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Abstract
We address three crucial issues encountered in DT-MRI
(Diffusion Tensor Magnetic Resonance Imaging) : diffu-
sion tensor Estimation, Regularization and fiber bundle Vi-
sualization. We first review related algorithms existing in
the literature and propose then alternative variational for-
malisms that lead to new and improved schemes, thanks to
the preservation of important tensor constraints (positivity,
symmetry). We illustrate how our complete DT-MRI pro-
cessing pipeline can be successfully used to construct and
draw fiber bundles in the white matter of the brain, from a
set of noisy raw MRI images.

1. Introduction
The recent introduction of DT-MRI (Diffusion Tensor Mag-
netic Resonance Imaging) has raised a strong interest in the
medical imaging community [3, 15]. This non-invasive 3D
modality consists in measuring the water molecule motion
within the tissues, using magnetic resonance techniques.
Basically, it is based on the rendering of multiple raw MRI
images Sk : Ω ⊂ R

3 → R using pulse sequences based
on several gradient directions and magnitudes (at least 6
noncolinear directions are needed). Moreover, an additional
image S0 is measured without preferred gradient direction
(Fig.1a). Note that these Sk may be quite noisy, due to the
high speed needed for these multiple MRI acquisitions.
This large set {Sk, k = 0...n} of raw data is then estimated
into a corresponding volume T : Ω ⊂ R

3 → P(3) of
Diffusion Tensors (i.e 3x3 symmetric and positive-definite
matrices) that describe through their spectral elements,
the main diffusivities λ1, λ2, λ3 (with λ1 ≥ λ2 ≥ λ3)
and the corresponding orthogonal directions u,v,w of
the water molecule diffusion process in tissues such as
bones, muscles and white matter of the brain (Fig.1b).
∀x, y, z ∈ Ω, T(x, y, z) = λ1uu

T + λ2vv
T + λ3ww

T .
Depending on the characteristics of the tissue, the diffusion
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(b2) Part of the tensor field, represented with 3D
ellipsoids.

Figure 1. Principle of DT-MRI Imaging

(and then the estimated tensors) can be isotropic, for
instance in the areas with fluids such in the CSF filled
ventricles, or anisotropic as in the white matter of the
brain where the diffusion is mainly performed in the
direction of the neuron fibers [16, 37, 38]. DT-MRI is then
particularly well adapted to study the neuron connectivities
within white matter, by tracking the fiber directions given
pointwise by the principal eigenvector u(x, y, z) of the
tensor T(x, y, z).
Actually, retrieving the fiber bundles from the raw images
Sk involves a lot of subjacent processes : First the estima-
tion part that computes the tensor field T from the set of raw
MRI volumes Sk. As the estimation result may be noisy,
a tensor field regularization process can be necessary. Fi-
nally, fibers must be tracked and visualized, in a practical
and understandable way. In this paper, we propose a survey
of existing methods trying to solve these issues and we in-
troduce new variational frameworks that take important ten-
sor structural constraints into account, resulting in improved
algorithms for these three decisive steps in DT-MRI. We fi-
nally illustrate how our stand-alone set of approaches can



be used as a pipeline to obtain fiber tracking results from
synthetic and real raw MRI datasets of the brain.

2. Estimation of Diffusion Tensors

2.1. Review of existing methods

Estimating a field of 3×3 diffusion tensors (symmetric and
positive-definite matrices) from a set of raw MRI images
Sk : Ω → R is usually done by solving for each voxel the
Stejskal-Tanner equation [24] :

∀(x, y, z) ∈ Ω, Sk(x,y,z)
= S0(x,y,z)

e −gT
k T(x,y,z)gk (1)

where gk ∈ R
3 is the vector whose coordinates represent

the pulse gradient direction/magnitude, used for the acqui-
sition of the volume Sk. Classical methods for computing
the tensor T from the images Sk are as follows :
• Direct tensor estimation : Authors in [36, 38] proposed
an elegant closed-form to estimate the tensors T directly
from a set of 7 raw images. Their method is based on the
decomposition of T into a specific orthonormal tensor basis
g̃kg̃k

T computed as the dual basis of { gkg
T
k | k = 1..6 },

the original basis used for the measurement of the Sk :

T =
∑6

k=1 ln
(

S0

Sk

)

g̃kg̃k
T (2)

Unfortunately, only 7 images S0, ..., S6 can be used to es-
timate the tensor field T. As illustrated in Fig.2c, this low
number of images may be not sufficient for a robust estima-
tion of T especially if the Sk are corrupted with noise.
• Least square estimation (LS) : It is the most classi-

cal method used for diffusion tensor computation [2, 20].
The tensors T are estimated by solving the following least
square criterion,

minT∈M3

∑n
k=1

(

ln
(

S0

Sk

)

− gT
k Tgk

)2

(3)

which leads to the resolution of an overconstrained system
Ax = B (where x is a vector containing the six unknown
coefficients of T). The LS method is more robust, since all
the n available raw images Sk (usually n > 7) are used for
the tensor estimation.
Note that both methods do not take the prior positive-
definiteness constraint of the tensors T into account. For
the case of noisy raw images, nothing prevents the estima-
tion process to compute negative tensors. Practically, one
solution could be to reproject the negative tensors into the
positive tensor space after such estimation method. This is
generally done by forcing negative eigenvalues of the ten-
sors to zero. Note also that both estimation processes are
purely pointwise : no spatial interactions between tensors
are considered.

2.2. A variational approach

We propose to avoid these important drawbacks by using a
variational approach that estimates the tensor field T while

introducing important priors on the tensor positivity and
regularity. Our idea is based on the positive-constrained
minimization of the following functional :

min
T∈P(3)

∫

Ω

n
∑

k=1

ψ
(
∣

∣

∣
ln

(

S0

Sk

)

− gT
k Tgk

∣

∣

∣

)

+ α φ(‖∇T‖) dΩ

(4)
where ψ : R → R is a function allowing a robust ten-
sor estimation, φ : R → R is an increasing function act-
ing as an anisotropic regularizer of the tensor field, α ∈
R is a user-defined regularization weight and ‖∇T‖ =

(
∑

i,j ‖∇Ti,j‖2)
1
2 stands for the classical Frobenius matrix

norm. Note that if ψ(s) = s2 and α = 0, we minimize
the LS criterion (3), but with a positive solution since our
minimization is done on the constrained space P(3) of the
positive tensors. Following our previous works in [9, 27],
the gradient descent (PDE) that minimizes (4) in P(3) is :

{

T(t=0) = Id (3 × 3 identity matrices)

∂T

∂t
= (G + G

T )T2 + T
2(G + G

T )
(5)

where G corresponds to the unconstrained velocity matrix
defined as : Gi,j =

∑n

k=1 ψ
′

(|vk|)sign(vk)
(

gkg
T
k

)

i,j
+

αdiv

(

φ
′

(‖∇T‖)
‖∇T‖ ∇Ti,j

)

, with vk = ln
(

S0

Sk

)

− gT
k Tgk.

Eq.(5) ensures the positive-definiteness of the tensors T for
each iteration of the estimation process. Moreover, the reg-
ularization term α introduces spatial regularity on the esti-
mating tensor field, while preserving important physiolog-
ical discontinuities, thanks to the anisotropic behavior of
the φ-function regularization formulation (as described in
the broad literature on anisotropic smoothing with PDE’s,
see [1, 23, 26, 34] and references therein). Concerning the
implementation part, a specific reprojection-free numerical
scheme based on matrix exponentials can be used for this
PDE flow (5) (see [9, 10] for more details) :

T(t+dt) = A
T
T(t)A with A = exp

(

T(t)(G + G
T )dt

)

Our iterative method starts then from a field of isotropic
tensors that are evolving in P(3) and are morphing until
their shapes fit the measured data Sk. The respect of the
positiveness and regularity constraints has a large interest
for DT-MRI estimation, and leads to more accurate results
than with classical methods (illustration on Fig.2c,d,e, with
the estimation of a synthetic field). For our experiments,
we chose ψ(s) = log(1 + s2) (“Lorentzian” function), and
φ(s) =

√
1 + s2 (“Hypersurface” function, [8]) which gave

the best estimation results. Note that very recently, a simi-
lar variational approach for tensor estimation has been pro-
posed [32]. But the proposed method doesn’t deal with var-
ious estimator and regularizer functionals and doesn’t esti-
mates the tensors in the constrained space P(3), leading to
the possible computation of negative tensors.



