
G'MIC 2.7 - Process Your Images with Style!
David Tschumperlé — September 6 , 2019

The IMAGE team at the GREYC research laboratory is pleased to

announce the release of version 2.7 of G’MIC (GREYC’s Magic for

Image Computing), its free, generic, extensible, and probably a

little magical, framework for digital image processing.

The previous PIXLS.US article on this open-source framework

was published a year ago, in August 2018. This new release is

therefore a good opportunity to summarize the main features

and milestones of the project’s life over the past twelve months.

Fasten your seat belts, the road is long and full of surprises!

Useful links:

The G’MIC Project

G’MIC Twitter Feed

G’MIC Forum on PIXLS.US

Katsushika Hokusai

th

https://www.greyc.fr/?page_id=443&lang=en
https://www.greyc.fr/?page_id=1342&lang=en
https://gmic.eu/
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Digital_image_processing
https://pixls.us/blog/2018/08/g-mic-2-3-6/
https://gmic.eu/
https://twitter.com/gmic_ip
https://discuss.pixls.us/c/software/gmic
https://en.wikipedia.org/wiki/The_Great_Wave_off_Kanagawa

1. G’MIC in 300 words

G’MIC is a piece of software that has been developed for more

than 10 years now, mainly in C++, by two members of the IMAGE

team of the GREYC lab: Sébastien Fourey and David

Tschumperlé. It is distributed under the terms of the CeCILL

free-software license. GREYC is a French public research

laboratory located in Caen, specialized in digital sciences, under

the head of three academic institutions: CNRS, University of

Caen, and ENSICAEN.

The IMAGE team, one of the seven teams in the laboratory, is

composed of researchers, professors, Ph.D. students and

engineers, all specialized in the fields of algorithmics and

mathematics of image processing.

Fig.1.1: G’MIC project logo, and its mascot “Gmicky” (designed by David Revoy).

G’MIC is cross-platform (GNU/Linux, MacOS, Windows, …). It

provides various user interfaces for manipulating generic image

data, i.e. 2D or 3D hyperspectral images or sequences of images

with floating-point values (which indeed includes “usual” color

images). Around a thousand different processing functions are

already available. However, arbitrarily many features can be

added thanks to an integrated scripting language.

The most commonly used G’MIC interfaces are: the

command, that can be accessed from the command line (which

is an essential complement to ImageMagick or GraphicsMagick),

the G’MIC Online Web service, but above all, the plug-in G’MIC-

Qt, available for the well-known image editing software GIMP,

Krita, and Paint.net. It provides more than 500 different filters

to apply on images.

gmic

https://gmic.eu/
https://pixls.us/blog/2018/08/g-mic-2-3-6/
https://en.wikipedia.org/wiki/C%2B%2B
https://www.greyc.fr/?page_id=443&lang=en
https://www.greyc.fr/?page_id=1342&lang=en
https://foureys.users.greyc.fr/index.php
https://tschumperle.users.greyc.fr/
http://www.cecill.info/index.en.html
https://www.cnrs.fr/en
http://welcome.unicaen.fr/
https://www.ensicaen.fr/en/
https://en.wikipedia.org/wiki/Digital_image_processing
https://gmic.eu/gmic270/fullsize/logo_gmic.png
https://www.davidrevoy.com/
https://gmic.eu/reference.shtml
https://gmic.eu/reference.shtml
https://www.imagemagick.org/
https://www.graphicsmagick.org/
https://gmicol.greyc.fr/
https://github.com/c-koi/gmic-qt
https://www.gimp.org/
https://www.krita.org/
https://www.getpaint.net/

Fig.1.2: The G’MIC-Qt plug-in, here in version 2.7, is at the moment the most downloaded user interface
of the G’MIC project.

Thanks to its extensible architecture, G’MIC is regularly

enhanced with new image processing algorithms, and it is these

latest additions that will be discussed in the following sections.

2. Add style to your images!

G’MIC has recently implemented a neat filter for style transfer

between two images, available from the G’MIC-Qt plug-in under

the “Artistic / Stylize“ entry. The concept of style transfer is

quite simple: we try to transform an image (typically a

photograph) by transferring the style of another image to it (for

example a painting).

Fig.2.1: Principle of style transfer between two images.

