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ABSTRACT

We address the problem of temporal tracking fine point-
like and filamentary structures exhibiting smooth motions in
image sequences. By taking these specific restrictions into
account, we put forward an original tracking method based
on the search of integral lines in time-space structure ten-
sor fields. The method is simple and very efficient regarding
computation time and tracking precision, which allows a sub-
pixel accuracy in both spatial and temporal domains. We
suggest a numerical implementation of the algorithm which
is based on a modified constrained Runge-Kutta scheme. Its
performance and potential applicability are illustrated through
two real cases : the tracking of internal linear features in
composite materials observed with X-rays and the tracking
of granular-shaped objects moving in a gas flow.

Index Terms— Object tracking, Structure tensors, Integral
lines.

1. INTRODUCTION

Automatic tracking of moving objects in image sequences is
a very challenging task and has a wide number of applica-
tions in digital image processing. Then this is not surprising
that many different mathematical frameworks have been pro-
posed so far in the literature to tackle the tracking problem,
including now popularized Kalman filtering [7, 8, 14] and
particle filtering [3, 6], among other techniques. In the in-
stant case, we focus on a specific tracking application aiming
at analyzing dynamic phenomena, which can be quantified by
the measurement ofsmooth motionsof fine structuresin digi-
tally acquired multispectral image sequences. We are mainly
interested in the motion of pointwise or linear structures,such
as fibers. This setting is usually encountered in a wide range
of physical studies, including application fields in chemistry
[9], applied mechanics [16] or medical imaging [2].
Our application isnot subject to real-timeconstraints, and
the tracking algorithm proposed in this paper acts as a post-
processing method, having full access to forward and back-
ward frame informations. However as the analyzed image se-
quences are generally composed of a huge amount of frames,
we particularly paid attention to the cost of the algorithm in
terms of computation time.

The paper is organized as follows : The preliminary sec-
tion 2 describes first a simple but efficientspatial tracking
technique which allows to retrievefilamentary structuresre-
specting some smoothness properties in asingle multispectral
frameof the sequence. Then, we show that this idea can be ex-
tended to thespatio-temporaldomain in order to trackpoint-
wiseobjects subject to smooth motions in the whole sequence
(section 3). A modified4th-order Runge-Kutta integration
method [10] is thereby proposed to deal with the algorithm
implementation (section 4). By the way, the combination of
both spatial and temporal tracking methods can be used to
track filamentary structures throughout an image sequence.
We apply the suggested techniques on two real physical ap-
plications (section 5). The first one concerns the tracking of
internal linear features in composite material observed onX-
ray images in order to a better understanding of mechanical
forces in action. The second concerns the tracking of mixed
granular objects moving in a gas flow for refining purposes.

2. SPATIAL TRACKING

We consider a multispectral2D imageI : Ω ⊂ R
2 → R

n

(typically, n = 1 for scalar-valued andn = 3 for color im-
ages), containing a filamentary object such as one fiber of in-
terest we want to analyze. We denote byIi the ith vector
channel of the imageI. Given an initialuser-definedseed
point (x0, y0)

T belonging to the fiber, the goal of the track-
ing is to retrieve the functionC : R → R

2 giving the spatial
coordinatesC(s) = (x(s), y(s))

T of all points composing the
filamentary curve. The fiber is assumed to be smooth enough,
and the tracking problem can be thereby formulated as finding
theC1 curveC such that :







C(0) = (x0, y0)
T

∂C
∂s

= u(C(s))

(1)

wheres stands for the curvilinear abscissa ofC andu(C(s)) ∈
S1 is the unit tangent vector to the fiber, defined at least on
each fiber pointC(s). The fiber is said to be trackedforward
whens → +∞ andbackwardwhens → −∞. A function
integration step is obviously needed to retrieve the functionC.



In order to determine the tangent vectorsu(C(s)), two nat-
ural assumptions are considered : First, the desired tracked
object must be contrasted enough with respect to the image
background. Second, we assume that this filamentary struc-
ture is composed of pixels having roughly the same vector-
valued intensity (color). For the scalar-valued case (n = 1),
u should be typically related to the isophote direction∇IT

‖∇I‖ .
In a more general manner, we suggest to handle the multispec-
tral case (n ∈ N) and to gain robustness to noise by choosing
u as theminimal eigenvector(unit vector associated with the
smallesteigenvalue) of the so-calledsmoothed structure ten-
sorG(C(s)) located asC(s). G is defined as the field of2 × 2
symmetric and positive-definite matrices :

G =

(

∑

i

∇Ii∇IT
i

)

