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Abstract

Photometric Stereo (PS) addresses the challenge of reconstructing a three-dimensional (3D) rep-
resentation of an object by estimating the 3D normals at all points on the object’s surface. This
is achieved through the analysis of at least three photographs, all taken from the same viewpoint
but with distinct lighting conditions. This paper introduces a novel approach for Universal PS,
i.e., when both the active lighting conditions and the ambient illumination are unknown. Our
method employs a multi-scale encoder-decoder architecture based on Transformers that allows to
accommodates images of any resolutions as well as varying number of input images. We are able
to scale up to very high resolution images like 6000 pixels by 8000 pixels without losing perfor-
mance and maintaining a decent memory footprint. Moreover, experiments on publicly available
datasets establish that our proposed architecture improves the accuracy of the estimated normal
field by a significant factor compared to state-of-the-art methods. Code and dataset available at:
https://clement-hardy.github.io/Uni-MS-PS/index.html

1 Introduction

Photometric stereo (PS) is a technique for recovering surface normals of an object by capturing multiple
images of it from the same perspective but under varying light conditions. For decades, traditional image
processing methods have focused on the ideal Lambertian case with a controlled and parallel light beam
as well as no ambient light [42]. Howewer in practice most light effects on real-world objects deviate from
Lambert’s law, exhibiting complex effects such as specular components or translucency (e.g., transpar-
ent materials). On the other hand, the emergence of deep learning approaches has enabled significant
advancements in managing more complex geometries and challenging objects that do not adhere to Lam-
bert’s law.
Three types of approachs are considered in the literature to adress the PS problem: calibrated, uncal-
ibrated, and Universal methods. The difference between calibrated and uncalibrated methods lies in
whether we know the light parameters (positions, intensities,...). Additionally, most of these methods
(uncalibrated or calibrated) assume the ideal case of perfect directional lighting in a dark environment
with no external light. Obtaining this ideal case in real life is challenging, requiring special equipment
to capture images under such conditions. Universal methods overcome this limitation by reconstructing
objects in any lighting conditions, thus largely simplifying the process from the end-user perspective.
They simultaneously address two major challenges:

• reconstructing the normal map for non-Lambertian materials like specular ones;
• handling complex illumination conditions, including ambient illumination.

In our conference paper [9], we introduced a multi-scale approach to improve the performance of
calibrated PS on challenging materials. In the present article, we extend this multi-scale approach
to solve the Universal PS problem. We define a multi-scale architecture combined with an encoder-
decoder architecture. The multi-scale architecture can process input images of any size without loss
of performance, even when considering very high-resolution images, as presented in Figure 1. In this
example, our algorithm takes 11 images of size 6000×8000 as input, and we observe that our method
recovers all details of the scene. Our method is also able to manage more difficult materials as illustrated
in Figure 2. Our Universal method achieves state-of-the-art results in any environment or lighting
conditions, including directional or non-parallel lighting beams, as demonstrated on real benchmarking
datasets.
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Figure 1: Reconstruction of a normal map of size 6000×8000 of the Marsoulas cave by photometric stereo
with the proposed method. Our method is able to both achieve accurate 3D-reconstruction and manage
very high image resolution. Indeed, all details in the rock are reconstructed and the resolution of the
RGB images is preserved. PS image credits: A. Laurent 2023 (INPT, UMR 5505 IRIT), C. Fritz and G.
Tosello team (CREAP-E.Cartailhac), MSHS-T (UAR 3414).

Figure 2: Reconstruction of a normal map of a snail from [38] and a coin from [39] by photometric stereo
with our proposed method. We can see that our method manages very difficult materials such as metal.
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The main advantage of our proposed extension of [9] is the ability to solve the PS problem in any light
conditions, without any prior knowledge of the environment (our previous method was only capable
of handling calibrated PS in a controlled dark environment). The extension includes new two major
features:

1. A Transformer-based approach is chosen for its effectiveness in Universal PS, instead of the CNN
approach in [9].

2. A new training dataset is designed and synthetised to better cope with the Universal context.

The rest of this work is organised as follow. In Section 2, we present an overview of deep learning
methods for photometric stereo. In Section 3, we describe our multi-scale Transformer method and our
new training dataset. Finally, in Section 4, we present qualitative and quantitative results on many
benchmark datasets and compare the performance of our method with state-of-the-art PS methods.

2 Related Work

Deep learning methods for PS proposed in the literature initially considered specific lighting conditions.
Most of them, such as[6],[5], [12, 14],[43] and [44], consider the light beam as parallel, which is not
realistic in practice. [24] introduced methods for non-parallel light beams, but they still require images
captured in a very controlled environment. All of these constraints limit their real-world applicability.

Calibrated PS — To solve the problem of calibrated photometric stereo, multiple learning-based
methods have been introduced in the literature.