The implementation of such a style transfer method is relatively

complex: The algorithm must be able to recompose the original

photograph by “borrowing” pixels from the style image and

https://gmic.eu/gmic270/fullsize/gmic_270.png
https://gmic.eu/gmic270/fullsize/en_style_transfer.png

intelligently combining them, like a puzzle to be reconstructed,

to best match the content of the data to be reproduced, in

terms of contours, colors and textures. How easily this is done

depends of course on the compatibility between the input

image and the chosen style. In computer graphics, most existing

implementations of style transfer methods are based on

convolutional neural networks, more particularly generative

adversarial networks (GANs).

G’MIC implements style transfer in a different way (without

relying on neural networks, the scientific article detailing the

algorithm is currently being written!). This method is

parallelizable and can therefore benefit from all the processing

units (cores) available on the user’s computer. The computation

time naturally depends on the input image resolution, and the

accuracy of the desired reconstruction. On a standard 4-cores

PC, it could take tens of seconds for low resolution images (e. g.

800x800), up to several minutes for larger pictures.

As one can imagine, it is a very versatile filter, since we can

apply any style to any input image without hard constraints.

Some famous paintings are available by default in the filter, in

order to propose predefined styles to the user.

Fig.2.2: “Artistic / Stylize“ filter, as it appears in the G’MIC-Qt plug-in, with its many parameters that
can be tuned !

Let us be honest, it is not always easy to obtain satisfactory

results from the first draft. It is generally necessary to choose

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Generative_adversarial_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Generative_adversarial_network
https://gmic.eu/gmic270/fullsize/gmic_stylize.png

your starting images carefully, and to play with the many

parameters available to refine the type of rendering generated

by the algorithm. Nevertheless, the filter is sometimes able to

generate quite interesting outcomes, such as those shown

below (the original photo is visible at the top left, the style

chosen at the top right, and the result of the style transfer at the

bottom). Imagine how long it would take for a graphic designer

to make these transformations “by hand”!

Fig.2.3: Stylization of a car from the painting “Gray Tree“ by Piet Mondrian.

https://gmic.eu/gmic270/fullsize/en_stylization_car_full_1.png
https://en.wikipedia.org/wiki/Gray_Tree
https://en.wikipedia.org/wiki/Piet_Mondrian

Fig.2.4: Stylization of the same car from the painting “Gelb-Rot-Blau“ by

Vassily Kandinsky.

https://gmic.eu/gmic270/fullsize/en_stylization_car_full_2.png
https://fr.wikipedia.org/wiki/Gelb-Rot-Blau
https://en.wikipedia.org/wiki/Wassily_Kandinsky

Fig.2.5: Stylization of the same car from the painting “The Great Wave off

Kanagawa“ of Hokusai.

https://gmic.eu/gmic270/fullsize/en_stylization_car_full_5.png
https://en.wikipedia.org/wiki/The_Great_Wave_off_Kanagawa
https://en.wikipedia.org/wiki/Hokusai

Fig.2.6: Stylization of a cat from a hatched drawing.

https://gmic.eu/gmic270/fullsize/en_stylization_cat_full_7.png

Fig.2.7: Stylization of bottles from the painting “Evening: Red Tree“ by Piet

Mondrian.

https://gmic.eu/gmic270/fullsize/en_stylization_bottles_full_21.png
https://en.wikipedia.org/wiki/Evening;_Red_Tree
https://en.wikipedia.org/wiki/Piet_Mondrian

Fig.2.8: Stylization of bottles from the painting “Le réservoir - Horta de Ebro“

by Pablo Picasso.

Other examples of image stylization can be found on the image

gallery, dedicated to this filter. To our knowledge, G’MIC is the

only “mainstream” image processing software currently offering

a generic style transfer filter, where any style image can be

chosen.

A last funny experiment: get a picture of an Alien’s head, like

Roswell, and then select a crop of the Mandelbrot fractal set as

your style image. Use the transfer filter to generate a “fractal”

rendering of your alien head. Then, make the whole world

believe that the Mandelbrot set contains the mathematical proof

of the existence of aliens… ☺

https://gmic.eu/gmic270/fullsize/en_stylization_bottles_full_23.png
https://lewebpedagogique.com/bourguignon/2011/02/10/le-reservoir-picasso/
https://en.wikipedia.org/wiki/Pablo_Picasso
https://gmic.eu/gallery/stylization.shtml
https://www.google.com/search?hl=en&tbm=isch&source=hp&biw=1920&bih=1072&ei=WpNWXcWzOITQaJDghfAN&q=alien+roswell&oq=alien+roswell&gs_l=img.3..0l7j0i5i30j0i8i8i30l2.1371.3446...3664...1.0...0.51.587.14...0...0...1...gws-wiz-img.KpJUtbI9LbU&ved=0ahUKEwjFyNjFyNjPpIfkAhUEKBoKHRBwAd4Q4d4dUDCAU&uact=5
https://en.wikipedia.org/wiki/Mandelbrot_set

Fig.2.9: Breaking News! An Alien head was found in the Mandelbrot fractal set ! (if you don’t see it at first

sight, tilt your head to the left…)

In short, this filter has a clear creative potential for all kind of

artists!