∗ Gσ (2)

where∇Ii =
(

∂Ii

∂x
∂Ii

∂y

)T

is the usual gradient vector of

the channelIi, andGσ is a normalized2D Gaussian kernel.
The structure tensor is a natural generalization of the gradient
for multispectral images [5] and has shown to have several
good properties when used to retrievemultispectral isophote
directions[15, 17]. G is defined on the whole domainΩ so
asu, which can be thus seen as a vector fieldu : Ω → S1

whose value on a fiber pointC(s) gives the tangent vectors
to C. Note that the smoothing parameterσ has a direct im-
pact on the regularity of the eigenvector fieldu, and thereby
implicitely controls the regularity of the tracked fiberC. In
particular, higher smoothing may be used to get rid of fiber
occlusion problems by reconstructing correct tangent vectors
on occluded area.
For simple reasons, we assumed here thatu is correctlyaligned.
As an eigenvector represents an orientation without notionof
direction, the computed fieldu can be in fact possibly dis-
continuous, independantly from the value ofσ. This is any-
way not an issue for the function integration step since we
only need the orientation information, as the tracking direc-
tion is generally explicitely known (see Section 4). More-
over, it is interesting to notice that our filamentary structure
tracking algorithm have in common ideas with some existing
white matter tractography methods proposed in the field of
diffusion-tensor MRI medical imaging [2]. The results of our
filamentary structure tracking approach is illustrated on Fig.1.

3. EXTENSION TO TEMPORAL TRACKING

Now, let us considerS : Ω × [0, T ] → R
n as the multispec-

tral image sequence containing pointwise objects in motion
we want to track. S is a volumeW × H × T of stacked
multispectral image frames. We limit ourselves to pointwise
objects tracking since we are able now to detect filamentary
structures starting from a single point (see section 2).
Similarly to the spatial case, the tracking problem is formu-
lated as follows : considering an user-defined input pointP0 =

(x0, y0, t0) in one framet0 of the sequenceS, find the posi-
tionsP(s) = (x(s), y(s), t(s)) of this point in all frames, i.e at
least whent(s) ∈ N. We assume that the tracked pointwise
object is contrasted enough and exhibits a smooth motion
throughout the sequence. Then, the trajectoryP : [0, T ] → R

3

can be computed as the integration of a tangent vector field
w : Ω × [0, T ] → R

3 :






P(0) = (x0, y0, t0)
T

∂P
∂s

= w(s)

This kind of tracking can be actually seen as a spatio-temporal
tractography. The main challenge here consists in the choice
of the tangent vector fieldw. Unfortunaly, the temporal ex-
tension of the tracking methodis not as simpleas choosingw
to be the minimal eigenvector of the structure tensor field (2)
of S (which is now a3×3 matrix). Intuitively, it would corre-
spond to compute the direction of smallest intensity variations
in the image sequence viewed as a volumetric image. But
nothing ensures that this3D direction would have a non null
temporal component. In fact, most of the smallest variations
are often encountered in the same frame as the current tracked
point, since objects we want to track are not perfectly point-
wise but are usually composed of regions with pixels having
similar intensities. This is for instance the case for fibersin
Fig.1 and balls in Fig.2. As a result, the minimal eigenvector
of the3 × 3 structure tensor is generally not representative of
the object motion only, but also of its spatial structure. Thus,
mixing variations of all spatial and temporal axes(x, y, t) in
the same structure tensor is definitely not a good idea.

The solution relies on the simultaneous but separated tracking
of the considered point in the(x, t) and(y, t) spaces instead
of considering the whole3D domain(x, y, t). We propose to
deduce the spatio-temporal tangent vectorw by analyzing the
2× 2 smoothed structure tensor fieldsGxt, Gyt both defined
on the domainΩ × [0, T ] and computed as

Gxt =
(

∇Sixt
∇ST

ixt

)

∗Gσ and Gyt =
(

∇Siyt
∇ST

iyt

)

∗Gσ

where∇Sixt
=
(

∂Si

∂x
∂Si

∂t

)T
, ∇Siyt

=
(

∂Si

∂y
∂Si

∂t

)T

are the

two spatio-temporal gradients respectively in(x, t) and(y, t)
spaces. For each point(x, y, t) of the sequence, the minimal
eigenvectorsuxt = (uxt, vxt)

T and uyt = (uyt, vyt)
T of

Gxt andGyt give coherent measures on the spatio-temporal
variation directions ofS. Mixing the directionsuxt anduyt

allows to retrieve a good approximation of the point motion,
and ensures that the estimated motion tangent vectorw goes
through time :

w =











(uxt,
uyt|vxt|
|vyt|

, vxt)
T if |vxt| < |vyt| and vxt 6= 0

(
uxt|vyt|
|vxt|

, uyt, vyt)
T if |vxt| > |vyt| and vyt 6= 0



Intuitively, the tracking procedure reads as follows. For each
curve point(x(s), y(s), t(s)), we get two motion vectorsuxt

anduyt in the (x, t) and(y, t) spaces, characteristic of how
important is the estimated temporal motion alongx and y.
The final motion vectorw is then chosen mainly from the one
that varies the less, and is extended to the3D domain using
the data provided by the other.
It appears that this relatively simple motion vector computa-
tion works surprisingly well in order to estimate the coherent
motion appearing in the image sequence.