[34] propose a first approach based entirely on a fully connected network. This approach assumes that
the light directions are fixed and identical between the training and testing phases, which is its major
drawback. Photometric stereo methods should be able to handle a different number of input images.
Indeed, to make PS methods more suitable for experimentation, the neural network architecture should
allow the use of an arbitrary number of images to avoid training a different neural network for each
possible number of input images. Two main alternatives have been proposed in the literature to solve
this problem:

• the first approach is to aggregate information from different images using a pooling layer, such as
in the work of [6, 5], [9], [16, 17],[25] and [41].
• the second approach is to project all observations corresponding to the same pixel location under
different illuminations onto a fixed-size space, such as in the work of [12, 13],[21],[27] and [44].

More recently, [14] show the relevance of using Transformers and attention mechanisms in the context
of calibrated PS with a small number of different lights.

Uncalibrated PS — Uncalibrated PS is a category of PS where the prior light information, such
as its direction and intensity, is unknown. In the context of parallel light beams, a common practice is
to use a first neural network to infer the missing light information for a standard calibrated PS neural
network as presented in [5]. Then, a second neural network handles the problem as in the calibrated
case. This approach has also been successfully applied to non-parallel light beams in [24]. However, it is
difficult to apply this approach to Universal PS with natural light/ambient light because the physics of
natural light/ambient light is complex to model.
Another practice to solve uncalibrated PS is to use an inverse rendering based method[23],[22],[19]. Those
methods optimize an image reconstruction loss (between the reconstructed images and the input images)
to get the normal map, albedo...

Universal PS — Recently, Ikehata introduced the notion of Universal PS with the UNI-PS[11]
and SDM-UniPS methods[15]. These new methods solve the PS problem under unknown and arbitrary
lighting conditions using a pure data-driven approach without complex prior light assumptions. This
method is based on an encoder-decoder model, where the encoder extracts a global lighting context
from a fixed ’canonical’ resolution image. Images are resized if their size does not match the canonical
resolution. The decoder takes as input the original resolution images and the output of the encoder,
i.e., the global lighting context interpolated to the original resolution. This allows for inference on very
high-resolution images, as the decoder processes the images pixel by pixel.

The idea behind using a global lighting context, rather than a global lighting model, is due to
the spatially-varying light direction. Indeed, intensity could not be encoded by a few global values.
Even though this method allows for processing high-resolution images by downsampling and inferring
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Figure 3: Global architecture of the proposed multi-scale method. The network can be either our
calibrated Transformer, or our Universal Transformer. The first scale is independant from the other
scale, then the others scales share parameters.

the normal map pixel by pixel, this technique decreases the performance of the reconstruction due to
the loss of information during downsampling and the lack of spatial information during pixel-by-pixel
inference.

To address this problem, [15] introduced a way to use all available information in a non-local way, even
on very high-resolution images. The method is based on a scale-invariant spatial-light feature encoder,
which allows for a fixed input size without resizing the images. The encoder splits an image into P 2

sub-images, where P is the size of the input of the model, by taking a single pixel every P ×P pixels. It
then extracts feature maps from these sub-images, which are eventually merged back to reconstruct one
image.

During the encoding phase, spatial information is extracted using ConvNeXt layers
[26] and information over the light axis is extracted using Self-Attention Blocks [20]. Afterwards, another
pixel sampling strategy is used and several Transformer layers are applied in both the spatial and light
dimensions. Finally, the normal map is inferred using two linear layers.

UNI-PS [11] tends to infer blurry and inaccurate normal maps with a lack of detail, especially with
high-resolution images. SDM-UniPS [15] produces better normal maps, but its performance decreases as
object materials become more complex. In [15], Ikehata explains the importance of objects and materials
diversity in the training dataset and so introduce a new dataset for training UNI-PS [11].
Moreover, we have showed in [9] the more diverse and representative the training dataset is, the better
the results are. To this end, we generate in the present paper a way more diverse, complete training
dataset for Universal PS. Additionally, processing objects with complex materials, such as highly specular
materials, requires both global and local information. We also showed in [9] that a multi-scale network
architecture can extract both local and global information and gives thus gives excellent performance on
non-Lambertian reflectance materials.

While UniPS allows for the processing of high-resolution images, it may be difficult to scale to very
high resolutions without losing performance. Indeed, keeping only one pixel every P pixels is a problem
if P is large (for instance if P ≥ 100). For example, the geometry of a small detail in the object would
be completely invisible in each of the sub-images.
To be able to infer on very high resolution images, we propose here to use a multi-scale approach as
introduced in [9] and to extend it to the Universal problem. In [9], we use an architecture based on
the convolution network proposed by [6]. It consists of an encoder and a decoder. Each input image is
processed independently by the encoder. Then, the extracted feature maps are synthesized using max
pooling to create a single feature map for all images. The decoder takes this feature map to generate
an estimation of the normal map. In the next section, we show how to enhance this architecture in a
multi-scale manner, and extend it to the universal setup by relying on Transformers.
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Figure 4: Detailed architecture of one scale in the encoder part of our proposed method. We process
images at pixel level in order to catch all geometric details.

3 Proposed Multi-Scale Method

In this section, we first present our multi-scale architecture, and then introduce our new synthetic train-
ing dataset.