3. DT-MRI Regularization
The regularization term in eq.(5) acts as a matrix spatial
regularizer. After the estimation process, it can be in-
teresting to regularize more precisely the tensor field and
more particularly its spectral features. Indeed they are the
relevant informations (diffusivities and tensor orientations)
used for the fiber tracking and for the computation of in-
teresting physiological indices such as the mean diffusiv-
ity λ̃ = 1

3 (λ1 + λ2 + λ3) or the Fractional Anisotropy

FA = ( 3
2

(λ1−λ̃)2+(λ2−λ̃)2+(λ3−λ̃)2

λ2
1+λ2

2+λ2
3

)
1
2 that characterizes

different biological tissues. Regularizing a DT-MRI volume
helps then for the retrieval of more coherent tensor struc-
tural informations.

3.1. Review of existing methods

The problem of DT-MRI regularization/denoising with
PDE’s has been recently tackled in the literature. Proposed
algorithms can be grouped in two classes :
• Non-spectral methods are either based on a direct

anisotropic smoothing of the raw image data Sk [31], or di-
rectly the 3×3 matrix field describing the estimated tensors
[35], while taking eventual coupling between these multi-
valued components into account. Such methods have to be
applied carefully : Tensor diffusivities and orientations are
regularized at the same time, and diffusivities may be reg-
ularized more fastly than tensor orientations, leading to an
eigenvalues swelling effect, as described in [27].
• Spectral methods are based on the separate regulariza-

tion of the tensor eigenvalues and eigenvectors. The field
of diffusivities Ω → (λ1, λ2, λ3) may be considered as a
vector-valued image, and treated with one of the numerous
existing regularization PDE’s, preserving the positivity of
the values (see [14, 23, 26, 29, 34] and references therein).
The regularization of the tensor orientations is more ardu-
ous, since it must act on three orthonormal eigenvectors (or
equivalently on orthogonal 3 × 3 matrices). In [13, 27],
the authors proposed PDE’s acting either on the principal
eigenvector u (then a tensor reconstruction is needed), or
directly on the field of orthogonal matrices R = (u|v|w)
corresponding to the tensor orientations. In both cases, pro-
posed methods suffer from the problem of eigenvector re-
alignment : a spectral decomposition of a tensor field T

is not unique and can give discontinuous orientation fields
u,v,w, even if T is perfectly continuous. This requires
then time-consuming realignement for each PDE iteration.

3.2. A fast spectral method

Following our previous work in [9], we propose a simple
way to avoid this eigenvector discontinuity problem. Our
alternative approach is based on the fact that restoring ten-
sor orientations do not necessarily need the computation of
the eigenvectors. The idea lies on the use of an isospectral

flow, that regularizes the tensor field while preserving the
eigenvalues of the considered tensors. As a result, only ten-
sor orientations are regularized. As we measure directly the
tensor field variations from the gradients of the matrix co-
efficients, no false discontinuities have to be managed. The
general form of an isospectral flow is (see [9, 11, 12]) :

∂T

∂t
= [T, [T, (G+G

T )]] with [A,X] = AX−XA (6)

Here, we choose the matrix-valued term G to correspond
to the desired regularization process : G = (Gi,j) with

Gi,j = div

(

φ
′

(‖∇T‖)
‖∇T‖ ∇Ti,j

)

, where φ(s) =
√

1 + s2 is a

classical φ-function leading to discontinuity-preserving reg-
ularization [8]. Note that other regularization terms G may
be suitable, as those proposed in [14, 23, 26, 29, 34]. In-
deed, Eq.(6) is a really general formalism to work only on
diffusion tensor orientations. A specific reprojection-free
scheme based on matrix exponentials can be also used to
implement the isospectral PDE (6) :

T(t+dt) = A
T
T(t)A with A = exp

(

dt[G + G
T ,T(t)]

)

The use of two regularization processes (one for the tensor
diffusivities, and one for the tensor orientations) allows us
to get a better regularization control on the important struc-
tural informations of the tensors. This is a natural com-
plement to the simpler regularization technique used in our
estimation method (4).

4. Fiber Visualization
DT-MRI images are well suited to study the fiber network
in the white matter of the brain. The need to visualize such
fibers bundles has recently raised a strong interest for spe-
cific visualization techniques dedicated to this issue. Com-
mon visualization methods used with DT-MRI images are :
• Ellipsoids are the natural representations of diffusion ten-
sors. They are well adapted to see independently each DT-
MRI voxel, and its spectral elements. Nevertheless, they are
not suitable to display large fields because of the high num-
ber of ellipsoids needed : as illustrated on Fig.2m (left),
displays of large fields with ellipsoids can be confusing.
• Streamlines are parametric representations of the fibers.

