
G'MIC 3.0: A Third Dose to Process Your Images!

by David Tschumperlé

A new major version (numbered 3.0.0) of G'MIC (GREYC's Magic for Image Computing), an open source framework for image
processing, was released on December 9th 2021. This project, distributed under the CeCILL free software license, is mainly
developed by the IMAGE team of GREYC, a French research laboratory in Information and Communication Sciences and
Technologies (Mixed Research Lab CNRS / ENSICAEN / University of Caen).

The last report on this software was published over two years ago, in August 2019. Since then many new features have been
released. In this article, we detail some of the most significant ones.

It's time to make a hot drink, get comfortable on the couch and let us tell you about two years of development of a dynamic, free
project!

Note: click on the images to get higher resolution versions.

1. G'MIC In Just Over 3.0.0 Words

G'MIC is an open-source framework for digital image manipulation and processing.

It offers various user interfaces for the algorithmic manipulation (automated or semi-automated) of images and generic signals,
ranging from simple 1D signals to 3D volumetric image sequences with any number of channels (which includes classical color
images). The core of this project is based on the definition of a specialized scripting language (the "G'MIC language") and on a free
implementation of its associated interpreter. This language was specifically developed to ease the prototyping and implementation of
new image processing algorithms and operators. The users of the framework can thus apply operations among the hundreds already
predefined, but also have the possibility if writing their own complex processing pipelines and make them accessible in the various
user interfaces of the project. G'MIC is therefore, in essence, an open, extensible and constantly evolving framework.

Fig. 1.1 : Logo of the G'MIC project, a free image processing software, and its mascot "Gmicky" (created by David Revoy).

A Full-Featured Open-Source Framework for Image Processing

Latest stable version: 3.2.5        Current pre-release: 3.2.6

News

   Home    News    Download    Resources    Community    Report Issue    Support Us

https://tschumperle.users.greyc.fr/
https://gmic.eu/
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Digital_image_processing
https://en.wikipedia.org/wiki/CeCILL
https://www.greyc.fr/en/equipes/image-2/
https://www.greyc.fr/en/home/
https://www.cnrs.fr/en
https://www.ensicaen.fr/en/
http://welcome.unicaen.fr/
https://gmic.eu/gmic300/fullsize/gmic_teaser.gif
https://pixls.us/blog/2019/09/g-mic-2-7-process-your-images-with-style/
https://gmic.eu/
https://en.wikipedia.org/wiki/Digital_image
https://gmic.eu/gmic300/(https://gmic.eu/reference/overall_context.html
https://gmic.eu/gmic300/fullsize/logo_gmic.jpg
https://www.davidrevoy.com/
https://gmic.eu/index.html
https://gmic.eu/download.html
https://gmic.eu/files/prerelease
https://gmic.eu/index.html
https://piaille.fr/@gmic
https://gmic.eu/download.html
https://github.com/GreycLab/gmic/issues
https://libreart.info/en/projects/gmic


The G'MIC project has been developed since 2008, mainly by two members of the IMAGE team of the GREYC laboratory: David
Tschumperlé (CNRS research fellow, team leader) and Sébastien Fourey (ENSICAEN lecturer). The IMAGE team, one of the six
teams of the GREYC, is composed of about fifty members (researchers, teacher-researchers, doctoral and post-doctoral students,
engineers), all specialized in the fields of algorithmics and mathematics of image processing.

The most visible G'MIC user interfaces are: the gmic  command, which can be used on the command line (an essential companion
to ImageMagick or GraphicsMagick for those who process their images via the terminal), the G’MIC Online Web service, and
above all, the G’MIC-Qt plugin, which is available for several popular digital image editing software (free or proprietary) such as
GIMP, Krita, Paint.net, and more recently, Adobe Photoshop or Affinity Photo. This plugin allows you to enrich these programs
with more than 570 different filters and effects to apply to images.

Fig. 1.2: Overview of the G'MIC-Qt plugin, version 3.0.0, here launched from GIMP 2.10.

Thanks to its integrated scripting language, facilitating the prototyping and implementation of image processing algorithms and
operators, new filters are regularly created and added to G'MIC. A large part of this article will be dedicated to the description of the
new filters and effects developed in the last two years.

2. New Features of the G'MIC-Qt Plug-In

G'MIC-Qt is the most popular and most used interface of the G'MIC project, so let's start by describing the new features concerning
it. An exhaustive list of the new filters would be impossible here, since in fact more than fifty new entries have been added in two
years! We have tried to follow the adage "A picture is worth a thousand words", by sprinkling this article with numerous figures
illustrating the new features.

2.1. Artistic Effects

The new Artistic / Paint With Brush filter is in the great tradition of effects that seek to transform a photograph into a drawing or
painting. Its originality lies in the fact that it will repaint the entire image given as input on a virtual white canvas, applying
successive brushstrokes at different scales: first with coarse brushes, then with increasingly fine brushes to recreate the smallest
details of the image.

https://www.greyc.fr/en/equipes/image-2/
https://www.greyc.fr/en/home/
https://tschumperle.users.greyc.fr/
https://www.cnrs.fr/en
https://foureys.users.greyc.fr/Fr/index.php
https://www.ensicaen.fr/en/
https://gmic.eu/reference/
https://www.imagemagick.org/
http://www.graphicsmagick.org/
https://gmicol.greyc.fr/
https://github.com/c-koi/gmic-qt
https://www.gimp.org/
https://www.krita.org/
https://www.getpaint.net/
https://en.wikipedia.org/wiki/Adobe_Photoshop
https://en.wikipedia.org/wiki/Affinity_Photo
https://gmic.eu/gmic300/fullsize/gmic300.jpg


Fig.2.1.1. The " Artistic / Paint With Brush " filter in action.

Here, everything is adjustable: the number of brush strokes at each iteration, the brush dynamics (size, opacity, color, orientation...),
the geometric precision of the strokes, etc. This makes it a very versatile filter, allowing it to simulate various painting styles. This can
be seen in the animation below, which shows the results obtained with several provided presets.

Fig.2.1.2. The different presets proposed allow to simulate several painting styles.

