illuminate2d.png

Fig. 2.2� The process pipeline of the G’MIC “Illuminate 2D shape“ �lter involves the estimation of a 3D

normal map to generate the automatic illumination of a drawing.

Despite the dif�culty inherent in the problem of converting a 2D

image into 3D elevation information, the algorithm used is

surprisingly effective in a good many cases. The estimation of

the 3D elevation map obtained is suf�ciently consistent to

automatically generate plausible 2D drawing illuminations, as

illustrated by the two examples below - obtained in just a few

clicks!

http://gmic.eu/gmic234/fullsize/bug_all.png

Fig. 2.3� Two examples of completely automatic shading of 2D drawings, generated by G’MIC

It occurs, of course, that the estimated 3D elevation map does

not always match what one might want. Fear not, the �lter

allows the user to provide “guides” in the form of an additional

layer composed of colored lines, giving more precise

information to the algorithm about the structure of the drawing

to be analyzed. The �gure below illustrates the usefulness of

these guides for illuminating a drawing of a hand (top left); the

automatic illumination (top right) does not account for

information in the lines of the hand. Including these few lines in

an additional layer of “guides” (in red, bottom left) helps the

algorithm to illuminate the drawing more satisfactorily.

http://gmic.eu/gmic234/fullsize/gmic_snake.png
http://gmic.eu/gmic234/fullsize/gmic_tiger.png

Fig. 2.4� Using a layer of “guides” to improve the automatic illumination rendering

generated by G’MIC.

If we analyze more precisely the differences obtained between

estimated 3D elevation maps with and without guides

(illustrated below as symmetrical 3D objects), there is no

comparison: we go from a very round boxing glove to a much

more detailed 3D hand estimation!

http://gmic.eu/gmic234/fullsize/gmic_hand4.png

Fig. 2.5� Estimated 3D elevations for the preceding drawing of a

hand, with and without the use of “guides”.

Finally, note that this �lter also has an interactive preview mode,

allowing the user to move the light source (with the mouse) and

have a preview of the drawing illuminated in real time. By

modifying the position parameters of the light source, it is thus

possible to obtain the type of animations below in a very short

time, which gives a fairly accurate idea of the 3D structure

estimated by the algorithm from the original drawing.

Fig. 2.6� Modi�cation of the position of the

light source and associated illumination

renderings, calculated automatically by G’MIC.

http://gmic.eu/gmic234/fullsize/gmic_hand3d_anim_all.gif
http://gmic.eu/gmic234/fullsize/gmic_hand.gif

A video showing the various possible ways to edit the

illumination allowed by this �lter is visible here. The hope is this

new feature of G’MIC allows artists to accelerate the illumation

and shading stage of their future drawings!

3. Stereographic projection

In a completely different genre, we have also added a �lter

implementing stereographic projection, suitably named

“Stereographic projection“. This type of cartographic projection

makes it possible to project planar de�ned image data onto a

sphere. It should be noted that this is the usual projection used

to generate images of “mini-planets” from equirectangular

panoramas, like the one illustrated in the �gure below.

Fig. 3.1� Example of equirectangular panorama (created by Alexandre Duret-Lutz).

If we launch the G’MIC plugin with this panorama and select the

�lter “Stereographic projection“, we get:

https://www.youtube.com/watch?v=G1wYSJTsVtI
https://en.wikipedia.org/wiki/Stereographic_projection
http://gmic.eu/gmic234/fullsize/gmic_stereographic0.png
https://www.flickr.com/photos/gadl

Fig. 3.2� The “Stereographic projection“ �lter of G’MIC in action using the plugin for GIMP or Krita.

The �lter allows precise adjustments of the projection center,

the rotation angle, and the radius of the sphere, all interactively

displayed directly on the preview window (we will come back to

this later). In a few clicks, and after applying the �lter, we get

the desired “mini-planet”:

http://gmic.eu/gmic234/fullsize/gmic_stereographic.png

Fig. 3.3� “Mini-planet” obtained after stereographic projection.

It is also intruiging to note that simply by reversing the vertical

axis of the images, we transform a “mini-planet” into a “max-

tunnel”!

http://gmic.eu/gmic234/fullsize/gmic_stereographic3.png

Fig. 3.4� “Maxi-tunnel” obtained by inversion of the vertical axis then stereographic projection.

Again, we made this short video which shows this �lter used in

practice. Note that G’MIC already had a similar �lter (called

“Sphere“), which could be used for the creation of “mini-

planets”, but with a type of projection less suitable than the

stereographic projection now available.

4. Even more possibilities for color manipulation

Manipulating the colors of images is a recurring occupation

among photographers and illustrators, and G’MIC already had

several dozen �lters for this particular activity - grouped in a

dedicated category (the originally named “Colors“ category!).