They are constructed from the tensor field by drawing lines
following the diffusion tensor principal orientations u. Well
adapted for displaying fibers of medium-size parts of the
tensor field, they can also be confusing for larger ranges of
view (Fig.2m (right)).
• LIC (line integral convolution). As proposed in [6, 17],

the idea is to integrate a noise texture in the direction
of the principal tensor direction, leading to a texture-
representation of the flow. It is more adapted to display
fibers in larger DT-MRI regions, but is a time-consuming
process.



We propose here an alternative method to the LIC, based on
regularization PDE’s. The idea is as follows. We first com-
pute a noisy 3D volume I0 : Ω̃ → R where Ω̃ designates a
scaled version of the original DT-MRI domain Ω. Then, we
apply this specific PDE flow :

∂I
∂t

= trace (DH) (7)

where D : Ω → P(3) is a diffusion tensor field computed
as D = uu

T + g(FA) (Id − uu
T ), where u is the prin-

cipal direction of T, Id is the 3 × 3 identity matrix and
g : [0, 1] → [0, 1] is a decreasing function. This equa-
tion (7) has the interesting property of smoothing the im-
age I in the principal directions of the tensors where they
are anisotropic (i.e. FA(x, y, z) >> 0), while perform-
ing an isotropic smoothing where tensors are isotropic (i.e.
FA(x, y, z) ' 0). Recently in [26, 30], we proved that this
trace-based equation has an interpretation in terms of lo-
cal smoothing, which is not always the case for equivalent
divergence-based operators (as the one recently proposed in
[5, 22]). The PDE (7) constructs iteratively a scale-space
textured representation of the fibers and has to be stopped
after a finite number of iterations. Then, we can multiply the
pixels of the obtained image by the Fractional Anisotropy
FA in order to highlight the regions of high density fibers
(as done on Fig.2n,o, at two different scales).

5. Applications

We applied our three proposed algorithms for DT-MRI pro-
cessing with synthetic and real data (of the white matter of
the brain). Our real dataset is composed of 31 images with
a resolution of 128× 128× 56, corresponding to raw mea-
surements in 6 gradient directions, each with 5 increasing
magnitudes (courtesy of CEA-SHFJ/Orsay, France) 1 . Re-
sults are illustrated on Fig.2.
• Tensor Estimation : From a synthetic tensor field

(Fig.2b), we generated its corresponding raw MRI measures
(31 images), that we corrupted with gaussian noise (Fig.2a
shows a subset of 6 of these raw images). We illustrate the
results obtained with the three different estimation meth-
ods presented in this paper. It is clear that our variational
method is more robust to the noise, thanks to the respect of
the prior positivity constraint, as well as the use of a spatial
regularizer during the tensor estimation.
• Regularization : The regularization of diffusion tensors

fields is illustrated with a synthetic and real case. The effect
of our isospectral flow is showed on Fig.2f,g,h. Despite the
high orientation noise that has been added to the synthetic
tensor field, no eigenvalue swelling effect appear, since we
act only on the orientation part. We also have a fine control

1The authors would like to thank J-F Mangin and J-B Poline for pro-
viding us with the data, as well as C. Chefd’hotel for our previous collab-
orations that inspired the algorithms proposed in this paper.

on the diffusivity part (Fig.2i,j), that allows us to compute
for instance denoised fractional anisotropy FA. A detail of
the corpus callosum is presented in Fig.2k,l. Note that with
the regularized field, we retrieve much more coherent fiber
networks.
• Visualization : As explained in section 4, our PDE-based
technique is usefull to generate large representation of fiber
bundles. The directions of the fibers are clearly visible in
the create texture image, whereas the parametric represen-
tation for the same region is more confusing. (Fig.2m,n,o).

6. Conclusion
We proposed a complete set of DT-MRI processing tools
that proposes alternative formulations to classical algo-
rithms encountered in important issues of DT-MRI imag-
ing : We introduced the positive-definiteness constraint for
the tensor estimation part and we proposed specific regu-
larization methods, respecting the important spectral fea-
tures of the tensors. Both processes use adapted numerical
schemes avoiding any constraint-preservation problems and
speeding up the computation. Finally, texture-based gener-
ation of the fibers has been proposed, allowing to visualize
easily DT-MRI fiber networks at multiple scales.
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