We propose a multi-scale framework to perform equally well on both low-frequency geometry and
high-frequency details. Our multi-scale approach progressively refines the estimated normal map as
the spatial scale increases. Our model starts by focusing on the global aspect of the object and then
progressively refines details such as holes, cracks, or slight bumps. While a model should be indeed able
to handle high-resolution images and different resolutions, a model with a fixed number of convolution
layers may still lack sufficient convolutions to effectively synthesize information across an entire arbitrary
large image.

To address this, we separate the first scale of our network from the other scales. The first network,
used for the first scale, takes as input the downsampled images at the resolution 32×32 pixels and
estimates a first normal map at the same resolution. Actually, the first network is used to predict a
normal map which can be seen as a initialization prediction for the second network. The latter is used
for the remaining scales of our multi-scale approach. It iteratively refines the normal map estimation each
time by a factor of 2. Thus, it takes as input an upsampled version of the normal map estimated at the
lower resolution as well as images downsampled to the same resolution. A new normal map estimation
is predicted at the same resolution as the input images. This process is repeated until we get a normal
map at the same resolution of the original images. The key point is that both networks (i.e., for first
scale and other scales) have exactly the same architecture, but with different weights. It is necessary
to have two independent architectures because the first scale takes as input only the images, while the
other scales take as input the concatenation of the images and an estimation of the normal maps. The
weights of the second network are identical for every scale.

Our overall architecture is presented in Figure 3.
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Figure 5: Architecture of the decoder for one scale of the proposed method. The encoder part is detailed
in Figure 4 and the decoder part is composed of transposed convolution.

3.1 Transformers-based Multi-Scale Architecture for Universal PS

Our proposed architecture is a multi-scale encoder-decoder backbone composed of Pyramid Vision Trans-
former (PVT) blocks [40], Self Attention Blocks (SAB) [20] and Pooling by Multihead Attention (PMA)
blocks [20].

Additionally, to test the robustness and performance of our architecture on different PS problems, we
propose a variant for solving the calibrated problem. The only difference is the first convolutional embed-
ding layer, which is modified to take either only the images for Universal PS or the images concatenated
with the lighting directions for calibrated PS.

Scales Architecture of the Encoder Part — Here we detail the structure of one scale of our
proposed method. Each scale is composed of the same encoder and the same decoder. The encoder part
combines three modules: the first one extracts the spatial information for each image independently, the
second one extracts the lighting information for all images at each pixel location, and the third one pools
the information for the skip connections. The decoder part is mainly composed of regression modules.

The spatial extractor module is based on the PVT (Pyramid Vision Transformer)
[40]. Indeed, this kind of architecture generates high-resolution features and also features at different
scales, allowing us to consider problems at the pixel level. The main advantage is the ability to take
in input images of different sizes while keeping moderate computation times. This last point is very
important for the photometric stereo problem, because it is necessary to consider the full size of the
images to get a better reconstruction of the normal map.

Then, the lighting extractor module extracts light information at the pixel level. To do so, we use
a Self Attention Block (SAB) module. Indeed, at a fixed pixel location, we concatenate the pixel value
of each image in order to merge the information at this location. Therefore, we can apply the attention
block at each pixel location independently.

Finally, we use a Pooling by Multihead Attention (PMA) module in parallel with the SAB module
to aggregate the information given by the PVT block. The aim is to create a feature map and use it for
the skip connection in the decoder part.

Figure 4 presents the architecture of the encoder for one scale of our proposed method.

Scales Architecture of the Decoder Part — Once the four encoding blocks are processed,
the normal maps are reconstructed with the decoder. For the decoder, we consider three transposed
convolutions with skip connections to the PMA map. Indeed, at each step, we concatenate the PMA
map obtained in the encoder with the output of the transposed convolution, and so on until we have
the desired resolution. The final step consists of a 3×3 convolution to fuse the first PMA map with the
output of the last transposed convolution without changing the shape of the feature map, and to create
the final normal map.

The decoder architecture is presented in Figure 5.
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3.2 Training Dataset

To obtain the best normal map reconstruction possible, a proper dataset needs to be used for the
training stage. Most available training datasets are built for photometric stereo in dark environments
with parallel light beams [6], [12]. For Universal PS, Ikehata introduced the PS-Wild training dataset
[11]. Unfortunately, this dataset has some issues, such as a lack of diversity in geometry, materials, and
environments (see Table 1). This appears to be not enough to calibrate a neural network properly to be
able to handle all possible materials and geometries.

Training database samples shapes materials ambient environments
PS-Wild 10 099 410 926 31

Our training database 100 000 11 000 200 000 1 100

Table 1: Comparison beetween our training dataset and PS-Wild. Our training dataset proposes more
objects with a larger variety of geometries, shapes and environment than PS-Wild [11].

To solve these issues, we create a new training dataset. To do so, we render 11,000 diverse objects
from [35], [37], and [31] using the Blender software [3]. To complete the lack of smooth surfaces that can
exist on these types of objects, we also generate 3,000 distinct objects using the sum of random Gaussian
potentials and the Marching Cubes algorithm [29] to extract isosurfaces.