This category is still growing, with two new �lters having

recently appeared:

The “CLUT from after-before layers“ �lter tries to model the color

transformation performed between two images. For example, suppose we have

the following pair of images:

http://gmic.eu/gmic234/fullsize/gmic_tunnel.png
https://www.youtube.com/watch?v=5BYV1lwuF3w

Fig. 4.1� Pair of images where an unknown colorimetric transformation has been applied to the top
image to obtain the bottom one.

Problem: we do not remember at all how we went from the the

original image to the modi�ed image, but we would like to apply

the same process to another image. Well, no more worries, call

G’MIC to the rescue! The �lter in question will seek to better

model the modi�cation of the colors in the form of a HaldCLUT,

which happens to be a classic way to represent any colorimetric

transformation.

http://gmic.eu/gmic234/fullsize/wc_trophy01.png
http://www.quelsolaar.com/technology/clut.html

Fig. 4.2� The �lter models the color transformation between two images as a HaldCLUT.

The HaldCLUT generated by the �lter can be saved and re-

applied on other images, with the desired property that the

application of the HaldCLUT on the original image produces the

target model image originally used to learn the transformation.

From there, we are able to apply an equivalent color change to

any other image:

http://gmic.eu/gmic234/fullsize/gmic_clut_from_ab.png

Fig. 4.3� The estimated color transformation in the form of HaldCLUT is re-applied to

another image.

This �lter makes it possible in the end to create HaldCLUT “by

example”, and could therefore interest many photographers (in

particular those who distribute compilations of HaldCLUT �les,

freely or otherwise!).

A second color manipulation �lter, named “Mixer [PCA]“ was also recently

integrated into G’MIC. It acts as a classic color channel mixer, but rather than

working in a prede�ned color space (like sRGB, HSV, Lab…), it acts on the

“natural” color space of the input image, obtained by principal component

http://gmic.eu/gmic234/fullsize/pink_car_all.png
https://rawpedia.rawtherapee.com/Film_Simulation
https://docs.gimp.org/en/plug-in-colors-channel-mixer.html
https://en.wikipedia.org/wiki/Principal_component_analysis
https://docs.gimp.org/en/plug-in-colors-channel-mixer.html
https://en.wikipedia.org/wiki/Principal_component_analysis

analysis (PCA) of its RGB colors. Thus each image will be associated with a

different color space. For example, if we take the “lion” image below and look at

the distribution of its colors in the RGB cube (right image), we see that the main

axis of color variation is de�ned by a straight line from dark orange to light beige

(axis symbolized by the red arrow in the �gure).

Fig. 4.4� Distribution of colors from the “lion” image in the RGB cube, and associated main axes
(colorized in red, green and blue).

The secondary axis of variation (green arrow) goes from blue to

orange, and the tertiary axis (blue arrow) from green to pink. It

is these axes of variation (rather than the RGB axes) that will

de�ne the color basis used in this channel mix �lter.

https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
http://gmic.eu/gmic234/fullsize/gmic_mix_pca2.png

Fig. 4.5� The “Mixer [PCA]“ �lter is a channel mixer acting on the axes of “natural” color variations of
the image.

It would be wrong to suggest that it is always better to consider

the color basis obtained by PCA for the mixing of channels, and

this new �lter is obviously not intended to be the “ultimate”

mixer that would replace all others. It simply exists as an

alternative to the usual tools for mixing color channels, an

alternative whose results proved to be quite interesting in tests

of several images used during the development of this �lter. It

does no harm to try in any case…

5. Filter mishmash

This section is about a few other �lters improved or included

lately in G’MIC which deserve to be talked about, without

dwelling too much on them.

Filter “Local processing” applies a color normalization or

equalization process on the local image neighborhoods (with

possible overlapping). This is an additional �lter to make details

pop up from under or over-exposed photographs, but it may

create strong and unpleasant halo artefacts with non-optimal

parameters.

http://gmic.eu/gmic234/fullsize/gmic_mix_pca.png

Fig. 5.1� The new �lter “Local processing” enhances details and contrast in under or over-
exposed photographs.

If you think that the number of layer blending modes available in

GIMP or Krita is not enough, and dream about de�ning your

own blending mode formula, then the recent improvement of

the G’MIC �lter « Blend [standard] » will please you! This �lter

now gets a new option « Custom formula » allowing the user to

specify their own mathematical formula when blending two

layers together. All of your blending wishes become possible!

