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Fig. 1: The proposed method performs super-resolution (SR) in two steps. The low resolution (LR) input x (here, the test
image 0787 from the DIV2K dataset [1], upsampled with bicubic interpolation) is first processed with a shallow multi-scale
convolutional network (SR-Step). Within the same network, the resulting image can then be locally stylized (ST-step, here with
user-defined “Masks”) to add lost details, such as textures or grain, from pretrained “Styles”. On the right, DoGH filters
are applied to the style images, showing the high frequency patterns used to train the ST-Network. Masks are defined using
GMIC [2] “interactive extract foreground”. More examples can be found at [3].

ABSTRACT

Image Super Resolution (SR) has come a long way since the
early age of image processing. Deep learning methods nowa-
days give outstanding results, yet very few are actually used in
digital illustration and photo retouching software due to large
memory storage and GPU computational requirements, but
also due to the actual lack of control provided to the user over
the final result. This paper introduces a two-step framework
for stylized SR using a multi-scale network built with inde-
pendent parallel branches. The approach aims at: i. design-
ing a shallow network based on image processing techniques
making it usable on light hardware architecture (low mem-
ory cost, no GPU); ii. providing a versatile, controllable and
customizable network to stylize SR results in a plug-and-play
manner. We show that the proposed method offers significant
advantages over state-of-the-art reference-based approaches
regarding these aspects.

Index Terms— Image Super Resolution; Style Trans-
fer; Shallow Neural Network; Texture Synthesis; Interactive
Computation
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1. INTRODUCTION

The goal of Super-Resolution (SR) is to recover the geome-
try and textures of an unknown High Resolution image (HR)
given a degraded Low Resolution image (LR). The degrada-
tion process consists in a possible blurring followed by sub-
sampling, which mainly cuts out high frequencies and deteri-
orates medium frequencies as well.

Single Image Super Resolution (SI-SR) consists in perform-
ing SR from the low resolution image alone. