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ABSTRACT

We present a robust method to retrieve neuronal fibers in hu-
man brain white matter from High-Angular Resolution MRI
(HARDI datasets). Contrary to classical fiber-tracking tech-
niques done on the traditional 2nd-order tensor model (DTI)
which may lead to truncated or biased estimated diffusion di-
rections in case of fiber crossing configurations, we propose
here a more complex approach based on a variational estima-
tion of Orientation Diffusion Functions (ODF) modeled with
spherical harmonics. This kind of model can correctly re-
trieve multiple fiber directions corresponding to underlying
intra-voxel fibers populations. Our technique is able to con-
sider the Rician noise model of the MRI acquisition in or-
der to better estimate the white matter fiber tracks. Results
on both synthetic and real human brain white matter HARDI
datasets illustrate the effectiveness of the proposed approach.

Index Terms— Diffusion MRI, Variational methods and
PDEs, ODF estimation, Fiber-tracking

1. INTRODUCTION

Diffusion Magnetic Resonance Imaging (dMRI) [1] is a non-
invasive method to observe the Brownian motion of water
molecules constrained by neuronal tissues in vivo within the
brain. Diffusion Tensor Imaging (DTI) is a well-known par-
ticular case of such a modality which maps each voxel signal
to a 2nd-order tensor model [2]. It implicitly assumes that the
diffusion is Gaussian everywhere, which is wrong and leads
to serious limitations when estimating intra-voxel diffusion
configurations where more than one single fiber direction pre-
dominates, like in crossing or kissing fibers patterns. In order
to overtake this significant shortcoming, higher order diffu-
sion model have been considered so far. Historically, Stejskal
and Tanner were the first to show the exact relation between
the diffusion signal and the diffusion probability density func-
tion (PDF) [3]. More recently, Tuch proposed the Q-Space
Imaging (QSI) technique based on the inverse Fourier Trans-
form to estimate the PDF. Unfortunately, this method has sig-
nificant restrictions essentially because of the long acquisi-
tion time needed to sample the whole q-space. Considering
QSI limitations, High Angular Resolution Diffusion Imaging
(HARDI) comes as an interesting alternative as it samples the
diffusion signal only on the single sphere following discrete
gradient directions; and consequently needs less time. Liu

et al. [4] proposed a generalization of DTI based on the ex-
pansion of Fick’s diffusion laws to higher order. However
in practice, this methods requires to sample several q-space
single spheres at different gradient strenghts and undesirably
increases the number of acquisitions. Tuch in [5] proposed to
measure diffusion orientation through the Orientation Distri-
bution Function (ODF) defined as the radial projection of the
spherical diffusion function from HARDI data. Given a unit
spatial direction u ∈ R3, Ψ(u) is the radial projection of the
PDF on the line directed by u. Thus, the exact ODF Ψ can be
written without loss of generality with u taken as the z-axis,
as

Ψ(u) =
∫∞

o
P (αu)dα =

∫
P (r, θ, z)δ(θ, z)rdrdθdz (1)

Tuch [5] showed that the Funk-Radon transform (FRT) G from
the raw HARDI data approximates the ODF on the Q-space
single sphere:

Gq′ [S(q)](u) = 2πq′
∫
P (r, θ, z)J0(2πq′r)rdrdθdz (2)

where J0 stands for the zeroth-order Bessel function. Con-
sequently, the estimated ODF in a direction u is given by the
great integral over the diffusion signal on the plane orthogonal
to u. This leads to an interesting model-free method known as
Q-Ball Imaging to retrieve orientation diffusion informations,
contrary to the model-based methods which implies a strong
a priori knowledge about the local fiber configuration. Once
having estimated diffusion directions, an interesting applica-
tion of diffusion MRI consists in retrieving neuronal fibers in
brain white matter by the mean of a so called fiber-tracking
algorithm. This is classically done by computing the integral
curve of interpolated DTI dominant eigenvectors [6, 7]. How-
ever, these methods are very sensitive to noise since it always
suppose that the dominant eigenvector is correct. Noise issue
was tackled in [7, 8, 9] who proposed to apply regularization
schemes on tensor or principal direction before applying the
fiber-tracking step. One of the main limitation of the DTI
model is that it is not able to retrieve several intra-voxel fiber
distributions, leading to wrong or biased estimation of domi-
nant fiber directions. On the other hand, recent higher order
models as ODF fields are promising for estimating correct
neuronal fibers.
In the following sections, we quickly remind the linear esti-
mation technique of the ODFs introduced by Descoteaux et
al. [10] (section 2.1). In section 2.2, we present our contri-
bution, i.e. a new variational framework for a more robust



estimation of the ODF field. It has the advantage of being
nonlinear, allowing to estimate and regularize simultaneously
a whole volume of ODFs. We highlight the importance of a
robust ODF estimation considering regularization constraints
on fiber-tracking in section 3. We finally illustrate this model
by validating results on synthetic and human brain HARDI
data.