In the same vein, the Artistic / Doodle filter redraws an image in the form of "doodles", i.e. a set of continuous black lines on a
white background, located mainly on the outlines of objects present in the images, as illustrated by the result below.

https://gmic.eu/gmic300/fullsize/gmic_paint_with_brush.jpg
https://gmic.eu/gmic300/fullsize/gmic_paint_with_brush_anim.gif


Fig.2.1.3. Result of the "Artistic / Doodle" filter.

Still in the spirit of converting an image into an illustration, the Artistic / Comic Book filter has been recently added to the plugin
and allows you to give a cartoon look to your images. This is a "community" filter, since it was created by Claude Lion, a new
contributor to the project, and then slightly modified by myself.

Fig.2.1.4. The "Artistic / Comic Book" filter in action.

Want to scare your kids just before bedtime, to make sure they have a good night's sleep? The new Artistic / Ghost filter is for
you! This algorithm agglomerates semi-transparent white segments on the outlines of objects, which often results in quite
nightmarish images (especially when applied on portraits).

https://gmic.eu/gmic300/fullsize/gmic_doodle.gif
https://github.com/cl4cnam
https://gmic.eu/gmic300/fullsize/gmic_comic_book.jpg


Fig.2.1.5. The "Artistic/Ghost" filter in action. Keep the children away!

It is then easy, by mixing the result of this effect with the original image (through well chosen layer merging modes) to generate
animations, which will transform any of your images into a horror show! (here we used it in conjunction with the G'MIC morph
command to render the animation below).

Fig.2.1.6. Animated variation around the " Artistic / Ghost " filter.

Finally, let's mention two small improvements to existing artistic filters. First of all, the Frames / Droste filter has been equipped
with interactive points that can be manipulated in the preview window, making it easier to adjust the area where the input image is
repeated. These are the colored points visible at the four corners of the mirror, on the example below.

https://gmic.eu/gmic300/fullsize/gmic_ghost.jpg
https://gmic.eu/reference/morph
https://gmic.eu/gmic300/fullsize/gmic_ghost_anim.gif


Fig.2.1.7. Addition of user-manipulable points for the "Frames / Droste" filter setting.

Next, the Artistic / Stylize filter gets six new preset styles, developed by Christine Garner, an artist who had used the filter
extensively to give her images a textured look before offering her contribution. These new styles allow, for example, the production of
images with pencil, chalk, pastel or charcoal textures.

Fig.2.1.8. One of the new predefined styles available in the "Artistic / Stylize" filter.

2.2. Image Enhancement

The plugin has yet another new algorithm to help with image denoising, a classic yet very challenging problem that has occupied
image processing researchers for several generations. The new Repair / Denoise filter tries to solve this task using an algorithm
based on convolutional neural networks.

https://gmic.eu/gmic300/fullsize/gmic_droste.jpg
https://thimblefolio.com/
https://gmic.eu/gmic300/fullsize/gmic_stylize.png
https://en.wikipedia.org/wiki/Convolutional_neural_network


Fig.2.2.1. The "Repair / Denoise" filter in action.

At first sight, this information may seem trivial, but it actually represents a milestone in the history of G'MIC (as well as many weeks
of development!). Indeed, to implement this filter, we had to write a complete machine learning library from scratch, named
nn_lib  (for "Neural Network Library"). This library now allows the construction, learning, and evaluation of artificial neural
networks (this type of method being generally referred to as "Artificial Intelligence"). The Repair / Denoise denoising filter is
actually the first G'MIC filter based on this new machine learning library!

Fig.2.2.2. Two examples of image denoising, obtained with the "Repair / Denoise" filter.

With the development of nn_lib , we hope to offer more and more neural network based filters for image editing and generation in

https://gmic.eu/gmic300/fullsize/gmic_denoise.jpg
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_intelligence
https://gmic.eu/gmic300/fullsize/gmic_denoise_balloons.jpg
https://gmic.eu/gmic300/fullsize/gmic_denoise_parrot.jpg


G'MIC in the future. Great things to come!

Another more specialized image enhancement filter has been integrated into the G'MIC-Qt plugin. It is the Repair / Unpurple filter
whose role is to remove the purple fringing that can appear in photographs. The algorithm used here is a direct port in G'MIC
language of the Unpurple algorithm by Martin Jambon, port made by Stanislav Paskalev. We can see the effect of this filter
below, on a portion of an image with annoying purple fringes.

Fig.2.2.3. Portion of color photograph with purple fringing.

Fig.2.2.4. The "Repair / Unpurple" filter in action.

https://gmic.eu/gmic300/(https://en.wikipedia.org/wiki/Purple_fringing
https://github.com/mjambon/purple-fringe
https://github.com/mjambon
https://github.com/spaskalev
https://gmic.eu/gmic300/fullsize/Purple_fringing.jpg
https://gmic.eu/gmic300/fullsize/gmic_unpurple.jpg


Fig.2.2.5. Result of the filter: the purple fringe has disappeared.

Suddenly feel like enhancing the details in your images? The new Details / Sharpen [Multiscale] filter may be of interest to you. It
enters the armada of existing sharpening algorithms in G'MIC. It is based on a multi-scale enhancement algorithm to bring out
details of different sizes in images.

Fig.2.2.6. The " Details / Sharpen [Multiscale] " filter in action.

https://gmic.eu/gmic300/fullsize/Purple_fringing2.jpg
https://gmic.eu/gmic300/fullsize/gmic_sharpen_multiscape.jpg


Fig.2.2.7. Result of the application of the filter on a color photograph.

2.3. Color Retouching

For the color retouching of images, two new particularly interesting filters appear in G'MIC-Qt:

First, the Colors / Tune HSV Colors filter, which allows the user to define - in a very finely tuned way - a transformation function
operating in the HSV (Hue-Saturation-Value) color space. This filter works in the following way:

First, the filter will determine the existing colors in the input image closest to the following pure colors: red (denoted R), yellow (Y),
green (G), cyan (C), blue (B) and magenta (M). The darkest (D), lightest (L), and average colors (A) are added to this list. It's
possible that the input image does not contain any of these colors at all, and in this case the closest extracted color may be
perceptually quite far from the ideal pure color. This is the case for example with the image of the butterfly shown below: this
image contains no pixels in blue tones.

