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ABSTRACT The paper is organized as follows : The preliminary sec-

We address the problem of temporal tracking fine pointiion 2 describes first a simple but efficiespatial tracking
like and filamentary structures exhibiting smooth motiams | technique which allows to retrievéamentary structurese-

image sequences. By taking these specific restrictions inl%)[’ed'r‘fg ﬁome smoothnehss propegleﬁrglimgétlspectrzl
account, we put forward an original tracking method base(grameo t e sequence. Then, we S! O_Wt atthisiaea canbeex-
on the search of integral lines in time-space structure terfended to thepatio-temporatiomain in order to trackoint-

sor fields. The method is simple and very efficient regardin%VisequeCts subject to smooth motions in the Wh,0|e sequence
computation time and tracking precision, which allows a-sub(Section 3). A modifiedit-order Runge-Kutta integration
pixel accuracy in both spatial and temporal domains. Wénethod [10] is thereby proposed to deal with the algorithm

suggest a numerical implementation of the algorithm WhiCHmpIemen_tatlon (section 4). By 'Fhe way, the combination of
is based on a modified constrained Runge-Kutta scheme. | th spatial and temporal tracking methods can be used to

performance and potential applicability are illustratedtigh track filamentary structures throughout an image sequence.

two real cases : the tracking of internal linear features in'V/e @PpPly the suggested techniques on two real physical ap-

composite materials observed with X-rays and the trackin@”cations (section 5). The first one concerns the tracking o
of granular-shaped objects moving in a gas flow internal linear features in composite material observe-on

) _ ray images in order to a better understanding of mechanical
Index Terms— Obiject tracking, Structure tensors, Integralforces in action. The second concerns the tracking of mixed
lines. granular objects moving in a gas flow for refining purposes.

1. INTRODUCTION
2. SPATIAL TRACKING

Automatic tracking of moving objects in image sequences is
a very challenging task and has a wide number of applicawe consider a multispectralD imageI : O ¢ R2 — R"
tions in digital image processing. Then this is not surpgsi (typically, n = 1 for scalar-valued and = 3 for color im-
that many different mathematical frameworks have been praages), containing a filamentary object such as one fiber of in-
posed so far in the literature to tackle the tracking problemterest we want to analyze. We denote Rythe ith vector
including now popularized Kalman filtering [7, 8, 14] and channel of the imagé&. Given an initialuser-definedseed
particle filtering [3, 6], among other techniques. In the in-point (zg, y0)” belonging to the fiber, the goal of the track-
stant case, we focus on a specific tracking application @mining is to retrieve the functiod : R — R? giving the spatial
at analyzing dynamic phenomena, which can be quantified byoordinate€’ ) = (z(s), y(s))T of all points composing the
the measurement sfnooth motionsf fine structuresn digi-  filamentary curve. The fiber is assumed to be smooth enough,
tally acquired multispectral image sequences. We are gnainland the tracking problem can be thereby formulated as finding
interested in the motion of pointwise or linear structusessh ~ the C! curveC such that :
as fibers. This setting is usually encountered in a wide range Cio) = (x )T
of physical studies, including application fields in chemyis { © 0,40
[9], applied mechanics [16] or medical imaging [2]. ac
Our application isnot subject to real-timeonstraints, and 95 — W)
the tracking algorithm proposed in this paper acts as a postvheres stands for the curvilinear abscissalondu ¢ ) €
processing method, having full access to forward and backs! is the unit tangent vector to the fiber, defined at least on
ward frame informations. However as the analyzed image sesach fiber poinC,). The fiber is said to be trackddrward
guences are generally composed of a huge amount of frameghens — +oo andbackwardwhens — —oo. A function
we particularly paid attention to the cost of the algorithhm i integration step is obviously needed to retrieve the fmafi

terms of computation time.