3. Interactive deformation and morphing

This year, G’MIC got an implementation of the RBFs

interpolation method (Radial Basis Functions), which is able to

estimate a dense interpolated function in any dimension, from a

known set of scattered samples (not necessarily located on a

regular grid). Thus, it gave us the idea to add distortion filters

where the user interaction is focused in adding and moving

keypoints over the image. In a second stage, G’MIC interpolates

the data represented by these keypoints in order to perform the

distortion on the entire image.

Let us start with the “Deformations / Warp [interactive]” filter

which, as its name suggests, allows the user to distort an image

locally by creating/moving keypoints.

https://gmic.eu/gmic270/fullsize/alien_mandelbrot.png
https://en.wikipedia.org/wiki/Radial_basis_function_interpolation

Fig.3.1: The new “Deformations / Warp [interactive]” filter allows images to be distorted interactively,

for example to quickly create caricatures from portrait photographs.

The animation below shows this interactive filter in use, and

illustrates the fact that these keypoints can be considered as

anchors to the image, when they are moved.

Fig.3.2: Illustration of the user interaction in the
G’MIC deformation filter, based on the creation and

motion of keypoints.

(For those who might be concerned about the portraits photos used

in the figures above and below: all these portraits are totally

https://gmic.eu/gmic270/fullsize/en_warp_girl.png
https://gmic.eu/gmic270/original/gmic_deform.gif

artificial, randomly generated by GANs via the website This

Person Does Not Not Exist. No moral prejudices to dread!).

The great advantage of using RBFs-based interpolation is that

we do not have to explicitly manage a spatial structure between

the keypoints, for instance by defining a mesh (i.e. a

“deformation grid”). This gives a greater degree of freedom in

the obtained distortion (see Fig.3.3. below). And at the same

time, we keep a rather fine control on the local amplitude of the

applied distortion, since adding more “identity” keypoints

around a region naturally limits the distortion amplitude inside

this region.

Fig.3.3: RBFs interpolation is able to create complex continuous distortions, with very few keypoints

(here, by inverting the positions of the right/left eyes, and only 4 keypoints used).

A short demonstration of this distortion filter is also visible in

this Youtube video.

And why not extending this kind of distortion for two images,

instead of a single one? This is precisely what the new filter

“Deformations / Morph [interactive]” does. It is able to render

a morphing sequence between two images (put on two separate

layers), using the same interpolation technique that only asks for

the user to set colored keypoints which match on both images.

https://thispersondoesnotexist.com/
https://thispersondoesnotexist.com/
https://en.wikipedia.org/wiki/Unstructured_grid
https://gmic.eu/gmic270/fullsize/en_warp_man.png
https://youtu.be/eWoRDzhAEtw
https://en.wikipedia.org/wiki/Morphing

Fig.3.4: “Deformations / Morph [interactive]” filter asks the user to position keypoints indicating
correspondences between two images.

In the example above, keypoints are placed on characteristic

areas of both faces (tip of nose, lips, eyebrows, etc.). In practice,

this takes no more than 5 minutes. Thanks to these keypoints,

the algorithm is able to estimate a global deformation map from

one image to another, and can generate temporally “mixed”

frames where the elements of the face remain relatively well

aligned during the whole morphing sequence.

https://gmic.eu/gmic270/fullsize/en_morph_st.png

Fig.3.5: One of the intermediate images generated by the morphing filter,

between the two input faces.

By comparison, here is what we would obtain by simply

averaging the two input images together, i.e. without correcting

the displacement of the facial features between both images.

Not a pretty sight indeed!

https://gmic.eu/gmic270/fullsize/en_morph_ib.png
https://gmic.eu/gmic270/fullsize/en_morph_avg.png

Fig.3.6: A simple averaging of the “Source” and

“Target” images reveals the differences in the
locations of the facial features.

Thus, the morphing filter is able to quickly generate a set of

intermediate frames, ranging from the “Source” to the “Target”

faces, a sequence that can then be saved as an animation.