Each time we render a scene, we apply a random material to the object. For materials, we use
more than 1,100 ’real’ materials taken from [2] and around 200,000 materials from Deep-materials [8].
Moreover, we generate random materials to complete all possible materials. These new materials are
created with the BRDF layer of the Cycle render engine [7] in Blender by choosing random values as
inputs of this layer.

Finally, for the ambient lighting environment, we use 1,100 360° HDR (High Dynamic Range) images
from diverse sources, such as [32], [2] and [1].

For each sample, we render 50 images with random light distribution over the hemisphere. To ensure
that our model can handle different types of lights, we use directional lights and non-parallel lights. Each
time the non-parallel light type is chosen for the scene, the size of the bulb and other light parameters
are also chosen randomly. On the contrary, the power of the light varies between each image, regardless
of the type of lamp chosen. In total, we generate 100,000 samples. A comparison between our training
dataset and PS-Wild is shown in Table 1.

Examples of training images generated by our pipeline are given in Figure 6. As we can see, materials,
shapes, geometries and environments are diverse.

Figure 6: Examples of training images generated by our pipeline. We can see the variety of geometries,
shapes and environments.
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3.3 Training Process

To train our multi-scale netwok, we use images with a resolution of 128 by 128 pixels. To reach the
resolution of 128 pixels, 3 stages are necessary: 32 by 32 pixels, 64 by 64 pixels, and 128 by 128 pixels.
Because of the small resolution of our training images, we are able to give 23 images per view during
the training process. A batch size of 2 is enough for the training. Therefore, we are able to use a single
A100 to train our method. The Adam optimizer is used with a learning rate of 10−4. The three stages
are trained together, and the cosine similarity loss is used. This loss measures the angular difference
between the estimated 3D normals and the ground truth normals. It is defined as:

lnormal =
∑

ij

(

1−Nij · N̂ij

)

, (1)

where N̂ij is the predicted normal at pixel (i, j), and Nij is the ground truth normal. Everything was
implemented with the Pytorch framework.

3.4 Inference on Very High Resolution Image

As mentioned previously, our method can be used for any size of input image. However, performing
inference on very high-resolution images is challenging, because even with a batch size of 1, the image
may not fit on a single graphics card.

Therefore, to run our network on very high-resolution images, we embed our multi-scale approach
in a patch-based heuristic. For images up to 256x256 pixels (i.e., 32 by 32, 64 by 64, 128 by 128, and
256 by 256), we use the full resolution. For larger images, we cut each image and its corresponding
predicted normal map into 256x256 patches with an overlap of 64 pixels. We then process each patch
independently. Finally, we merge all patches together using a spatial weighted average, with Gaussian
weights as defined below:

w(x, y) = e
−

||(x,y)−(xc,yc)||
2

2σ2 , (2)

where (xc, yc) is the center of the patch and σ = 25. This value has been chosen empirically.

This method allows us to avoid computing the attention map on the full resolution image. Indeed,
computing the attention map can significantly increase the memory requirement in the PVT module
when the image size increases.

However, the results in Table 2 show that performance can degrade if the patch size is too small.
Therein, we tested our network combined with the proposed patch-based inference on DiLiGenT102 [33]
at the full image resolution with 30 images per object.

Finally, we choose to take a patch size equal to 256 as it seems to be a reasonable compromise between
memory cost and accuracy.

Patch size (px) Overlap (px) Memory usage (Go) MAE (◦)
128 32 3.5 15.52
256 64 21 13.19
512 128 130 12.96

Table 2: Memory usage and mean angular error of the proposed patch inference method on the full image
resolution of DiLiGent102. A patch size of 256 px seem to be a good compromise between performance
and memory cost.
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4 Experiments

From a quantitative point of view, we compare our approach with all state-of-the-art methods. Indeed,
we consider calibrated [12],[4],[10],[27],[18],[24],[28],[9], uncalibrated [5],[22],[24] and universal methods
[11],[15].

4.1 Description of the testing datasets

We evaluate quantitatively our method on the three publicy available dataset with directional light
DiLiGenT [36], DiLiGenT102 [33] and DiLiGenT-Pi [39]. We also test the generalization capacity of our
method on a dataset with non-parallel light directions named Luces [30]. Examples of images of each
dataset are presented in Figure 7.

(a) DiLiGenT [[36]] (b) DiLiGenT102 [[33]] (c) DiLiGenT-Pi [[39]] (d) Luces [[30]]

Figure 7: Examples of images of DiLiGenT [36], DiLiGenT102 [33], DiLiGenT-Pi [39] and Luces [30]
datasets.

• The DiLiGenT dataset [36] is a real-world image dataset containing 96 images from the same
viewpoint captured under known light directions and light intensities. It contains 10 objects with ground
truth normal maps, obtained by scanning objects with a 3D scanner.

• DiLiGenT102 [33] contains 10 objects, each manufactured in 10 different materials. The diversity
of materials in this dataset is quite large. Indeed, diffuse, moderately specular, metallic materials with
anisotropic reflectance, and translucent materials are all present in this dataset. This diversity offers
the possibility to test the performance of our algorithms on challenging materials. The ground truth is
also available, but was obtained using 3D digital models and not by a 3D scanner as in the DiLiGenT
dataset.

• The last dataset with directional light is DiLiGenT-Pi [39]. This dataset was created to test
photometric stereo methods on near-planar surfaces with rich details, such as coins and badges. It
contains four groups of materials: metallic, specular, rough, and translucent surfaces. In addition, the
dataset contains 30 objects, each with 100 photographs provided. As with the DiLiGenT dataset, the
ground truth normals were obtained using a scanner.

• Finally, Luces [30] is a dataset with non-parallel and near-lighting. It contains 14 objects and 52
images per object. The light directions, intensities, and camera calibration are known. As with the other
datasets, the ground truth normal maps are available and were obtained using a scanner.

All of these datasets offer the opportunity to test our method on a wide variety of object shapes,
materials, contexts, and so on. However, to complete our evaluation and test the performance of our
method on different types of light, environments, and cameras, we also visually test the performance on
publicly available datasets where no ground truth is given, such as Skoltech3D [38], Shape and Material
[25], UNI-PS, [11], and SDM-UniPS [15]. The image acquisition setup varies from dataset to dataset. In
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Skoltech3D [38], an industrial camera is used and images are captured in the dark with directional light.
In UNI-PS [11], an 8-bit smartphone camera is used with near light (within 30 cm of the object) to have
spatially varying lighting effects. In SDM-UniPS [15] a digital camera is used, and in Shape and Material
[25] an iPhone is used. The variety in the acquisition setup is important for testing the generalization
capability of our method to any setup or environment.

type Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading average
PS-FCN [4] C 2.67 7.72 7.52 4.75 6.72 7.84 12.39 6.17 7.15 10.92 7.39
CNN-PS [12] C 2.2 4.6 7.9 4.1 8.0 7.3 14.0 5.4 6.0 12.6 7.2
OB-Cnn [10] C 2.49 3.59 7.23 4.69 4.89 6.89 12.79 5.10 4.98 11.08 6.37
PX-NET [27] C 2.03 3.58 7.61 4.39 4.69 6.90 13.10 5.08 5.10 10.26 6.28

NormAttention-PSN [18] C 2.93 5.48 7.12 4.65 5.99 7.49 12.28 5.96 6.42 9.93 6.83
Our previous method, MS-PS [9] C 2.05 4.24 7.03 3.9 4.00 7.57 11.01 4.94 5.22 8.47 5.84

SDPS-Net [5] UC 2.8 6.9 9.0 8.1 8.5 11.9 17.4 8.1 7.5 14.9 9.5
SCPS-NIR [22] UC 1.24 3.82 9.28 4.72 5.53 7.12 14.96 6.73 6.50 10.54 7.05
UNI-PS [11] UC/Uni 4.9 9.1 19.4 13.0 11.6 24.2 25.2 10.8 9.9 18.8 14.7

SDM-UniPS [15] UC/Uni 1.5 3.6 7.5 5.4 4.5 8.5 10.2 4.7 4.1 8.2 5.8

Our (K=30) C 1.93 2.64 5.88 3.05 3.76 6.40 10.44 3.85 4.32 7.31 4.96
Our (K=96, all images) UC/Uni 1.92 3.14 6.16 3.60 4.04 6.35 8.84 4.08 4.88 7.09 5.01

Our (K=30) UC/Uni 1.84 3.14 6.04 3.45 3.99 6.49 8.9 4.12 4.7 7.0 4.97

Our (K=15) UC/Uni 1.93 3.05 6.31 3.97 4.06 7.0 9.27 4.25 4.9 7.41 5.22
Our (K=6) UC/Uni 2.4 3.7 7.14 4.52 4.7 8.06 12.43 5.32 5.84 9.4 6.35
Our (K=3) UC/Uni 3.58 4.83 11.46 7.13 6.68 17.8 18.05 8.79 7.75 15.65 10.17

Table 3: Mean angular error (in degrees) on the DiLiGenT benchmark [36]. The type C means calibrated
PS, UC is uncalibrated PS and Uni is Universal PS as defined in [11]. The best result is indicated in
bold, and the second best one is underlined. The proposed method gives best state-of-the-art results.

4.2 Quantitative comparison

We first evaluate our methods on DiLiGenT in Table 3. We compare the performance of both our
Universal and calibrated Transformer methods with calibrated, uncalibrated, and Universal state-of-the-
art methods for PS. Our Universal method clearly outperforms all other methods by at least 16% on
all objects. Our calibrated method also achieves state-of-the-art performance compared with calibrated
methods. Interestingly though our Universal method reaches results comparable to the calibrated one.