Fig. 5.2� The “Blend [standard]“ �lter now allows de�nition of mathematical formulas for layer

merging.

http://gmic.eu/gmic234/fullsize/gmic_local_processing.png
http://www.pegtop.net/delphi/articles/blendmodes/
http://gmic.eu/gmic234/fullsize/gmic_blend_custom.png

Also note the complete re-implementation of the nice “Sketch“

�lter, which had existed for several years but could be a little

slow on large images. The new implementation is much faster,

taking advantage of multi-core processing when possible.

Fig. 5.3� The “Sketch“ �lter has been re-implemented and now exploits all available compute
cores.

A large amount of work has also gone into the re-

implementation of the “Mandelbrot - Julia sets“ �lter, since the

navigation interface has been entirely redesigned, making

exploration of the Mandelbrot set much more comfortable (as

illustrated by this video). New options for choosing colors have

also appeared.

http://gmic.eu/gmic234/fullsize/gmic_sketch.png
https://en.wikipedia.org/wiki/Mandelbrot_set
https://youtu.be/wZv3BQF00gA

Fig. 5.4� The “Mandelbrot - Julia sets“ �lter and its new navigation interface in the complex
space.

In addition, the “Polygonize [Delaunay]“ �lter that generates

polygonized renderings of color images has a new rendering

mode, using linearly interpolated colors in the Delaunay

triangles produced.

Fig. 5.5� The different rendering modes of the “Polygonize [Delaunay]“ �lter.

http://gmic.eu/gmic234/fullsize/gmic_mandelbrot.png
https://en.wikipedia.org/wiki/Delaunay_triangulation
http://gmic.eu/gmic234/fullsize/delaunay_all.png

6. Other important highlights

6.1. Improvements of the plug-in

Of course, the new features in G’MIC are not limited to just

image processing �lters! For instance, a lot of work has been

done on the graphical interface of the plug-in G’MIC-Qt for

GIMP and Krita:

Filters of the plug-in are now allowed to de�ne a new parameter type ,

which displays as a small colored circle over the preview window. The user can

drag this circle and move it with the mouse. As a result this can give the preview

widget a completely new type of user interaction, which is no small thing! A lot of

�lters now use this feature, making them more pleasant to use and intuitive (look

at this video for some examples). The animation below shows for instance how

these new interactive points has been used in the �lter « Stereographic

projection » described in previous sections.

Fig. 6.1� The preview window of the G’MIC-Qt plug-in gets new

user interaction abilities.

In addition, introducing these interactive points has allowed improving the split

preview modes, available in many �lters to display the « before/ after » views side

by side when setting the �lter parameters in the plug-in. It is now possible to

move this « before/ after » separator, as illustrated by the animation below. Two

new splitting modes (« Checkered » and « Inverse checkered ») have been also

included alongside it.

point()

https://www.youtube.com/watch?v=iQ0ZEmsDErY
http://gmic.eu/gmic234/fullsize/gmic_point_anim.gif

Fig. 6.2� The division modes of the preview now have a

moveable “before / after” boundary.

A lot of other improvements have been made to the plug-in: the

support of the most recent version of GIMP (2.10), of Qt 5.11,

improved handling of the error messages displayed over the

preview widget, a cleaner designed interface, and other small

changes have been made under the hood, which are not

necessarily visible but slightly improve the user experience (e.g.

an image cache mechanism for the preview widget). In short,

that’s pretty good!

6.2. Improvements in the software core

Some new re�nements of the G’MIC computational core have

been done recently:

The “standard library” of the G’MIC script language was given

new commands for computing the inverse hyperbolic functions

(, and), as well as a command

(travelling salesman problem) which estimates an acceptable

solution to the well-known Travelling salesman problem, and

this, for a point cloud of any size and dimension.

acoss asinh atanh tsp

http://gmic.eu/gmic234/fullsize/gmic_preview_anim.gif
https://en.wikipedia.org/wiki/Travelling_salesman_problem

Fig. 6.3� Estimating the shortest route between hundreds of 2D points, with the G’MIC

command .

Fig. 6.4� Estimating the shortest route between several colors
in the RGB cube (thus in 3D), with the G’MIC command .

tsp

tsp

http://gmic.eu/gmic234/fullsize/tsp_lena.png
http://gmic.eu/gmic234/fullsize/tsp3d.gif

The demonstration window, which appears when is run

without any arguments from the command line, has been also

redesigned from scratch.

Fig. 6.5� The new demonstration window of , the

command line interface of G’MIC.

The embedded JIT compiler used for the evaluation of mathematical expressions

has not been left out and was given new functions to draw polygons (function

) and ellipses (function) in images. These mathematical

expressions can in fact de�ne small programs (with local variables, user-de�ned

functions and control �ow). One can for instance easily generate synthetic

images from the command line, as shown by the two examples below.