1)



In order to determine the tangent vectarg ., two nat- (20,40, 0) in one framef0 of the sequencs, find the posi-
ural assumptions are considered : First, the desired tdackeionsP ) = (z(s), y(s) t(s)) Of this pointin all frames, i.e at
object must be contrasted enough with respect to the imadeast whert,y € N. We assume that the tracked pointwise
background. Second, we assume that this filamentary struobject is contrasted enough and exhibits a smooth motion
ture is composed of pixels having roughly the same vectorthroughoutthe sequence. Then, the trajec®ry0, 7] — R3
valued intensity (color). For the scalar-valued case=(1), can be computed as the integration of a tangent vector field
u should be typically related to the isophote directﬁ%. w:Qx[0,7]—R3:

In a more general manner, we suggest to handle the multispec-

_ T
tral case £ € N) and to gain robustness to noise by choosing Py = (z0, 0, to)

u as theminimal eigenvectounit vector associated with the P
smallesteigenvalue) of the so-callesmoothed structure ten- 95 — W
sor G c(s)) located a¥,). G is defined as the field &f x 2 Thjs kind of tracking can be actually seen as a spatio-teaipor
symmetric and positive-definite matrices : tractography. The main challenge here consists in the ehoic
of the tangent vector fielev. Unfortunaly, the temporal ex-
G = (Z VIiVIiT> * Gy (2)  tension of the tracking methas not as simpl@s choosingv
i to be the minimal eigenvector of the structure tensor fieJd (2

or. or\T . ) of S (which is now a3 x 3 matrix). Intuitively, it would corre-
whereV/; = (a£ ay ) is the usual gradient vector of g50nq to compute the direction of smallest intensity vimiat
the channel;, andG,, is a normalizedD Gaussian kernel. in the image sequence viewed as a volumetric image. But
The structure tensor is a natural generalization of theigrad nothing ensures that thiD direction would have a non null
for multispectral images [5] and has shown to have severabmporal component. In fact, most of the smallest variation
good properties when used to retrigweltispectral isophote  are often encountered in the same frame as the current tracke
directions[15, 17]. G is defined on the whole domafd so  point, since objects we want to track are not perfectly point
asu, which can be thus seen as a vector fiald @ — S'  wise but are usually composed of regions with pixels having
whose value on a fiber poirdl,, gives the tangent vectors similar intensities. This is for instance the case for fidars
to C. Note that the smoothing parameteias a direct im-  Fig.1 and balls in Fig.2. As a result, the minimal eigenvecto
pact on the regularity of the eigenvector fieidand thereby of the3 x 3 structure tensor is generally not representative of
implicitely controls the regularity of the tracked fib€r In  the object motion only, but also of its spatial structureu3h
particular, higher smoothing may be used to get rid of fibemixing variations of all spatial and temporal axgsy, ) in
occlusion problems by reconstructing correct tangentorsct the same structure tensor is definitely not a good idea.
on occluded area.
For simple reasons, we assumed herethatorrectlyaligned The solution relies on the simultaneous but separateditrg.ck
As an eigenvector represents an orientation without natfon of the considered point in thiee, t) and(y, t) spaces instead
direction, the computed field can be in fact possibly dis- of considering the wholgD domain(z, y, ). We propose to
continuous, independantly from the valuecof This is any-  deduce the spatio-temporal tangent veetdsy analyzing the
way not an issue for the function integration step since we x 2 smoothed structure tensor fields,;, G,; both defined
only need the orientation information, as the trackingaire on the domairf x [0, 7] and computed as
tion is generally explicitely known (see Section 4). More-
over, it is interesting to notice that our filamentary stuet G, = (VS;
tracking algorithm have in common ideas with some existing
white matter tractography methods proposed in the field of e \T o N\T
diffusion-tensor MR? mgd)i/cal imagingp[Z]? The results ofou Wherevsi,, = (5 %), VS;, = (%b; Gr) arethe
filamentary structure tracking approachis illustrated igpn ~ two spatio-temporal gradients respectivelyint) and(y, t)

spaces. For each poifit, y,t) of the sequence, the minimal

3. EXTENSION TO TEMPORAL TRACKING eigenvectorat,, = (uat, var)” anduy, = (uyr, vye)" of
G.: andG,; give coherent measures on the spatio-temporal

Now, let us conside$ : Q x [0,7] — R™ as the multispec- Variation directions o. Mixing the directionsu,; andu,,

tral image sequence containing pointwise objects in motio@llows to retrieve a 900d_ approximation of the point motion,
we want to track. S is a volumeW x H x T of stacked @and ensures that the estimated motion tangent vecigoes
multispectral image frames. We limit ourselves to poinewis through time :

objects tracking since we are able now to detect filamentary vyt [var .
structures starting from a single point (see section 2). (4t [0yt ) Vat)
Similarly to the spatial case, the tracking problem is formuw =

lated as follows : considering an user-defined input pBint (Letlogel 0, )T g > vy and vy #0