In addition, we test our proposed Universal method with different numbers of images (K=3, 6, 15,
30, and 96). We can see that with only 6 images, our method obtains results that are close to the
state-of-the-art using all the available images. Moreover, the results are already the best with only 30
images.

Then, we compare our methods on a more challenging dataset, DiLiGenT102 [33], in Table 4. On
this dataset, we can see that our Universal method still achieves state-of-the-art results. Our Universal
method improves the state-of-the-art results of Universal PS by 13%, from 14.96◦ to 13.19◦. On difficult
geometries, like Turbine, the improvement is significant compared to other methods, even compared to
calibrated ones. Also we still obtain good results on specular material like AL (aluminium), CU (brass)
or STEEL , contrary to other Universal PS methods.

Our transformer calibrated method is the best performer on this dataset (see Table 5). We note that
all multi-scale methods get much better results than non-multi-scale methods like CNN-PS [12] which is
the best performer of the non-multi-scale methods.

The second challenging dataset is DiLiGenT-Pi [39]. Again, our Universal method outperforms all
other Universal and uncalibrated methods, see Table 6. Compared to the calibrated methods, our Univer-
sal method tends to have slightly lower performance on near-flat objects, but it still achieves competitive
results. We note that the average is not necessarily the best metric to compare the performance of cali-
brated and uncalibrated methods. Indeed, for some objects all uncalibrated or Universal state-of-the-art
methods predict an inverted normal map compared to the ground truth (for example, see Figure 9).
This is likely because uncalibrated methods are unable to determine the direction of incoming light and
tend to assume that it is coming from the opposite direction to the actual direction. As shown in Figure
9a, it is difficult to tell if the light is coming from above or below. Both possibilities are equally plausible,
but would result in opposite normal maps.

Our methods are way more robust to this problem than other uncalibrated and Universal methods,
as we only have 2 objects inverted compared to 11 for SDM-UniPS [15] and 8 for SDPS-NET [5]. Indeed,
as shown in Figure 10, our uncalibrated methods is able to predict correctly the normal map contrary
to SDM-UniPS [15] and Uni-PS [11].

In this dataset, our calibrated Transformer gives also very good results. Overall, our calibrated
Transformer method gives a significant improvement of 12% compare to the second best. And again, all
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Type
Astro Bagua-R Bagua-T Bear Bird Cloud-R Cloud-T Crab Fish Flower Lion-R Lion-T Lions Lotus-R Lotus-T

average
Lung Ocean Panda-R Panda-T Para Queen Rhino Sail Ship Sun TV Taichi Tree Wave Whale

NormAttention-PSN [18] C
7.2 12.0 16.5 7.4 6.9 13.4 17.3 4.4 4.4 4.6 16.4 21.0 4.4 10.8 13.7

9.2
7.8 5.8 13.9 16.6 4.2 4.9 5.1 5.2 4.9 5.6 7.6 9.7 9.6 6.1 8.7

PS-FCN [6] C
7.2 13.0 16.8 7.4 7.2 14.3 17.8 5.3 4.6 4.6 18.4 21.2 4.5 11.8 13.6

9.85
9.7 5.8 14.8 17.2 4.7 4.7 5.3 5.1 6.1 6.7 8.0 10.2 10.6 6.8 12.2

CNN-PS [12] C
6.0 12.2 16.4 7.4 6.8 14.6 17.2 4.5 4.2 4.7 15.8 20.3 4.7 10.9 13.5

9.16
5.7 4.6 14.2 16.6 3.9 5.4 4.9 5.2 4.9 5.8 8.3 7.8 11.3 5.3 11.6

Our previous method, MS-PS [9] C
5.96 11.32 15.1 6.9 7.69 13.28 14.74 4.58 4.68 5.43 14.37 15.71 5.5 11.92 12.8

8.78
7.51 4.97 14.75 14.72 4.09 6.37 5.18 5.26 5.14 6.46 8.63 9.91 8.22 5.29 7.09

SDPS-Net [5] UC
37.7 22.5 28.9 30.7 17.6 27.4 27.5 20.5 23.6 12.8 20.8 23.6 19.6 21.7 26.5

25.93
40.2 31.4 21.8 23.7 19.8 16.5 24.9 16.7 19.0 31.5 26.9 34.1 41.1 39.1 29.8

SDM-UniPS [15] UC/Uni
37.8 14.6 17.1 23.8 26.5 17.1 19.2 25.4 24.5 15.2 15.9 16.2 9.2 11.8 13.6

23.34
46.6 34.6 17.1 17.6 23.2 10.6 17.0 10.5 22.0 26.2 36.6 47.2 34.4 34.9 33.8

Our (k=30) C
6.03 9.57 11.75 6.72 6.55 12.61 11.01 5.75 4.11 4.85 13.12 11.43 5.37 10.17 8.09

7.75
5.41 5.44 12.98 11.39 4.73 5.69 5.22 6.66 6.25 5.9 10.24 7.26 6.08 5.48 6.71

Our (k=100, all images) UC/Uni
7.58 10.19 11.12 12.49 8.14 12.45 11.63 6.0 8.32 5.88 12.66 11.24 6.63 11.29 10.38