2. ROBUST ESTIMATION

2.1. Linear estimation
Descoteaux et al. [10] recently proposed an elegant analyti-
cal method based on the Funk-Hecke theorem to calculate the
great integral of the FRT from a signal expressed in a spheri-
cal harmonics (SH) modified basis. It is a set of orthonormal
functions to describe complex functions defined on the unit
sphere and constrained to be symmetric and real [10, 11, 12]
as these are known diffusion signal properties. Thus, let Yj of
degree j be a spherical harmonic, any function χ defined on
the unit sphere ∀(θ, φ) ∈ Ωχ = [0, π]× [0, 2π) , χ : Ωχ → R
can be described as:

χ(θ, φ) =
∑N

j=0 cjYj(θ, φ) = B̃Cj(p)(θi, φi) (3)

where N corresponds to the highest degree of the decompo-
sition into spherical harmonics, B̃ is a matrix of SH functions
Yj and C : R3 → RN be the vector of coefficients of spheri-
cal harmonics at voxel p = (x, y, z).
Let S : R3 → Rns be the vector field of diffusion signal in
ns discrete directions on the sphere. Descoteaux et al. [10]
proposed to fit the signal with a continuous spherical function
by a least square minimization

minC∈ΩS
||S(p)(θi, φi)− B̃C(p)(θi, φi)||2 (4)

where θi, φi follow gradient discretization of the diffusion
signal on the single sphere. Best fitting coefficients C are then
given by a modified Moore-Penrose pseudo-inverse scheme.

C(p) = (B̃T B̃ + λL̃)−1B̃T S(p) (5)

where λ is the weight term on the frequential regularization
matrix L̃. At this point, we have a continuous spherical func-
tion fitting the diffusion signal. We want now to recover the
ODF which gives the orientation of the diffusion. Descoteaux
et al. [10] showed that the FRT approximating the ODF can
be expressed using the SH basis, by:

Gq′ [S(p)(q)] = P̃ B̃C(p) =
∑

j

[
2π

Plj
(0)

Plj
(1)

]
cj(p)Yj(p) (6)

where P̃ a N -rank order diagonal matrix, and Plj are asso-
ciated Legendre polynomials at order lj (value of l knowing
j). P̃ is a transition matrix from Q-space signal to diffusion
probability space.
The spherical harmonics are a powerful tool to recover an ap-
proximation of the ODF. However, MRI noise distribution

follows a Rice distribution [13] not a Gaussian one. There-
fore, a least square fit is definitely not the best choice for
such an estimation process. Furthermore, estimation is made
voxel-by-voxel and does not reflect the spatial regularity of
the diffusion function. Hence, our contribution is a variational
framework which is adaptable to MRI noise distribution and
able to use valuable informations of the neighbour voxels.

2.2. PDE-based estimation
The key idea is to estimate and regularize the whole volume
of voxels at the same time. It is worth to mention that similar
methods have been proposed for the regularization of DTI [9,
14] and apparent diffusion coefficient (ADC) [15]; yet none
is able to take advantage of the informations provided by the
ODFs.
Let C : ΩC ⊂ R3 → RN be the volume of spherical harmon-
ics coefficients, ns ∈ R be the number of gradient directions
and B̃ be the matrix of size (ns, N)

B̃ =

 Y1(θ1, φ1) . . . YN (θ1, φ1)
...

. . .
...

Y1(θns
, φns

) . . . YN (θns
, φns

)

 (7)

We propose to robustly estimate and regularize the ODF field
simultaneously by minimizing this nonlinear functional en-
ergy E defined as:

min
C∈ΩC

{
E(C) =

∫
ΩS

[
ns∑
k

ψ(|Dk|)

]
+ αϕ(||∇C||)dΩS

}
(8)

where Dk at voxel p is Dk(p) = Sk(p) −
∑

j P̃
−1
j B̃k,jCj(p)

is a data attachment term which measures the differences be-
tween the raw signal and its ODF estimation at gradient di-
rection k, ψ : R → R+ and ϕ : R → R+ are real and
positive functions, α ∈ R is the regularization weight and
||∇C|| the gradient norm defined as ||∇C|| =

∑
j ||∇Cj ||.

Note that if ψ(s) = s2 and α = 0 in (8), we minimize the
LS criterion (5, corresponding to the Descoteaux’s method
with λ = 0). Yet, as MRI noise follows a Rician distribution,
least square criterion is not the best choice. The ψ function is
defined to support a robust ODF estimation and regularization
preserves contours between different fiber distribution regions
using the gradient norm ∇||C||. Indeed, Frank in [12] points
out that the spherical harmonics basis is well adapted to char-
acterize anisotropy since its coefficients characterize isotropic
(j = 0), one-fiber (j = 1), and several fibers (j >= 2) diffu-
sions. As the minimization cannot be computed straightfor-
wardly, the gradient descent coming from the Euler-Lagrange
derivation of (8) leads to a set of multi-valued partial derivate
equation (PDE) (9). In order to estimate a solution, SH coeffi-
cients velocity ∂C

∂t giving the direction from the current Ct to
a solution is computed. The latter is done several times until



convergence (typically when ε→ 0, ∂C
∂t < ε,).

∂Cj

∂t = P̃−1
j

∑
k ψ

′(|Dk|) sign(Dk)B̃k,j

+α div(ϕ(||∇C||))
(9)

The initial estimate Ct=0 = U0 is computed either by con-
sidering a random field or a more structured one. A good
choice is to start from an initial set which is not so far from
the global minimum; so the linear LS estimation (5) seems
to be an adequate alternative. Indeed, LS minimization is the
global minimum when ψ(s) = s2 and α = 0. One can ex-
pect the minimum to be close enough to the LS minimum
through variations of ψ and ϕ (c.f . Fig.1.(e/f)); and should
consequently bring down the number of iterations required to
converge.

3. FIBER-TRACKING
DTI-based fiber-tracking has been widely used [6, 7, 8, 9]
but it has significant drawbacks when dealing with intra-voxel
structures. Indeed, not only DTI cannot model crossing or
kissing fibers but it also estimates wrong directions in the case
of multiple fiber configurations. On the contrary, ODF does
not fall into this restrictions. Nevertheless, although the issue
of robust fiber-tracking has received numerous contribution
with DTI model it is still an open problem when using ODFs.
In order to illustrate the influence of a robust ODF estimation
on fiber-tracking, we propose a model for retrieving neuronal
fiber in brain white matter.
A way to do fiber-tracking is to use estimated displacement
due to diffusion which is given by the ODF in order to find
dominant directions. Once directions are retrieved, only one
is kept based on a a priori on the fibers distribution, resulting
in a diffusion tensors field w. A line integration scheme is
needed to propagate a fiber along a curve C through the ten-
sors volume (c.f . Fig.1). One may want to use Euler method

Ca+h = Ca + hwa +O(h2) (10)

where a is the current position in the curve C and h is the inte-
gration step. In practice, Euler’s method is not stable and pre-
cise and so Runge-Kutta comes as an interesting alternative.
This method can be seen as the result of reduction in preci-
sion of a curve C′ more precise than C because of a smaller
integration step

Ca+h = Ca + k1
6 + k2

3 + k3
3 + k4

6 +O(h5) (11)

where ki are the slope estimated in a+i/4h. Actually, fourth-
order Runge-Kutta is by far the most precise and is the one we
used on our tests.
Besides, we assume that there are no neuronal fibers in water
regions of the brain, and consequently there is a need to iden-
tify this regions. Generalized Fractional Anisotropy (GFA)
(c.f . bottom of Fig.1.a) as proposed by Tuch in [5] measures
the variation within the diffusion as a spherical function. It

can be expressed in the spherical harmonics basis which has
the advantage to be much faster to compute.

GFA = std(Ψ)
rms(Ψ) =

√
1− c2

0PN
j=0 c2

j

(12)

This gives a convenient way to measure apart isotropic from
anisotropic area; therefore we used it to stop fiber line inte-
gration when arriving in water area, i.e. when GFA is below
a threshold.

4. APPLICATIONS
For all our experiments, we used the robust estimation func-

tion ψ(s) = 1− e(−
s2
κ1

) and the discontinuity-preserving reg-
ularization function ϕ(s) = 1

1+s2/κ2
, where κ1 and κ2 are

two thresholds depending on the value range of the original
HARDI dataset. Please refer to [16] for a function ψ specific
to MRI Rician noise. We first present results of our varia-
tional framework on synthetical HARDI data created using a
Gaussian multi tensor model [11] to simulate n fibers cross-
ing. Discretization of the sphere (72 directions) was obtained
from the subdivision of a regular icosahedron. Our synthetic
data simulate horizontal and vertical fibers (respectively right
and top in Fig.1) merging into one horizontal fiber (left in
Fig.1). From the several fibers distributions estimated, we
retrieved one using a simple a priori, i.e. to follow the di-
rection which is the most vertical. As expected, DTI is not
able to retrieve correctly the profile of any underlying fiber
as shown in Fig.(1.b). Instead, it estimates a wrong direc-
tion, which is a mixture of the two main directions from each
fiber distribution. Therefore the estimated fiber is a fictive one
since a correct path in this dataset would be either horizontal
or going vertical. Fiber-tracking on ODF does not have this
problem, but it is sensitive to noise. However our variational
method successfully estimates the ODFs field from noisy data
(PSNR = 15dB), which leads to good fiber-tracking (c.f .
Fig.1.(e/f)).
We finally tested our estimation framework on a human brain
HARDI dataset, using a 1.5T MRI scanner with 31 gradient
directions and b = 500s/mm2. A comparison between DTI,
linear estimation and our variational framework is shown in
Fig.2 on an interesting brain white matter region as it is the
meeting place of several fibers. Our regularized three dimen-
sional estimation performs an enhancement of the contrast of
the diffusion function when there are underlying fibers, and
keeps water regions isotropic.

5. CONCLUSION
We proposed a robust tractography method with the use of
variational scheme to estimate ODFs from HARDI data. This
greatly improves the performance and the precision of the
results on very preliminary MRI noisy data. The ability to
recover reliable and accurate intra-voxel fibers distributions
within the human brain is promising and opens new perspec-
tives for studying more precisely the neuronal fiber network.



(a) GFA (b) DTI (c) LS

(d) noisy GFA (e) noisy LS (f) noisy PDE

Fig. 1. Crossing fibers distributions: estimation and fiber-tracking.

(a) FA (b) DTI (c) LS (d) PDE

Fig. 2. Comparison of estimation on frontal genu corpus cal-
losum meeting frontal gyrus.

Acknowledgments
The authors thanks CHU of Caen and GIN Cyceron for their data
and the fruitful discussions.

6. REFERENCES

[1] D. LeBihan, E. Breton, D. Lallemand, et al., “Mri of intravoxel
incoherent motions: Application to diffusion and perfusion in
neurologic disorders,” Radiology, pp. 401–407, 1986.

[2] P.J. Basser, J. Mattiello, and D. LeBihan, “Mr diffusion tensor
spectroscopy and imaging,” Biophysical Journal, vol. 66, no.
1, pp. 256–267, 1994.

[3] E.O. Stejskal and J.E. Tanner, “Spin diffusion measurements:
spin echoes in the presence of a time-dependent field gradient,”
Journal of Chemical Physics, vol. 42, no. 1, pp. 288–292, 1965.

[4] C. Liu, R. Bammer, B. Acar, and M.E. Moseley, “Charac-
terizing non-gaussian diffusion by using generalized diffusion
tensors,” Magn. Res. in Med., vol. 51, pp. 924–937, 2004.

[5] D.S. Tuch, “Q-ball imaging,” Magn. Res. in Med., vol. 52, no.
6, pp. 1358–1372, 2004.

[6] T.E. Conturo, N.F. Lori, T.S. Cull, et al., “Tracking neuronal
fiber pathways in the living human brain,” NAS of the USA,
1999, pp. 10422–10427.

[7] B.C. Vemuri, Y. Chen, M. Rao, et al., “Fiber tract mapping
from diffusion tensor mri,” Vancouver, Canada, 2001, VLSM.

[8] O. Coulon, D.C. Alexander, and S.R. Arridge, “A regulariza-
tion scheme for diffusion tensor magnetic resonance images,”
Davis,USA, 2001, ICIP, pp. 92–105.

[9] D. Tschumperle and R. Deriche, “Variational frameworks
for dt-mri estimation, regularization and visualization,” Nice,
France, 2003, ICCV.

[10] M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche,
“Adc from hard images: Estimation and applications,” Magn.
Res. in Med., vol. 56, pp. 395–410, 2006.

[11] D.C. Alexander, G.J. Barker, and S.R. Arridge, “Detection and
modeling of non-gaussian adc profiles in human brain data,”
Magn. Res. in Med., vol. 48, no. 2, pp. 331–340, 2002.

[12] L.R. Frank, “Characterization of anisotropy in high angular
resolution diffusion-weighted mri,” Magn. Res. Med, vol. 47,
pp. 1083–1099, 2002.

[13] H. Gudbjartsson and S. Patz, “The rician distribution of noisy
mri data.,” Magn. Reson. Med., vol. 34, pp. 910–914, 1995.

[14] A. Ramirez-Manzanares and M. Rivera, “A method for es-
timating brain nerve bundles, by restoring and filtering intra-
voxel information in dt mri data,” Nice, France, 2003, VLSM.

[15] Y. Chen, W. Guo, Q. Zeng, et al., “Estimation, smoothing, and
characterization of adc profiles from hardi,” CVPR, vol. 1, pp.
588–593, 2004.

[16] H-E. Assemlal, D. Tschumperlé, L. Brun, “A Variational
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