Fig.3.7: Animation resulting from the generation of

all intermediate frames by the G’MIC morphing
filter.

Many other use cases of this morphing filter can be considered.

The following example illustrates its application to render an

animation from two photographs of the same object (a garden

gnome), but shot with different DOFs (Depth of Field).

Fig.3.8: Two photographs with different depths of field, and the location of the correspondence keypoints

put by the user.

https://gmic.eu/gmic270/original/morph.gif
https://en.wikipedia.org/wiki/Depth_of_field
https://gmic.eu/gmic270/fullsize/en_morph_dwarf_st.png

Fig.3.9: Animation resulting from the generation of all intermediate frames by

the G’MIC morphing filter.

Command line users will be pleased to know that these two

filters can be tested very quickly from a shell, as follows:

4. Ever more colorimetric transformations

For several years, G’MIC has contained colorimetric

transformation filters able to simulate the film development

process, or to give particular colorimetric moods to images

(sunlight, rain, fog, morning, afternoon, evening, night, etc.). In a

previous report, we already mentioned these filters, which are

essentially based on the use of 3D CLUTs (Color Lookup Tables)

for modeling the color transformation.

A 3D CLUT is technically a three-dimensional array that

provides for each possible RGB color, a replacement color to

apply to the image.

$ gmic image.jpg x_warp
$ gmic source.jpg target.jpg x_morph
~

https://gmic.eu/gmic270/original/morph_dwarf.gif
https://pixls.us/blog/2017/06/g-mic-2-0/
https://en.wikipedia.org/wiki/3D_lookup_table

Fig.4.1: Modeling a colorimetric transformation by a “3D Color LUT”.

The main interest of these 3D CLUTs is the great variety of

transformations they can represent: They can indeed define

RGB-to-RGB functions with almost any kind of variations. The

only “constraint” of these methods is that all image pixels having

the same color will be transformed into pixels that also have an

identical color.

https://gmic.eu/gmic270/fullsize/en_whatisaclut.png

Fig.4.2: Illustration of the variety of colorimetric transformations that can be modeled by 3D CLUTs.

The disadvantage, however, is that these 3D CLUTs are relatively

data intensive. When you want to embed several hundred

different ones in the same piece of software (which is the case

in G’MIC), you quickly find yourself with a large volume of data

to install and manage. For instance, our friends at RawTherapee

offer on their website an additional pack of 294 CLUTs functions

to download. All these CLUTs are stored as files in a

archive with a total size of 402 MB. Even if downloading and

storing a few hundred _MB_ is no longer limiting nowadays, it

is still quite large for things as simple as color changing filters.

This year, we have therefore carried out important research and

development work at the GREYC lab on this topic. The result: a

new lossy compression algorithm (with visually imperceptible

compression losses) that can generate binary representations of

CLUTs with an average compression rate of more than 99%,

relative to the data already loslessy compressed. The general idea

is to determine an optimal set of color keypoints from which the

CLUT can be reconstructed (decompression), and this, with a

minimal reconstruction error.

.png .zip

https://gmic.eu/gmic270/fullsize/en_cluts_ex.png
https://rawpedia.rawtherapee.com/Film_Simulation

Fig.4.3: Principle of our CLUT compression technique, based on determining and storing a set of well-
chosen keypoints.

As a result, this original compression method allowed us to offer

no less than 763 CLUTs in G’MIC, all stored in a binary file that

weights less than 3 MB !

All these color variation filters have been grouped into two

separate entries in the G’MIC-Qt plug-in, namely “Colors /

Simulate Film” (for analog film simulations), and “Colors / Color

Presets” (for other color transformations). Each of these filters

provides sub-categories for a structured access to the hundreds

of CLUTs available. To our knowledge, this makes G’MIC one of

the image processing software with the most colorimetric

transformations, while keeping a reasonable size.

Readers interested in the mathematical details of these CLUT

compression/decompression algorithms may refer to the

scientific paper we wrote about it, as well as the presentation

slides that have been presented at the conferences GRETSI’2019

(French conference, in Lille) and CAIP’2019 (International

conference, in Salerno).

https://gmic.eu/gmic270/fullsize/en_clut_compression.png
https://hal.archives-ouvertes.fr/hal-02066484v3/document
https://gmic.eu/gmic270/talk_en.pdf
http://gretsi.fr/colloque2019/
https://caip2019.unisa.it/

Fig.4.4: Presentation slides explaining the details of the CLUT

compression/decompression algorithm.