11.35
42.1 6.35 13.5 11.9 7.2 7.43 6.69 7.2 5.35 6.54 10.39 8.54 47.27 6.11 7.84

Our (k=30) UC/Uni
7.14 10.43 11.69 14.09 7.35 13.08 11.92 5.32 5.96 5.14 12.73 11.2 6.16 11.51 10.39

11.38
41.98 5.91 13.28 12.22 7.13 9.54 6.68 6.62 5.65 6.05 11.5 8.95 47.15 5.93 8.77

Our (k=15) UC/Uni
10.93 10.46 13.44 12.16 8.21 12.71 14.04 8.23 8.76 8.02 14.19 12.2 7.31 11.79 11.19

12.54
43.73 10.46 13.81 12.65 7.34 7.68 6.83 8.2 5.99 8.05 11.37 10.45 48.9 7.49 9.49

Table 6: Mean angular error (in degrees) on the DiLiGenT-Pi benchmark [39]. Best results are in bold,
and the second best ones are underlined. The type C means calibrated PS, UC is uncalibrated PS and
Uni is Universal PS as defined in [11]. The best result is indicated in bold, and the second best one is
underlined. The proposed method gives best state-of-the-art results.

Ball Bell Bowl Buddha Bunny Cup Die Hippo House Jar Owl Queen Squirrel Tool average
Fast-PS (v1) [24] C 8.55 6.20 7.0 12.69 8.63 17.28 5.16 8.01 29.00 5.32 12.32 12.90 13.00 12.33 11.32

L22 [28] C 8.84 7.51 5.95 11.59 7.06 15.35 5.19 5.60 22.97 6.19 8.89 9.97 11.77 11.64 9.90

Fast-PS (v2) [24] UC 6.59 7.17 10.17 14.50 11.75 18.98 8.63 10.64 31.00 9.14 15.92 18.39 15.97 18.61 14.11
UNI-PS [11] UC/Uni 11.012 24.12 23.84 27.90 23.51 28.64 16.24 21.41 35.93 14.53 32.87 28.36 25.36 19.03 23.77

SDM-UniPS [15] UC/Uni 13.30 12.76 8.44 18.58 8.53 19.67 7.25 8.86 26.07 8.30 12.67 15.97 16.01 12.54 13.50
Our (K=52, all images) UC/Uni 10.20 10.52 6.98 12.83 9.60 13.68 6.19 8.33 25.29 6.30 11.47 12.45 11.36 11.79 11.21

Our (K=30) UC/Uni 10.29 10.51 6.79 12.57 9.6 13.35 6.27 8.44 25.46 6.10 11.38 15.97 11.37 12.22 11.10
Our (K=15) UC/Uni 10.47 10.8 7.91 13.14 9.90 13.96 6.52 8.54 25.30 6.49 11.82 12.49 11.64 11.89 11.50
Our (K=6) UC/Uni 10.94 11.40 9.38 13.75 11.029 15.38 7.80 9.41 26.68 7.37 12.62 12.85 12.79 12.47 12.42
Our (K=3) UC/Uni 10.93 15.95 12.07 16.78 14.53 16.09 9.09 11.06 31.61 10.49 15.73 14.99 15.67 15.69 15.05

Table 7: Mean angular error (in degrees) on the Luces benchmark [30]. Best results are in bold, and
the second best ones are underlined. The type C means calibrated PS, UC is uncalibrated PS and Uni
is Universal PS as defined in [11]. The best result is indicated in bold, and the second best one is
underlined. The proposed method gives best state-of-the-art results.

Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading average

Without mask
SDM-UniPS [15] 4.42 4.21 8.54 5.59 7.24 10.37 14.92 5.44 6.72 12.97 8.04
Our Universal 11.46 4.64 7.46 4.11 7.80 7.14 10.34 5.27 5.59 7.93 7.17

With mask
SDM-UniPS [15] 1.5 3.6 7.5 5.4 4.5 8.5 10.2 4.7 4.1 8.2 5.8
Our Universal 1.84 3.14 6.04 3.45 3.99 6.49 8.9 4.12 4.7 7.0 4.97

Table 8: Mean angular error (in degrees) on the DiLiGenT benchmark [36] without masking the back-
ground before processing. For comparison the results with background is also shown.

Ball Bell Bowl Buddha Bunny Cup Die Hippo House Jar Owl Queen Squirrel Tool average

Without mask
SDM-UniPS [15] 10.45 14.27 10.94 21.29 11.91 10.69 7.56 9.34 27.47 7.33 13.69 16.23 17.16 15.37 13.84
Our Universal 14.6 13.95 8.29 12.5 8.81 9.19 8.54 9.78 25.52 9.61 12.49 12.26 12.44 16.95 12.49

With mask
SDM-UniPS [15] 13.30 12.76 8.44 18.58 8.53 19.67 7.25 8.86 26.07 8.30 12.67 15.97 16.01 12.54 13.50
Our Universal 10.20 10.52 6.98 12.83 9.60 13.68 6.19 8.33 25.29 6.30 11.47 12.45 11.36 11.79 11.21

Table 9: Mean angular error (in degrees) on the Luces benchmark [30] without masking the background
before processing. For comparison the results with background is also show.