EXAMPLE 1

Result:

gmic

gmic

polygon() ellipse()

$ gmic 400,400,1,3 eval "for (k = 0, k<300, ++k, polygon(3,u([vector10(0),[w,h,w,h,w

http://gmic.eu/gmic234/fullsize/gmic_demo.gif

Fig. 6.6� Using the new function from the G’MIC

JIT compiler, to render a synthetic image made of random
triangles.

EXAMPLE 2

Result:

polygon()

$ gmic 400,400,1,3 eval "for (k=0, k<20, ++k, ellipse(w/2,h/2,w/2,w/8,k*360/20,0.1,2

http://gmic.eu/gmic234/fullsize/gmic_polygon.png

Fig. 6.7� Using the new function from the G’MIC

JIT compiler, to render a synthetic �ower image.

Note also that are now better managed when doing calculus in the

core, meaning G’MIC maintains coherent behavior even when it has been

compiled with the optimisation . Thus, G’MIC can be �awlessly

compiled now the maximum optimization level supported by the

compiler , whereas we were restricted to the use of before. The

improvement in computation speed is clearly visible for some of the offered

�lters !

6.3. Distribution channels

A lot of changes have also been made to the distribution

channels used by the project:

First of all, the project web pages (which are now using secured

 connections by default) have a new image gallery. This

gallery shows both �ltered image results from G’MIC and the

way to reproduce them (from the command line). Note that

these gallery pages are automatically generated by a dedicated

G’MIC script, which ensures the displayed command syntax is

correct.

ellipse()

NaN values

-ffast-math

-Ofast

g++ -O3

https

http://gmic.eu/gmic234/fullsize/gmic_ellipse.png
https://en.wikipedia.org/wiki/NaN
http://gmic.eu/gallery

Fig. 6.8� The new image gallery on the G’MIC web site.

This gallery is split into several sections, depending on the type

of processing done (Artistic, Black & White, Deformations,

Filtering, etc.). The last section « Code sample » is my personal

favorite, as it exhibits small animations (shown as looping

animated GIFs) which have been completely generated from

scratch by short scripts, written in the G’MIC language. Quite a

surprising use of G’MIC that shows its potential for generative

art.

https://gmic.eu/gallery
https://gmic.eu/gallery/codesamples.shtml
https://en.wikipedia.org/wiki/Generative_art

Fig. 6.9� Two small GIF animations

generated by G’MIC_ scripts that
are visible in the new image

gallery._

We have also moved the main git source repository of the project to Framagit,

still keeping one synchronized mirror on Github at the same place as before (to

bene�t from the fact that a lot of developers have already an account on Github

which makes it easier for them to fork the project and write bug reports).

7. Conclusions and Perspectives

Voilà! Our tour of news (and the last six months of work) on the

G’MIC project comes to an end.

We are happy to be celebrating 10 years with the creation and

evolution of this Free Software project, and to be able to share

with everyone all of these advanced image processing

techniques. We hope to continue doing so for many years to

come!

Note that next year, we will also be celebrating the 20th

anniversary of CImg, the C++ image processing library (started

in November 1999) on which the G’MIC project is based, proof

that interest in free software is enduring.

As we wait for the next release of G’MIC, don’t hesitate to test

the current version. Freely and creatively play with and

manipulate your images to your heart’s content!

https://gmic.eu/gallery/codesamples_full_3.gif
https://gmic.eu/gallery/codesamples_full_4.gif
https://framagit.org/dtschump/gmic
http://cimg.eu/

Thank you, Translators: (ChameleonScales, Pat David)

SHARE THIS ON TWITTER OR FACEBOOK.

WRITTEN BY:

David Tschumperlé
I am David Tschumperlé, a permanent researcher working in the �eld of image processing in a

daily basis, since 1999. I work for the CNRS institute, more particularly in the Image Group at the

GREYC laboratory in Caen/France.

←PREVIOUSLY

Welcoming the gPhoto Project to the PIXLS.US community!

NEXT UP→
Support Andrea Ferrero on Patreon!

https://twitter.com/intent/tweet?url=https://pixls.us/blog/2018/08/g-mic-2-3-6/&via=pixlsus&text=G%27MIC%202.3.6
https://www.facebook.com/sharer/sharer.php?u=https://pixls.us/blog/2018/08/g-mic-2-3-6/
https://tschumperle.users.greyc.fr/
http://www.cnrs.fr/
https://www.greyc.fr/image
http://www.greyc.fr/
https://pixls.us/blog/2018/07/welcoming-the-gphoto-project-to-the-pixls-us-community
https://pixls.us/blog/2018/09/support-andrea-ferrero-on-patreon