‘”zt|

xt

VSE )+Gy and Gy = (VSiytVSi:Zt) *Go

xt

if |’U1t| < |’Uyt| and Vgt 7& 0




Intuitively, the tracking procedure reads as follows. Facle  Then, the next poirt ., 4,) is obtained by

curve point(z ), y(s), t(s)), We get two motion vectora,; i | ke | ke | ke

andu,, in the (z,¢) and(y, ) spaces, characteristic of how Clstas) =Cis) + g+ 5+ 35 + %

important is the estimated temporal motion alon@ndy.  |inear interpolation has been used successfully to estimat
The final motion vectow is then chosen mainly from the one the value of the vectow on inter-pixel coordinates.

that varies the less, and is extended todliedomain using  As noticed in section 2, only the orientationwfis relevant,
the data provided by the other. _ not its direction. To get rid of this direction, we have intro
It appears that this relatively simple motion vector conaput duced a realignement step before each tracking iteratioh, s
tion works surprisingly well in order to estimate the colmére that the estimated vectovs in the3 x 3 neighborhood of the

motion appearing in the image sequence. current point 4 are aligned with the one used for the previ-
ous iteration. It ensures that the tracking is done in a aatter
4. IMPLEMENTATION CONSIDERATIONS direction without half-turns.
The main issues concerning the numerical implementation of 5. APPLICATIONS AND RESULTS

the tracking algorithm are twofold.
Some results of our proposed spatial and temporal tracking
Computation of the 2 x 2 structure tensors : A classical algorithmis illustrated with two different applicatiorme for
way of estimating the structure tensor field consists in commechanical purposes with a sequence containing fibers, and
puting a smoothed version & = Y7 | v]fv]fT where the other for refining purposes, with a sequence of moving
VI = 2 (Liws1,) — Liw—1.) > Liwy+1) — Ligey—1))T isthe  pointwise granular-shaped objects.
classical central finite difference scheme of the imageigrad
ent. Here, we would rather suggest a slightly modified schemkiber Tracking : In [16], we have already described a com-
which advantagely uses the more precise forward and backlete image processing pipeline in order to separate and dis
ward finite difference schemes, while remaining symmetric :play internal structures of a composite material submitted
external stresses. Fibers composing this material arermgovi
" (vrvr evvre” vevr £ vreve”\  and must be tracked to understand their mechanical behavior
G = Z < t — 1 — — ) Image sequences of these moving fibers are acquired thanks to
=1

a specific X-ray video camera, then filtered using techniques
wherev I/ andvI? correspond to the classical forward and presented in [16], including a denoising step [15], a wavele
backward differences :

based image contrast enhancement step [12], followed by a
Morphological Component Analysis (MCA) [13], enabling
to distinguish between fiber components of the image. The
) and spatial and temporal tracking algorithms described inisect
2 and 3 have been succesfully applied to extract the shape of
) the fiber (Fig.1).

v/ ( Lio1,9) = Lita,y)
¢ Ii(w,y+1) - Ii(m,y)

vI? = ( Liw,y) = Liz—1,9)

i(zy) ~ lity—1) A . .
Granular-shape tracking : This example illustrates a refin-

The same kind of formulae is used to compute the spatiosry process, which consists in injecting a gas across a cata-
temporal structure tenso€s,; andG;. lyst moving bed (complete description of the experiment is
detailed in [9]). It involves a complex medium : a mix of
Curve integration : The problem consists in numerically in- granular material with a flowing gas inside. We have been in-
tegrating the equation (1). A classical Euler scheme woulggrested in a phenomena which lies inside the refinery reacto

consist in iterating : when a horizontal flow goes through a moving granular bed.
B Thanks to image analysis applied to experimental equipment
Clstas) = C(s) +ds Wie(s)) Dynamic features are extracted to characterize the ciritat

henomena; it is based upon the kinematics of the grains.

with ds, an user-defined integration step close to zero. A mor% . .
o . . . . Here, our algorithm enables the tracking of a granular-shap
precise integration algorithm has been obtained heregusin

the so-calledith-order Runge Kutta scheme [10]. It consists.ObJeCt through a gas flow. The resuilts are illustrated in the
o . . . : image sequence in Fig.2.
in introducing several interpolations of the motion vector

for one iteration :
6. CONCLUSION & PERSPECTIVES

k, =ds U_(C(S)), ko = ds u(C(s) + %),
We have proposed an original spatio-temporal tracking-algo

ks = ds u(Cs) + %), ky = dsu(Ce) + %) rithm which is very simple to implement. It does not need
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