4.3 Qualitative evaluation

Next, to test the robustness of our Universal method in the most diverse contexts and environments, we
use several available qualitative datasets. We compare our Universal method only to SDM-UniPS [15] as
all other methods are not Universal. Indeed, Uni-PS [11] is a Universal PS method, but its performance
is below SDM-UniPS on all quantitative datasets, so it is not of interest to compare to it. Note that in
this section, we only focus on inference with masked backgrounds.

Overall, the results seem good for both methods, but our Universal method outperforms SDM-UniPS
on surface details (see Figures 11 and 12). In the Owl object in Figure 11, the results seem similar, but
when zooming on the talons, artifacts appear on the prediction of SDM-UniPS [15] which is not the case
with our Universal method. Finally, with our multi-scale method, the results remain good regardless of
the resolution. For example, in Figure 13 and 14, the images resolution are really high and our Universal
method obtains excellent results. Our method performs way better than SDM-UniPS [15] especially on
nearly ’flat’ objects like the ceramic (Figure 13).
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SDM-UniPS [[15]] Our

Figure 8: Comparison on the Alligator object of SDM [15] and the Reading objet of DiLiGenT [36] with-
out masking background. We can see that considering the background does not degrade reconstruction
of normals. We reconstruct more accurate details than SDM [15].

4.4 Limitations

The main limitation of Universal/Uncalibrated methods is the normal map reconstruction on translucent
material like acrylic. None of the state-of-the-art methods give accurate reconstruction. Indeed, as the
material is translucent, it is very difficult to know from which side the light is coming. For example, in
some objects like acrylic balls, the light passes through the ball. So it is actually really hard to determine
if the light source is located on the left or the right of the ball. Another example is shown in Figure
9a. Without any prior knowledge of the object shape, it is difficult to find out precisely where the light
is coming from. This greatly impacts methods for uncalibrated PS, as the two opposite incoming light
directions would lead to the perfectly opposite normals. So, our Universal method can be improved on
this type of material.

5 Conclusion

To conclude, we propose a new multi-scale approach based on Transformers with encoder and decoder
for each scale. Our method gives excellent results over a large panel of benchmark datasets with a large
diversity of acquisition setup and environments which show its robustness. Our method also shows its
capacity to manage very high resolution image to get the smallest details of the geometry and to keep
very high normal reconstruction performance.

Acknowledgment This work was granted access to the HPC resources of IDRIS under the allocation
2022-AD010613775 made by GENCI.
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(a) Gamma corrected image

(b) UNI-PS [[11]] (c) SDM-UniPS [[15]]

(d) Our calibrated Transformer (e) Our Universal Transformer

Figure 9: Normal prediction of our methods, SDM-UniPS [15] and Uni-PS [11] on the Lung object of
[39]. We can see that this material is challenging for uncalibrated and Universal approaches because of
the light reflection. Indeed, normal maps are inverted.
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(a) Gamma corrected image

(b) UNI-PS [[11]] (c) SDM-UniPS [[15]]

(d) Our calibrated Transformer (e) Our Universal Transformer

Figure 10: Normal prediction of our methods, SDM-UniPS [15] and Uni-PS [11] on the Whale object of
[39]. Our Universal method gives the correct normal orientation. The other uncalibrated and Universal
approaches fail, inverting the normals orientations.
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SDM-UniPS [[15]] SDM-UniPS [[15]] Our Universal Transformer

Figure 11: Comparison on objects without ground truth from [11, 15]. The first column is the RGB
images, the second one is the SDM method [11] and the last one is our method. Then, for all object, we
present the full image and a zoom part. For all objects, we reconstruct more accurate details than SDM
[11].
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SDM-UniPS [[15]] SDM-UniPS [[15]] Our Universal Transformer

Figure 12: Comparison on objects without ground truth from [38, 25]. The first column is the RGB
images, the second one is the SDM method [11] and the last one is our method. Then, for all object, we
present the full image and a zoom part on the next line. For all objects, we reconstruct more accurate
details than SDM [11].
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SDM-UniPS [[15]]

Our

Figure 13: Visual comparison beetween SDM-UniPS [15] method and our Universal method on the
Seasons mosaic object. The image resolution is 5 500 by 8 200 pixels. We can see that our method can
manage very high images and outperforms SDM-UniPS [15] in terms of normal map reconstruction.
PS image credits: A. Laurent (INRT, UMR 5055 IRIT)/MAN.
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SDM-UniPS [[15]]

Our

Figure 14: Visual comparison beetween SDM-UniPS [15] method and our Universal method on the Sweet
object of [15]. The image resolution is 4 000 by 4 000 pixels. We can see that our method can manage
very high resolution images and outperforms SDM-UniPS [15] in terms of normal map reconstruction.
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