Fig.2.3.1. The " Colors / Tune HSV Colors " filter first extracts basic colors from the image.

These nine colors extracted from the image will then be used as a basis for the definition of a custom color transformation. We can
indeed modify each of these colors independently in the HSV space, by making the color more or less bright, more or less
saturated, or by changing its hue. This is what we do in the example below where we modify the reddest and magenta colors to
make them green and thus change the color of the flower on which the butterfly is placed (whose hue has also been slightly
modified).

https://gmic.eu/gmic300/fullsize/gmic_sharpen.gif
https://en.wikipedia.org/wiki/HSL_and_HSV
https://gmic.eu/gmic300/fullsize/gmic_tune_hsv1.jpg


Fig.2.3.2. The user can act on each of the 9 "key colors" individually to define a customized color transformation.

From a technical point of view, this redefinition of the "key colors" leads initially to the construction of a dense interpolated CLUT
(Color LUT) in 3D, which is then used to modify the input image according to the wishes of the user, as illustrated below in our
example with the butterfly:

Fig.2.3.3. Internally, G'MIC generates a 3D CLUT modeling the desired colorimetric transformation.

The use cases of this filter are quite large. Whether it is for a local color retouch (transformation of one color into another), or a more
global colorimetric retouch, this filter will easily find its place in the toolbox of the color tweaker. In the figure below, we used this filter
to define a twilight color atmosphere.

https://gmic.eu/gmic300/fullsize/gmic_tune_hsv0.jpg
https://www.bromptontech.com/what-is-a-3d-lut/
https://gmic.eu/gmic300/fullsize/fig_hsv.jpg


Fig.2.3.4. Global color transformation applied to an image of Pepper & Carrot by artist David Revoy.

A demonstration video of this filter can be seen on the Youtube channel of Pierre "El Lobo", who regularly posts tutorials in French on
how to use GIMP. Click on the image below to access it. More details on how to use this filter can also be found on the G'MIC
forum.

The second notable colorimetric retouching filter is called Colors / Transfer Colors [PCA]. It makes it possible to transfer the colors
of a reference image to a target image which one wishes to modify. Technically, this transfer is made by imposing the covariance
matrix of the image to be modified to match that of the reference image.

Fig.2.3.5. The "Colors / Transfer Colors [PCA]" filter in action.

https://gmic.eu/gmic300/fullsize/gmic_tune_hsv2.jpg
https://www.peppercarrot.com/
https://www.davidrevoy.com/
https://discuss.pixls.us/t/filter-colors-tune-hsv-colors/21920
https://www.youtube.com/watch?v=AvfusCL0YpA
https://gmic.eu/gmic300/fullsize/gmic_transfer_pca.jpg


Fig.2.3.6. Result of the color transfer. The colors of the reference image (snowmen) were transferred to the bird image.

Note that the underlying color transfer algorithm is not only used for this filter, but has also been integrated as a sub-part of more
complex processes (e.g. the Artistic / Stylize filter mentioned earlier).

2.4. Deformations and Degradations

Lovers of image distortion and Glitch art may also be interested in this new version 3.0 of G'MIC.

Firstly, with the new Deformations / Breaks filter, which randomly introduces triangular discontinuities into the images. This filter
was originally requested by the artist David Revoy to generate a deformation similar to that of an older filter, Deformations /
Crease, but with sharper cuts. Two new deformation modes were implemented for this effect (Flat and Relief modes) with the
following result:

Fig.2.4.1. Application of the two different modes of the " Deformations / Breaks " filter on a color image.

Below, David Revoy demonstrates an application of this image break filter in the context of illustration, for a rendering of magical
lightning with a most beautiful effect!

https://gmic.eu/gmic300/fullsize/gmic_transfer_pca.gif
https://en.wikipedia.org/wiki/Glitch_art
https://www.davidrevoy.com/
https://gmic.eu/gmic300/fullsize/gmic_breaks.gif


Fig.2.4.2. Use of the " Deformations / Breaks " filter to distort the shape of magic flashes.

A more detailed video of David Revoy using this type of filter can be seen at the following link:

Another very glitchy effect: the Degradations / Rebuild From Blocks filter tries to rebuild an image from all its blocks. It does not
position them all in their original place, but does allow itself to reuse the same block if necessary. As you can imagine, the result
looks vaguely like the initial image but with a very pronounced block effect.

Fig.2.4.3. The filter " Degradations / Rebuild From Blocks " will change the positions of the blocks in the image.

It is funny to notice that in the example above, the blocks corresponding to the eyes have simply been reversed in the two images!

Finally, the Degradations / Blur [Multidirectional] filter applies, as its name suggests, a multi-directional blur effect to the image.
It is possible to adjust the number of simultaneous blur directions, as well as to enhance local contrast in the resulting image.

https://gmic.eu/gmic300/fullsize/gmic_breaks.png
https://www.youtube.com/watch?v=vopP_8kJMj8
https://gmic.eu/gmic300/fullsize/gmic_rebuild_from_blocs.jpg


Fig.2.4.4. The " Degradations / Blur [Multidirectional] " filter in action.

Fig.2.4.5. Results obtained with different filter settings.

2.5. Rendering of Shapes and Patterns

Now let's enter the wonderful world of rendering filters. This is a unique category where you can find all sorts of oddities, filters that
seem to have no use at all, until one day they become perfectly indispensable… or not! The following filters, which appeared in
G'MIC 3.0, are no exception to this rule. They may be of little use to you, but they are still nice!

Let's start with the simplest of them, the Silhouettes / Others / Dragon Curve filter, whose purpose is to draw the Dragon Curve,
a fractal curve composed of a single continuous line, built iteratively.

Fig.2.5.1. Different iterations of the construction of the dragon curve.

Let's quickly move on to the Rendering / Hypotrochoid filter which, again, aims to draw a particular sine curve, namely a
Hypotrochoid.

https://gmic.eu/gmic300/fullsize/gmic_blur_multi.jpg
https://gmic.eu/gmic300/fullsize/gmic_blur_multi2.png
https://en.wikipedia.org/wiki/Dragon_curve
https://gmic.eu/gmic300/fullsize/gmic_dragon.gif
https://en.wikipedia.org/wiki/Hypotrochoid


Fig.2.5.2. The " Rendering / Hypochotroid " filter in action.

Still in the world of curve drawing, let's take a closer look at the new Rendering / Sine Curve filter, which defines a family of 2D or
3D parametric curves, with a large number of user-adjustable parameters (nearly 50!).

Fig.2.5.3. The " Rendering / Sine Curve " filter in action.

There are a lot of parameters, so this filter offers a set of presets to play with all possible curve variations. The figure below illustrates
some of the predefined shapes offered by the algorithm.

https://gmic.eu/gmic300/fullsize/gmic_hypotrochoid.jpg
https://en.wikipedia.org/wiki/Parametric_equation
https://gmic.eu/gmic300/fullsize/gmic_sine_curve.jpg


Fig.2.5.4. Some parameter presets provided by the " Rendering / Sine Curve " filter.

As you can see, this filter allows you to draw a wide variety of parameterized sine curves. It can be used to generate shimmering
backgrounds. Pierre "El Lobo" has also made a short video tutorial on this filter (in French), which can be seen on his Youtube
channel (follow the link below)

What if, instead of just rendering 1D curves, we were now interested in the parametric generation of 2D images? This is what the
Patterns / Random Pattern filter proposes, whose operation is quite original: it generates a random mathematical function f(z)
( z  being a complex variable), composed of basic complex functions ( cos() , sin() , pow() , …) and operators ( + , - , * , / ,
…), by recursively constructing an expression tree. f(z)  is then evaluated for all the points z  of the image, located in a
rectangular domain, which is itself randomly chosen. The values of f(z)  are finally transformed into RGB values to determine the
colors of all pixels in the image.

https://gmic.eu/gmic300/fullsize/gmic_sine_curve_presets.jpg
https://www.youtube.com/watch?v=qp7B0M50MHk


Fig.2.5.5. The " Patterns / Random Pattern " filter in action.

Note that the construction of the function f(z)  depends only on the random seed used to generate the expression tree. The figure
below illustrates some image renderings obtained with different values of random seeds.

Fig.2.5.6. Some examples of random patterns generated by the " Patterns / Random Pattern " filter.

Recursive image generation methods can produce original and interesting geometric patterns, and the Patterns / Triangular
Pattern filter confirms this. It generates images consisting of triangles recursively subdivided in different ways, each with a
probability of occurrence adjustable by the user.

https://gmic.eu/gmic300/fullsize/gmic_random_pattern.png
https://gmic.eu/gmic300/fullsize/gmic_random_pattern_all.png


Fig.2.5.7. The " Patterns / Triangular Pattern " filter in action.

As the iterations proceed, more and more complex geometric patterns are formed in the image, as shown in the animation below.

Fig.2.5.8. Visualization of the triangular pattern construction iterations by the " Patterns / Triangular Pattern " filter.

By increasing the number of iterations and drawing only the contours of the subdivided triangles, we can generate truly remarkable
fractal geometric patterns, given the apparent simplicity of the triangle subdivision algorithm, as illustrated in the following figure. This
will give you ideas for tiling your kitchen or bathroom!

https://gmic.eu/gmic300/fullsize/gmic_triangular.jpg
https://gmic.eu/gmic300/fullsize/gmic_triangular_shape_anim.gif


Fig.2.5.9. Some examples of random recursive triangular subdivisions obtained by the "Patterns / Triangular Pattern" filter.

And speaking of fractals, let's visit the Rendering / Newton Fractal filter which allows you to navigate in Newton Fractals, with a
large number of adjustable parameters. These fractals are obtained by trying to find the zeros of a complex function f(z)  (often a
polynomial) by the Newton method. This iterative technique builds a sequence that is supposed to converge to one of the zeros
of the function. For each (complex) point z  of the image, we determine its displayed color according to the number of iterations
necessary to reach convergence, which generates beautiful fractal geometrical patterns.

Fig.2.5.10. The " Rendering / Newton Fractal " filter in action.

In G'MIC-Qt, the filter allows the user to enter a custom mathematical formula to define the function f(z)  and its derivatives. It also
offers options to colorize the fractal in a personalized way and to easily navigate in the fractal space thanks to its simple but efficient
integrated browser. Finally, it extends the principle of calculation to other methods of resolution (Secant method and Householder
method). And as always with G'MIC, it is also possible to script this filter from the command line (with the gmic  command), to
generate for example this type of animations:

https://gmic.eu/gmic300/fullsize/gmic_triangular_patterns.jpg
https://en.wikipedia.org/wiki/Newton_fractal
https://en.wikipedia.org/wiki/Newton%27s_method
https://gmic.eu/gmic300/fullsize/gmic_newton.jpg
https://en.wikipedia.org/wiki/Secant_method
https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Householder


Fig.2.5.11. Generation of a zoom in a Newton fractal, scripted with gmic .

Still in the "fractal" spirit, the new Rendering / Tree filter allows you to generate fractal trees, again with many adjustable
parameters to tweak as you please.

Fig.2.5.12. The "Rendering / Tree" filter in action.

In addition to the colors of the trunk and the leaves, the size of the branches and the probability of the branches splitting into several
pieces can be adjusted. This allows generation of trees with quite different geometry and looks, as you can see on the figure below.

Fig.2.5.13. Examples of tree renderings with different settings, using the "Rendering / Tree" filter.

The following video illustrates the use of this filter in GIMP (click on the image below to access the video).

https://gmic.eu/gmic300/fullsize/gmic_newton_anim.gif
https://fractalfoundation.org/resources/fractivities/fractal-trees/
https://gmic.eu/gmic300/fullsize/gmic_tree.jpg
https://gmic.eu/gmic300/fullsize/gmic_3_trees.jpg


Another rendering effect worth highlighting (no pun intended...) is the Light & Shadows / Guided Light Rays filter. This filter
allows light rays to be emitted from a point source of light, towards or through any shape drawn by the user and defined as an
opaque mask placed on a transparent layer above the input image.

Fig.2.5.14. The " Light & Shadows / Guided Light Rays " filter in action.