To finish with this topic, note that we have made an open-

source implementation of our decompression algorithm of

CLUTs available online (in C++, with 716 CLUTs already included).

Discussions have also been initiated for a potential integration

as a Darktable module for managing 3D CLUTs.

5. Create palettes by mixing colors

Let us now talk about the recent “Colors / Colorful Blobs” filter

which is directly inspired by the original concept of Playful

Palette created by the Adobe Research team in 2017. This filter is

intended for illustrators (designers and digital painters). The

goal: Create color palettes which contain only a few main colors

(the ones you want to use in an illustration), but also a few sets

of intermediate shades between these colors, in the form of

color gradients. An artist is theoretically able to better preserve

the color coherence of its artwork, by picking colors only from

this palette.

https://gmic.eu/gmic270/talk_en.pdf
https://framagit.org/dtschump/libclut
https://discuss.pixls.us/t/3d-lut-module-in-darktable-2-7-dev
https://www.darktable.org/
https://research.adobe.com/project/playful-palette-an-interactive-parametric-color-mixer-for-artists/

Fig.5.1: “Colors / Colorful Blobs” filter allows you to create custom color palettes, by spatially mixing

several colors together.

As shown on the figure above, the filter allows the artist to

create and move colored “blobs” that, when merged together,

create the desired color gradients. The result of the filter is thus

an image that the artist can use afterward as a custom 2D color

palette.

From a technical point of view, this filter is based on 2D

metaballs to model the color blobs. Up to twelve separate blobs

can be added and different color spaces can be chosen for the

calculation of the color gradient (sRGB, Linear RGB or Lab). The

filter also benefits from the recent development of the G’MIC-Qt

plug-in that enhances the user interactivity inside the preview

widget (a feature we mentioned in a previous report), as seen in

the animation below (see also this longer video).

https://gmic.eu/gmic270/fullsize/colorful_blobs.png
https://en.wikipedia.org/wiki/Metaballs
https://pixls.us/blog/2018/08/g-mic-2-3-6/
https://www.youtube.com/watch?v=M1pSn1g7sC8

Fig.5.2: Illustration of the user interaction with the

G’MIC palette creation filter, based on the creation
and movement of colored “blobs”.

This filter may not be useful for most G’MIC users. But you have

to admit, it’s pretty fun, isn’t it?

6. Some more filters

Let us now describe a selection of a few other filters and effects

added during the year, perhaps less original than the previous

ones (but not completely useless anyway!).

First of all, the “Rendering / Symmetric 2D Shape” filter is a

great help when you want to draw geometric shapes having

angular symmetries.

https://gmic.eu/gmic270/original/colorful_blobs.gif

Fig.6.1: “Rendering / Symmetric 2D Shape” filter in action, in the G’MIC-Qt

plug-in.

The plane can be subdivided into up to 32 angular pieces, each

of which can contain a maximum of six keypoints to define a

shape profile, allowing potentially complex and varied shapes to

be rendered (such as the super-shuriken below!).

Fig.6.2: Example of a complex symmetrical shape

obtained with the “Rendering / Symmetric 2D

Shape” filter.

The “Degradations / Self Glitching” filter combines an image

with a shifted version of itself, to create a Glitch-art type image.

Several bitwise operations (Add, Mul, And, _Or_, Xor,…) can be

chosen and you can adjust the shift direction and amplitude, as

well as various other controls.

https://gmic.eu/gmic270/original/symmetric2dshape.gif
https://en.wikipedia.org/wiki/Shuriken
https://gmic.eu/gmic270/fullsize/symmetric2dshape.png
https://en.wikipedia.org/wiki/Glitch_art

Fig.6.3: “Degradations / Self Glitching” filter helps to ruin your photos easily!

Again, this is not a filter that will necessarily be used every day!

But it may be helpful for some people. It was actually added in

response to a user request.

In the same style, the “Degradations / Mess With Bits” filter

applies some arithmetic operations to the pixel values, seen as

binary numbers (for instance, bit shift and bit inversion). Always

with the idea of rendering Glitch art, of course!

https://gmic.eu/gmic270/fullsize/self_glitching.png

Fig.6.4: “Degradations / Mess With Bits” filter, or how to transform an adorable toddler into a

pustulating alien…

The “Degradations / Noise [Perlin]” filter implements the

generation of the Perlin noise, a very classical noise model in

image synthesis, used for the generation of elevation maps for

virtual terrains. Here we propose a multi-scale version of the

original algorithm, with up to four simultaneous variation scales.

Fig.6.5: “Degradations / Noise [Perlin]” filter proposes a multi-scale implementation of the Perlin

noise (illustrated here with two variation scales).

https://gmic.eu/gmic270/fullsize/messwithbits.png
https://en.wikipedia.org/wiki/Perlin_noise
https://gmic.eu/gmic270/fullsize/noise_perlin.png

The “Frames / Frame [Mirror]” filter is also a “tailor-made”

effect, to meet the needs of a G’MIC-Qt plug-in user. This

photographer wanted to resize his photos to obtain a precise

width/height ratio, but without having to crop his images. The

solution was instead to add image information at the edges of

the picture, by symmetry, in order to obtain the desired ratio. So

that’s what this filter does.

Fig.6.6: The “Frames / Frame [Mirror]” filter extends the image borders by symmetry.

Finally, let us mention the upcoming advanced image noise

reduction filter, by Iain Fergusson, whose development is still in

progress. Iain has been contributing to G’MIC for several years

now by implementing and experimenting original denoising

filters, and his latest project seems really interesting, with

promising results. This video shows this filter in action, a good

place to learn a little more about how it works.

Now that we’ve looked at these new filters, it seems important

for us to remind that, as in many IT projects, this visible part of

the iceberg hides a set of lower-level developments done to

improve the interactive possibilities of the G’MIC-Qt plug-in, as

well as the performance of the internal scripting language

interpreter (the G’MIC language), which is how all these filters

and effects are actually implemented. These improvements and

incremental slight optimizations of the code base benefit to all

filters (even those already available for several years) and it

actually represents most of the development time we spend on

https://gmic.eu/gmic270/fullsize/frame_mirror.png
https://en.wikipedia.org/wiki/Non-local_means
https://iainisbald.wordpress.com/
https://www.youtube.com/watch?v=pPj_7J4iD_U
https://gmic.eu/reference.shtml
https://gmic.eu/reference.shtml

G’MIC. So, dear users, do not be surprised if no new filters

appear for a while. It is probably just because we are doing

serious work on the G’MIC framework core!

7. Other notable points in the project life

Here are listed some other important news that have

punctuated the life of the project since August 2018.

7.1. We now accept donations!

This is essential news for us: since March 2019, the G’MIC

project has been granted permission to collect donations (via

Paypal), to help in its maintenance and development!

This is a good thing, because until now, there was no simple way

for a public research laboratory as the GREYC, to accept

donations for supporting the development of a free software

application such as G’MIC, an application used daily by several

thousand people around the world. And we have currently no

other ways to finance this piece of software in the long term.

Thus, we have partnered with LILA (Libre comme l’Art), a French

non-profit organization promoting Arts, Artists and Free

Software, who accepted to collect donations for us.

Fig.7.1: Logo of the LILA association, which collects donations for the
G’MIC project.

https://libreart.info/en/projects/gmic
https://gmic.eu/gmic270/original/chat_dons.gif
https://libreart.info/en/
https://libreart.info/en/projects/gmic

In practice, this is something that has been a little long to set

up, but now that the donation system is operational, we hope to

benefit from it in the future to make the project development

even faster (the possible use of the raised funds is detailed on

the donations page, this being of course very dependent on the

amount of money collected).

For the sake of transparency, we will post the monthly amount

of collected donations on the project website. At this point, we

don’t really know what to expect in practice. We will see how

these donations evolve. Of course, we would like to thank all

those who have already participated (or plan to do so) in

supporting our open-source framework for image processing.

Our ultimate dream would be, one day, to say that the

illustration below is only a distant memory!

https://libreart.info/en/projects/gmic
https://gmic.eu/gmic270/fullsize/donations_march.png

Fig.7.2: The harsh reality of the development of the G’MIC project ☺
(illustration from the CommitStrip website).

7.2. Integrating “Smart Coloring” into GIMP

Let us also mention the work of Jehan, known to PIXLS.US

readers as a regular GIMP developer. Jehan has been hired by

the GREYC laboratory in September 2018, to work on G’MIC (for

a 12-month fixed-term contract), thanks to a grant funded by

the INS2I Institute of the CNRS (for which we are grateful).

https://gmic.eu/gmic270/fullsize/en_commitstrip.png
https://www.commitstrip.com/fr/2014/05/07/the-truth-behind-open-source-apps/
https://girinstud.io/about/
https://ins2i.cnrs.fr/

One of its first missions was to re-implement the G’MIC “Smart

Coloring” algorithm (that we had already talked about

previously) as a new interactive mode integrated into the

existing GIMP “Bucket Fill“ tool.