4. IMPLEMENTATION CONSIDERATIONS

The main issues concerning the numerical implementation of
the tracking algorithm are twofold.

Computation of the 2 × 2 structure tensors : A classical
way of estimating the structure tensor field consists in com-
puting a smoothed version ofG =

∑n

i=1 ∇Ic
i ∇IcT

i where
∇Ic

i = 1
2 (Ii(x+1,y)−Ii(x−1,y) , Ii(x,y+1)−Ii(x,y−1))

T is the
classical central finite difference scheme of the image gradi-
ent. Here, we would rather suggest a slightly modified scheme
which advantagely uses the more precise forward and back-
ward finite difference schemes, while remaining symmetric :

G =

n
∑

i=1

(

∇I
f
i ∇I

fT

i + ∇I
f
i ∇IbT

i + ∇Ib
i ∇I

fT

i + ∇Ib
i ∇IbT

i

4

)

where∇I
f
i and∇Ib

i correspond to the classical forward and
backward differences :

∇I
f
i =

(

Ii(x+1,y) − Ii(x,y)

Ii(x,y+1) − Ii(x,y)

)

and

∇Ib
i =

(

Ii(x,y) − Ii(x−1,y)

Ii(x,y) − Ii(x,y−1)

)

The same kind of formulae is used to compute the spatio-
temporal structure tensorsGxt andGyt.

Curve integration : The problem consists in numerically in-
tegrating the equation (1). A classical Euler scheme would
consist in iterating :

C(s+ds) = C(s) + ds w(C(s))

with ds, an user-defined integration step close to zero. A more
precise integration algorithm has been obtained here, using
the so-called4th-order Runge Kutta scheme [10]. It consists
in introducing several interpolations of the motion vectorw

for one iteration :

k1 = ds u(C(s)), k2 = ds u(C(s) + k1

2 ),

k3 = ds u(C(s) + k2

2 ), k4 = ds u(C(s) + k3

2 )

Then, the next pointC(s+ds) is obtained by

C(s+ds) = C(s) + k1

6 + k2

3 + k3

3 + k4

6

Linear interpolation has been used successfully to estimate
the value of the vectorw on inter-pixel coordinates.
As noticed in section 2, only the orientation ofw is relevant,
not its direction. To get rid of this direction, we have intro-
duced a realignement step before each tracking iteration, such
that the estimated vectorsw in the3× 3 neighborhood of the
current pointC(ds) are aligned with the one used for the previ-
ous iteration. It ensures that the tracking is done in a coherent
direction without half-turns.

5. APPLICATIONS AND RESULTS

Some results of our proposed spatial and temporal tracking
algorithm is illustrated with two different applications,one for
mechanical purposes with a sequence containing fibers, and
the other for refining purposes, with a sequence of moving
pointwise granular-shaped objects.

Fiber Tracking : In [16], we have already described a com-
plete image processing pipeline in order to separate and dis-
play internal structures of a composite material submittedto
external stresses. Fibers composing this material are moving
and must be tracked to understand their mechanical behavior.
Image sequences of these moving fibers are acquired thanks to
a specific X-ray video camera, then filtered using techniques
presented in [16], including a denoising step [15], a wavelet-
based image contrast enhancement step [12], followed by a
Morphological Component Analysis (MCA) [13], enabling
to distinguish between fiber components of the image. The
spatial and temporal tracking algorithms described in section
2 and 3 have been succesfully applied to extract the shape of
the fiber (Fig.1).

Granular-shape tracking : This example illustrates a refin-
ery process, which consists in injecting a gas across a cata-
lyst moving bed (complete description of the experiment is
detailed in [9]). It involves a complex medium : a mix of
granular material with a flowing gas inside. We have been in-
terested in a phenomena which lies inside the refinery reactor
when a horizontal flow goes through a moving granular bed.
Thanks to image analysis applied to experimental equipment,
Dynamic features are extracted to characterize the cavitation
phenomena; it is based upon the kinematics of the grains.
Here, our algorithm enables the tracking of a granular-shape
object through a gas flow. The results are illustrated in the
image sequence in Fig.2.

6. CONCLUSION & PERSPECTIVES

We have proposed an original spatio-temporal tracking algo-
rithm which is very simple to implement. It does not need



Frame 1 Frame 10

Frame 20 Frame 30

Fig. 1. Tracking of one fiber in a X-Ray sequence.

Frame 1 Frame 13

Frame 26 Frame 39

Fig. 2. Tracking of one granular-shaped ball in a color se-
quence.

expensive computation time and gives tracking results witha
sub-pixel precision. Detailled numerical schemes have been
proposed in order to get rid of the most common implemen-
tation issues. We have illustrated its interest with two various
applications in both fields of chemistry and applied mechan-
ics.
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