In the example above, the light rays stop when they meet the pixels of the G'MIC logo. But it is also possible to adapt the filter
parameters so that the rays pass through the shape. This is done in the example below, where the user-defined mask corresponds
to the glass surface of a living room window.

Fig.2.5.15. Light rays synthesized to pass through a user-defined mask.

With this filter, it is easy to add custom lighting effects to photographs, as shown in the following example. All you have to do is define
the mask of the shape guiding the light rays, and the filter does the rest!

https://www.youtube.com/watch?v=Bsvv0nFFz4w
https://gmic.eu/gmic300/fullsize/gmic_light2.jpg
https://gmic.eu/gmic300/fullsize/gmic_light.jpg


Fig.2.5.16. Adding a side lighting effect with the " Light & Shadows / Guided Light Rays " filter.

The following video tutorial shows how to use this filter in GIMP:

Finally, to conclude our tour of the new rendering effects, let's end with the Sequences / Moiré Animation filter, which takes us
into the wonderful world of animation based on the (robust) technologies of the last century, namely: paper sheet and transparent
sheet! This filter will indeed allow creation of an animated optical illusion, at low cost, by generating images with a Moiré effect.
From an animation given as input (containing few images), the filter will produce a still image as well as a binary mask containing
vertical bars as below:

Fig.2.5.17. Images generated by the " Sequences / Moiré Animation " filter from an animation made of 5 images.

The trick is to print the first image on a blank page and the second on a transparent sheet of the same size. By positioning the
transparent sheet on the page in an appropriate way, and by moving it laterally, the animation becomes visible. Indeed, the vertical

https://gmic.eu/gmic300/fullsize/gmic_guided_light_rays_anim.gif
https://www.youtube.com/watch?v=VRiWu_0BZvc
https://en.wikipedia.org/wiki/Moir%C3%A9_pattern
https://gmic.eu/gmic300/fullsize/gmic_moire.png


bars printed on the transparent layer allow only one image of the animation to pass through at a time, and these images follow one
another as the transparent sheet moves:

Fig.2.5.18. Rendering of the animation when the transparency moves on the printed page.

Note that although the number of frames of the animation is indeed limited (in general, less than a dozen, there is obviously no
possibility of converting a two-hour film!), there is no reason to limit oneself to grayscale images. The following two figures illustrate,
for example, the rendering of a color animation with this filter.

Fig.2.5.19. Images generated by the " Sequences / Moiré Animation " filter from a 6-frame color animation.

https://gmic.eu/gmic300/fullsize/gmic_moire_anim.gif
https://gmic.eu/gmic300/fullsize/gmic_moire2.png


Fig.2.5.20. Rendering of the animation when the transparency moves on the printed page.

"Your examples are nice, but what does it look like in real life?". Well, the feeling of animation is really present, as you can appreciate
in the video below :

To sump up, it's an inexpensive and fun way to create personalized animation materials. Kids, not yet jaded by the Youtube
application on their smartphone, will love it!

2.6. Keeping up to Date

The set of filters we have just described is only a subset of all the new filters added in the last two years. In particular, there are
many "community" filters that sometimes remain in the shadows for some time before being added to the main list of filters (e.g.,
filters in the Testing / category). To make it easier to keep track of these updates, G'MIC-Qt has added the About / What's New?
function, which lists the recent additions and deletions of filters in the plugin. This list is tailored to the user, as it is based on the
user's previous list.

https://gmic.eu/gmic300/fullsize/gmic_moire_anim2.gif
https://www.youtube.com/watch?v=f5plDb_JRq4


Fig.2.6.1. The "About / What's New? filter in action.

As a reminder, the Update Filters button below the filter drop-down list will allow the plugin to check for new filters and download
them if available.

This overview of the new G'MIC-Qt filters is now complete. But more improvements to the plugin are waiting for us!

2.7 More and More Host Software

One of the most important pieces of news in the life of G'MIC-Qt is its availability as a plugin compatible with the 8bf protocol. This
API was designed by Adobe in the 90's for the development of plugins for its flagship (and non-free) software Photoshop. It is a
protocol still in use, despite its great age (and technical limitations). Over the years, this plugin API has even been adopted by
many other illustration and photo editing programs. As a result, this 8bf version of the G'MIC-Qt plugin can in practice now be used
inside many popular 8bf protocol-compatible programs, namely: Adobe Photoshop, Affinity Photo, Paint Shop Pro, Photoline,
XnView, to name a few.

Fig.2.1.1. The G'MIC-Qt plugin running under Affinity Photo / Windows.

Thanks to Nicholas Hayes, the author of the Paint.NET plugin, this 8bf version of G'MIC-Qt has been released. This is good news
for all users of these proprietary software, who will be able to benefit from a new plugin well supplied with many image processing
filters, with the possibility of modifying and improving them, and all this without paying anything (what a change! ☺).

Another piece of good news is the improved support of the G'MIC-Qt plugin for GIMP, especially on Windows, where several users
reported compatibility problems with the provided .dll  files when the last version of GIMP was released (2.10.28). In addition,
thanks to changes made by Jan Tojnar, the G'MIC-Qt plugin can now be compiled for GIMP version 2.99 (the name of the

https://gmic.eu/gmic300/fullsize/gmic_whatsnew.jpg
https://fileinfo.fr/extension/8bf
https://en.wikipedia.org/wiki/Adobe_Photoshop
https://en.wikipedia.org/wiki/Affinity_Photo
https://en.wikipedia.org/wiki/PaintShop_Pro
https://www.pl32.com/
https://www.xnview.com/
https://gmic.eu/gmic300/fullsize/gmic_8bf.jpg
https://github.com/0xC0000054
https://www.getpaint.net/
https://github.com/jtojnar


development version of GIMP that will become the long-awaited 3.0). We should also mention the arrival of the G'MIC-Qt plugin
for the Flatpack version of GIMP, thanks to the work of Hubert Figuière who packaged it for Flathub.

Finally, let's note the expected integration of G'MIC-Qt 3.0 in the next major version 5.0 of Krita software, which is planned to be
released this December. This integration is planned to be complete and systematic, i.e. G'MIC-Qt will be included by default in
Krita, and not installed as an external plugin (as it is currently the case). This promises a better integration in Krita and should
solve several recurring problems, especially for Mac users. This integration is done by amyspark, with whom we are in contact.