Fig.7.3: G’MIC’s “Smart Coloring” algorithm, now available in GIMP, helps illustrators color their
drawings more quickly.

Jehan described all his work in a blog post, which is strongly

recommended for reading. Of course, we don’t want to copy his

post here, but we want to mention this activity, and to consider

it as another original contribution of the G’MIC project to free

software for graphic creation: at the GREYC laboratory, we are

really happy and proud to have imagined and developed an

image colorization algorithm, which artists can use through a

well integrated tool into such a popular piece of software as

GIMP!

This intelligent colorization algorithm has been the subject of

scientific publications, presentations at the conferences

GRETSI’2017, EuroGraphics VMV’2018, as well as at the Libre

Graphics Meeting’2019. And it is with a great pleasure we see this

algorithm is used in real life, for various realizations (as in this

great video of GDQuest, for colorizing sprites for video games,

for instance).

Scientific research carried out in a public laboratory, which

becomes available for the general public, that is what we want to

see!

7.3. Other news related to the G’MIC project

Recently, a major improvement in the performances of G’MIC

under Windows has been achieved, by recoding the random

number generator (now reentrant)) and removing some slow

https://pixls.us/blog/2017/06/g-mic-2-0
https://gmic.eu/gmic270/fullsize/smart_coloring.png
https://girinstud.io/news/2019/02/smart-colorization-in-gimp/
https://hal.archives-ouvertes.fr/hal-01891876
https://www.youtube.com/watch?v=3oHe0Y43dx8
https://www.youtube.com/watch?v=Z5THsjJGYcE&feature=youtu.be
https://en.wikipedia.org/wiki/Reentrancy_(computing
https://en.wikipedia.org/wiki/Reentrancy_(computing

mutex which were responsible of performance drops for all

filters requiring sequences of random numbers (and there were

many!). As a result, some filters are accelerated by a factor of

four to six under Windows!

Since December 2018, our G’MIC-Qt plug-in is available for

Paint.net, a free graphic editing software application under

Windows (not open-source though). This has been possible

thanks to the work of Nicholas Hayes who wrote the glue code

allowing the interaction between our G’MIC-Qt plug-in and the

host software. Users of Paint.net are now able to benefit from

the 500+ filters offered by G’MIC. This plug-in, available here,

has already been voted “Best Plug-in of the Year 2018“ by the

members of the Paint.net forum ☺ !

Since October 2018, the G’MIC-Qt plug-in for GIMP has been

compiled and proposed for MacOS by a new maintainer, Andrea

Ferrero, who is also the main developer of the free software

application Photoflow, a non-destructive image editor (more

information here). Many thanks Andrea, for this wonderful

contribution!

Since the announced shutdown of the Google+ social network, we have

opened two new accounts, on Framasphere and Reddit, to share news

about the project’s life (but the Twitter feed is still our most active account).

Let us also thank Santa Claus, who kindly brang us a

materialized version of our mascot “Gmicky” last year. That

looks almost perfect!

https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Paint.net
https://github.com/0xC0000054
https://en.wikipedia.org/wiki/Glue_code
https://forums.getpaint.net/topic/113564-gmic-8-14-2019
https://www.patreon.com/andreaferrero
http://photoflowblog.blogspot.com/
https://discuss.pixls.us/t/pre-compiled-gimp-plug-in-for-osx-ready-for-testing/
https://framasphere.org/people/b1132ee0b40a013639932a0000053625
https://www.reddit.com/r/gmic
https://twitter.com/gmic_ip

Fig.7.4: The mascot “Gmicky”, brought by Santa Claus, in

December 2018.

The G’MIC project was presented at the FENO, the “Fête de

l’Excellence Normande“, from 12 to 14 April 2019, at the Caen

Exhibition Centre. We were hosted on the stand of the CNRS

Normandie, and we carried out demonstrations of style transfer

(teaser) and automatic illumination of clip arts (teaser), for the

general public.

Fig.7.5: We were present at the CNRS stand, for G’MIC

demonstrations, at the “Fête de l’Excellence Normande 2019”

(FENO).

And to dig even deeper, here are some other external links we found interesting,

and which mention G’MIC in one way or another:

A video presentation of the plug-in G’MIC-Qt, by Chris’ Tutorial;

The Youtube channel MyGimpTutorialChannel offers a lot of videos

showing how to use G’MIC-Qt in GIMP to achieve various effects (mostly in

https://gmic.eu/gmic270/fullsize/gmicky_irl.png
https://www.normandie.fr/feno
http://normandie.cnrs.fr/
https://gmic.eu/gmic270/fullsize/teaser_style_transfer.png
https://gmic.eu/gmic270/fullsize/teaser_illumination2d.png
https://gmic.eu/gmic270/fullsize/feno.png
https://youtu.be/cshL2EjFdXc
https://www.youtube.com/channel/UCPHIhisbs90ks4-4EsdXtpQ
https://www.youtube.com/channel/UCPHIhisbs90ks4-4EsdXtpQ

German);

The Clinic, a Chilean weekly newspaper, apparently used G’MIC to achieve

an effect on one of its covers (via the smoothing filter “Artistic / Dream

Smoothing”);

Another video tutorial, showing how to use the G’MIC “Artistic / Rodilius”

filter to create stylized animal photos.

8. The future

As you see, G’MIC is still an active open-source project, and with

its 11 years of existence, it can be considered as mature enough

to be used “in production” (whether artistic or scientific).

We have never defined and followed a precise roadmap for the

project development: the functionalities come according to the

needs of the developers and users (and the limited time we can

devote to it!). At the moment, there is a lot of interest in image

processing methods based on neural networks, and deep

learning techniques. It is therefore possible that one day, some

of these methods will be integrated into the software (for

instance, we already have a prototyped code running in G’MIC

that actually learns from image data with convolutional neural

networks, but we are still at the prototyping stage…).

After 11 years of development (make it 20 years, if we include the

development of the CImg library on which G’MIC is based), we

have reached a point where the core of the project is,

technically speaking, sufficiently well designed and stable, so as

not to have to rewrite it completely in the next years. In

addition, the number of features available in G’MIC already

covers a large part of the traditional image processing needs.

The evolution of this project may therefore take several paths,

depending on the human and material resources that we will be

able to devote to it in the future (for the development, but also

in project management, communication, etc.). Achieving an

increase in these resources will undoubtedly be one of the

major challenges of the coming years, if we want G’MIC to

continue its progress (and we already have plenty of ideas for

it!). Otherwise, this image processing framework might end up

being just maintained in its current (and functional) state. It is of

course with a hope for progression that we have recently set up

https://www.theclinic.cl/
https://twitter.com/nacecontragolpe/status/1106917303587885056/photo/1
https://www.youtube.com/watch?v=yv7a7R3gTFA
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Convolutional_neural_network
http://cimg.eu/

the donation page. We also hope that other opportunities will

soon arise to enable us to make this project more visible (you

are invited to share this post if you like it!)

That’s it for now, this long post is now over, thank you for

holding on until the end, you can resume normal activity! I’ll be

happy to answer any questions in the comments.

Post-scriptum: Note that the 3D animation displayed as the

teaser image for this post has been actually generated by G’MIC,

via the command . An opportunity to

remind that G’MIC also has its own _3D_ rendering engine

capable of displaying simple objects, which is very practical for

scientific visualization! We may have the occasion to talk about

it again in a future post…

A special thank you for reviewing and helping to translate this

article to:

Patrick David, Sébastien Fourey, Christine Porquet, Ryan

Webster.

SHARE THIS ON TWITTER OR FACEBOOK.

WRITTEN BY:

David Tschumperlé
I am David Tschumperlé, a permanent researcher working in the field of image processing in a

daily basis, since 1999. I work for the CNRS institute, more particularly in the Image Group at the

GREYC laboratory in Caen/France.

←PREVIOUSLY
Quick digiKam Tip: Back up digikamrc file

$ gmic x_starfield3d

https://libreart.info/en/projects/gmic
https://libreart.info/en/projects/gmic
https://twitter.com/intent/tweet?url=https://pixls.us/blog/2019/09/g-mic-2-7-process-your-images-with-style/&via=pixlsus&text=G%27MIC%202.7%20-%20Process%20Your%20Images%20with%20Style!
https://www.facebook.com/sharer/sharer.php?u=https://pixls.us/blog/2019/09/g-mic-2-7-process-your-images-with-style/
https://tschumperle.users.greyc.fr/
http://www.cnrs.fr/
https://www.greyc.fr/image
http://www.greyc.fr/
https://pixls.us/blog/2019/07/quick-digikam-tip-back-up-digikamrc-file