2.8. Interface Improvements

The plugin has also seen its graphical interface improved, with in particular:

A new filter tagging system with colored tags that can be assigned to one or more filters. These colored tags (6 different colors)
allow the user to mark certain filters to find them more easily later. Of course, each user decides on the meaning of each color and
the use cases are therefore potentially numerous: these tags can be used temporarily for a given session, or alternatively, filters
can be marked for a longer period. The plugin interface offers a simple but efficient way of managing these different tags as shown
in the animation below:

Fig.2.8.1. Colored "tags" are available to mark filters in the G'MIC-Qt plugin.

A "Copy G'MIC command to clipboard" button, located at the top right of the panel containing the filter controls:

Fig.2.8.2. New button to copy the G'MIC command to the clipboard.

This button will delight all scripters: by pressing it, we get the equivalent G'MIC command to be invoked in the terminal for the gmic
CLI tool, in order to apply the currently selected filter with its current parameter values. For example, here is what the clipboard
contains after pressing this button in the example above:

https://github.com/flathub/org.gimp.GIMP.Plugin.GMic
https://github.com/hfiguiere
https://github.com/flathub
https://www.amyspark.me/
https://gmic.eu/gmic300/fullsize/gmic_qt_tags.gif
https://gmic.eu/gmic300/fullsize/gmic_qt_clipboard.png


fx_spherize 50,4.16,0,58.8136,52.1628,0,0,2,0

This string can then be pasted back into a command line call to gmic , to get exactly the same effect on other images, or to integrate
it into a more complex processing pipeline:

Fig.2.8.3. Application via the terminal of the G'MIC command copied from the G'MIC-Qt plugin, on other images.

This is a really handy feature if you write your own processing scripts. You can take advantage of the convenience of the plugin's
graphical interface (especially its preview window) to adjust the parameters of a filter, but also the power of the command line to
apply batch processing to several dozen or hundreds of image files.

Among other improvements, G'MIC-Qt has an improved translation system (e.g. a complete French version is planned in the near
future), and the API offered by the plugin has been enriched to allow more control by the host software. These improvements are
for example used by G'MIC-Qt to offer new control options via a command line call.

3. Improvements to the G'MIC Core

This description of the new features visible in the G'MIC-Qt plugin being completed, let's talk about the other improvements brought
by this version 3.0. A lot of interesting things have been added to the core of the G'MIC project, namely its interpreter and its
associated image processing library CImg (which is also updated to version 3.0). These new features are certainly less visible, but
just as important since they have a potential impact on all the interfaces of the project!

3.1. Language and Interpreter Improvements

Let's start with the feature that required the most development effort, which we already mentioned earlier: the implementation of an
internal machine learning library ( nn_lib ). This library allows the manipulation of generic neural networks and supports both
the network learning phase and the inference phase. This library has been re-implemented from scratch, which represents a really
important effort of research, implementation and testing (but it has also been a very instructive work!). nn_lib  allows the
construction in G'MIC of neural networks with convolutional or fully connected modules, pooling modules, residual modules, etc.
Several optimizers have been implemented to manage learning ( SGD , RMSprop , Adam , Adamax ) and it is therefore already
possible to train networks for some image processing tasks with this new library. The diagram below illustrates, for example, one
of the network architectures that has been trained for the new Repair / Denoise denoising filter mentioned earlier.

https://gmic.eu/gmic300/fullsize/gmic_qt_clipboard2.png
https://github.com/c-koi/gmic-qt/blob/master/STANDALONE.md
http://cimg.eu/
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Artificial_neural_network


Fig.3.1. One of the neural network architectures trained for the new "Repair / Denoise" denoising filter.

This is of course only the beginning, but we hope to generalize the use of nn_lib  to develop new interesting filters in the near
future. More technical details about the nn_lib  library can be found in the dedicated article on the G'MIC forum.

Another notable improvement concerns the re-implementation in G'MIC of an extended Markdown language interpreter: gmd  (like
G’MIC Markdown). This Markdown rendering engine is now the one used to produce the reference documentation and the
tutorial pages, visible on the project web page. It is also used to display the help on the terminal when G'MIC is invoked from the
command line (with gmic -h  for example). The appearance of this new Markdown parser goes hand in hand with an overall
improvement of the documentation available for the project.

Fig.3.1. The new G'MIC Markdown parser is used to render the reference web documentation.

The management of new custom color palettes has been improved, with the introduction of a new palette  command providing
34 predefined color palettes, each composed of 256 RGB colors (some of them recovered from CMOcean and LOSPEC):

https://gmic.eu/gmic300/fullsize/gmic_denoise_nn.jpg
https://gmic.eu/gmic300/(https://discuss.pixls.us/t/machine-learning-library-in-gmic
https://en.wikipedia.org/wiki/Markdown
https://gmic.eu/reference/g_mic_markdown.html
https://gmic.eu/gmic300/(https://gmic.eu/reference/
https://gmic.eu/gmic300/(https://gmic.eu/tutorial/
https://gmic.eu/gmic300/fullsize/gmic_tutref.png
https://gmic.eu/reference/palette
https://matplotlib.org/cmocean/
https://lospec.com/palette-list


Fig.3.2. Set of color palettes proposed by default in G'MIC.

Moreover the G'MIC interpreter user has now the possibility to define and name their own color palettes which will be used in the
map  or index  commands, used to apply these palettes on color images. These palettes are generally useful for color visualization
of scalar image data. For example, the colorization of a Mandelbrot fractal can be done very simply in G'MIC with the following
command line:

$ gmic 600,600 mandelbrot -1.0132,-0.316356,-1.00227,-0.305418,512 map amiga7800

Fig.3.3. Result of the application of the amiga7800  color palette on a Mandelbrot fractal.

Regarding the rendering of 3D mesh objects, there are two new features: first, the re-implementation of the 3D viewer
( display3d  command) which has been rewritten directly in the G'MIC language and will therefore be easier to maintain and
evolve.

https://gmic.eu/gmic300/fullsize/gmic_palettes.png
https://gmic.eu/reference/map
https://gmic.eu/reference/_index
https://en.wikipedia.org/wiki/Mandelbrot_set
https://gmic.eu/gmic300/fullsize/gmic_mandelbrot.jpg
https://gmic.eu/reference/display3d


Fig.3.4. Overview of the new G'MIC 3D mesh object viewer.

Secondly, it is now possible to export a 3D mesh object built in G'MIC (typically with a procedural generation) as an .obj  file in
Wavefront format, a simple ASCII format that most 3D modelers can also read. Here, illustrated below, is an example of importing a
3D object generated recursively in G'MIC and re-imported into Blender, using this Wavefront file format.

Fig.3.5. Import in Blender of a 3D object generated by G'MIC in a procedural way.

Still in the field of input-output, we note the appearance or improvement of support for certain file formats, such as those with the
extensions .png , .tiff , .csv , .webp , .arw , .cr2 , .nef , .dng , .heic , .avif  (the last two, however, are not
activated by default).

Two new commands lorem  and portrait  allow retrieval of random images from two different web services: Lorem Picsum
and ThisPersonDoesNotExist. They are quite handy for testing filters quickly on arbitrary images, without having to keep them in
local storage. For example, the command :

$ gmic +lorem 800 +portrait 800

will show you this:

https://gmic.eu/gmic300/fullsize/gmic_solenoid.png
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://www.blender.org/
https://gmic.eu/gmic300/fullsize/gmic_blender.jpg
https://gmic.eu/reference/lorem
https://gmic.eu/reference/portrait
https://picsum.photos/
https://thispersondoesnotexist.com/


Fig.3.6. Overview of the result of the new lorem   and portrait  commands.

Finally, let's note that gmic , the command line interface of G'MIC, now accepts the definition of entry points in script files with
.gmic  extension, and that we can now make such files executable (with the Shebang)). For example, under Unix, the following
test.gmic  file can be made directly executable and launched from a terminal:

#!/usr/bin/env gmic

# File 'test.gmic'

echo[] "Hello G'MIC friends!"

3.2. Improvements to the Mathematical Expression

Evaluator

The field of digital image processing is essentially based on mathematical models of images and algorithms that we want to apply.
G'MIC has its own mathematical expression evaluator, and this one has also seen many improvements recently. To summarize,
more than 40 new mathematical functions have been implemented in this evaluator in the last two years, in order to improve its
calculation capacities:
store() , date() , begin_t() , end_t() , merge() , f2ui() , ui2f() , ccos() , csin() , ctan() , ccosh() ,
csinh() , ctanh() , lerp() , maxabs() , minabs() , argmaxabs() , argminabs() , da_size() , da_insert() ,
da_push() , da_remove() , da_pop() , da_back() , isvarname() , resize() , fill() , repeat() , set() ,
deg2rad() , rad2deg() , swap() , vargkth() , vargmin() , vargmax() , vargminabs() , vargmaxabs() , vavg() ,
vkth() , vmin() , vmax() , vminabs() , vmaxabs() , vmed() , vprod() , vstd() , vsum() , vvar() , string() .

More and more complex filters of G'MIC benefit from them. A lot of optimization work has also been done to make this evaluator
more and more efficient, in particular by enabling parallel computing when possible. Rather than going into technical details about
the implementation and optimization of this module, I demonstrate an example here that shows how this evaluator can be used in a
G'MIC pipeline. Here, we want to produce a Buddhabrot image, a particular representation of the Mandelbrot set. Below on the
left, you can see the content of the buddhabrot.gmic  file defining the buddhabrot  command, which produces the image on the
right. The G'MIC mathematical expression evaluator is invoked between lines 9  and 27 , which represents then a single math
expression. As we can see, this evaluator is able to compile and execute math expressions which are in fact real programs!

https://gmic.eu/gmic300/fullsize/gmic_lorem_portrait.jpg
https://en.wikipedia.org/wiki/Entry_point
https://en.wikipedia.org/wiki/Shebang_(Unix
https://en.wikipedia.org/wiki/Buddhabrot
https://en.wikipedia.org/wiki/Mandelbrot_set


Fig.3.2.1. Generation of a Buddhabrot image with a G'MIC script.

The mathematical evaluator is an essential part of the G'MIC framework and will probably continue to evolve in future releases.

4. Other Notable Information

Are we done with this article? Not yet! Because working on the G'MIC project obviously means spending a lot of evenings doing
research, programming and testing new features, but an important part of the time spent also concerns the management of side
items, namely: answering questions on forums or github forges, finding funding to make the project move forward faster, or
communicating around the project (for example by writing this kind of articles ☺ !). And on these different points, notable things have
happened, since the end of 2019:

First, we had the privilege of having two grants (two 12-month fixed-term contracts), as part of the "Platform Support" call from the
INS2I Institute of the CNRS. These financings allowed the consecutive recruitment of two development engineers to work on the
G'MIC project. The first one (2018-2019), Jehan is a major contributor to GIMP. We described his contributions earlier in our
previous report.

The second engineer (2019-2020), Jonathan-David Schröder) has done a lot of work on the implementation of a G'MIC binding
for the Python language: https://pypi.org/project/gmic/. This binding is for the moment frozen at an earlier version (2.9.2) of
G'MIC and there are still a few corrections to be made, but it is an interface that we would like to bring to the fore. Let's hope that it
will attract the interest of new external contributors, experts in Python, why not? In 2020, Jonathan-David presented the progress
of his work at the Libre Graphics Meeting which took place online. His presentation is available by clicking on the following link:

In both cases, these financings were fruitful and enabled the opening of the G'MIC project to other horizons (not to mention the
pleasure of interacting with these two talented engineers!).

Another notable news concern the "communication" aspect of the project, with the development and implementation of the Virtual
Artist touch table. This interactive table shows the principle of style transfer between two images. It can be helpful to introduce the
general public to the field of image processing algorithms, with a direct and fun artistic application. It consists of a touch table on
which runs a G'MIC script that implements both the user interface and the style transfer algorithm demonstrated. The video below
illustrates the operation of this terminal (click on the image to open the link) :

https://gmic.eu/gmic300/fullsize/gmic_buddhabrot_all.png
https://www.ins2i.cnrs.fr/en
https://www.gimp.org/author/jehan.html
https://gmic.eu/gmic300/(https://pixls.us/blog/2019/09/g-mic-2-7-process-your-images-with-style/
https://gmic.eu/gmic300/(https://github.com/myselfhimself
https://pypi.org/project/gmic/
https://libregraphicsmeeting.org/2020/en/index.html
https://www.youtube.com/watch?v=qbJv7QScs3s


Virtual Artist is an interesting way to support scientific interaction with the general public. It was used, for example, during the FÉNO
2021 (Festival of Excellence in Normandy), on the CNRS stand.

Fig.4.1. GREYC's "Virtual Artist" touch table, in action, at FÉNO 2021.

Additionally, let's note that G'MIC was allowed a short video presentation during the Fête de la Science 2020, made by the
communication department of the CNRS Normandie delegation. Click on the image below to see this video:

Still on the subject of communication, we wanted to take the opportunity to announce that the project's mascot "Gmicky" (the little
tiger magician) was crocheted by Florence, from Doomyflocrochet. Florence makes nice crochet versions of free project

https://www.youtube.com/watch?v=us_7SkNajm0
https://www.normandie.fr/feno
https://gmic.eu/gmic300/fullsize/feno2021.jpg
https://www.fetedelascience.fr/
https://www.normandie.cnrs.fr/fr/delegation
https://youtu.be/qP_rVje6VFA?t=214
https://www.doomyflocrochet.com/


mascots, which we invite you to see (and why not, to order).

Fig.4.1: "Gmicky", the mascot of the G'MIC project, made of crochet.

Finally, more generally, for those who would like to dive deeper into the programming of image processing algorithms, let's mention
the release of the book « Le traitement numérique des images en C++ » (Éd. Ellipses, 318 pages, in French), which I co-
authored with my colleagues from the University of Clermont Auvergne, Vincent Barra and Christophe Tilmant, during the
lockdown of 2020. You will find a presentation of CImg, the C++ image processing library (of which I am the author) and on which
most of the G'MIC functionalities are based, as well as various workshops around different image processing themes and
applications.

Fig.4.2. A book to deepen your knowledge of image processing algorithms, with the CImg library, on which G'MIC is based.

5. What's Next?

Since 2008, G'MIC has been an active project, even if we never defined a very precise roadmap. The development of new
functionalities is done according to our free time and opportunities, as well as the research activities in image processing that we
carry out in parallel in our research team at the GREYC laboratory. We only hope that this time will not ultimately end up vanishing!
Being a researcher or a teacher-researcher sometimes seems to be incompatible with an open source software development activity,
which is a very demanding job and at the same time not necessarily very well valued in a career evaluation. It can therefore be
tempting to focus on more "profitable" activities from a professional point of view.

On a personal note, I would like to thank the GREYC laboratory) (notably the management, the management service and the DDA
service), the CNRS Normandy Delegation) (notably the Valorisation service, the Communication service and the HR service), the
INS2I Institute) of the CNRS, the LILA association, my colleague Sébastien Fourey (co-lead developer of the project), the
members of the PIXLS.US association (which hosts our discussion forum) as well as all the contributors to the project, the users
giving kind, useful, or even financial feedbacks. All these people who believed in the project at a given time and in the ability of its
developers gave us their support in one way or another. This allowed us to never give up the development of G'MIC, since 2008.
May they be truly thanked!

https://www.doomyflocrochet.com/boutique/amigurumi-linux/gmicky-tigre-magicien-mascotte-gmic-en-coton-au-crochet/
https://www.editions-ellipses.fr/accueil/13463-le-traitement-numerique-des-images-en-c-implementation-dalgorithmes-avec-la-bibliotheque-cimg-9782340045965.html
https://perso.isima.fr/~vibarra/
http://christophe.tilmant.free.fr/
http://cimg.eu/
https://www.editions-ellipses.fr/accueil/13463-le-traitement-numerique-des-images-en-c-implementation-dalgorithmes-avec-la-bibliotheque-cimg-9782340045965.html
https://gmic.eu/gmic300/(https://www.greyc.fr/
https://gmic.eu/gmic300/(https://www.normandie.cnrs.fr/fr/delegation
https://gmic.eu/gmic300/(https://www.ins2i.cnrs.fr/fr/institut
https://libreart.info/fr/
https://foureys.users.greyc.fr/Fr/index.php
https://pixls.us/
https://gmic.eu/gmic300/(https://discuss.pixls.us/c/software/gmic/
https://github.com/dtschump/gmic/issues
https://libreart.info/en/projects/gmic


6. Additional Resources

To properly bring this report to a close, and to satisfy the readers who are still awake and remain hungry, here is a small selection of
videos to occupy the long winter evenings that will arrive soon:

« G’MIC -- Free Image Manipulation Powerhouse ».

« G’MIC: An Amazing, Free Plugin ».

« G’MIC for Krita - Three ways to turn a photograph into a cartoon ».

« G’MIC for Krita - Step by Step tutorial on how to use this amazing FREE image manipulation plugin ».

G’MIC presentation at Libre Graphics Meeting 2021 : « How to make 890+ Color LUTs fit in 3.3Mb ? ».

« Using the G’MIC Stylize filter in Krita with flat texture patterns ».

Final note: this report is a summary (yes, it is!) of the following detailed release notes: release notes 2.8, release notes 2.9,
release notes 3.0. Thanks to Andy Kelday for his help on proof-reading this article!

Additional Links:

The G'MIC project

Twitter Feed of the Project News

https://www.youtube.com/watch?v=1agzsBn7ZE0
https://www.youtube.com/watch?v=p3h8SASo1nI
https://www.youtube.com/watch?v=d0KiBfRLiUQ
https://www.youtube.com/watch?v=pZHS7lgUSM4
https://www.youtube.com/watch?v=YlIDXVDI15E
https://www.youtube.com/watch?v=BwZNyNo0yjY
https://discuss.pixls.us/t/release-of-gmic-2-8
https://discuss.pixls.us/t/release-of-gmic-2-9
https://discuss.pixls.us/t/release-of-gmic-3-0
https://gmic.eu/
https://twitter.com/gmic_ip

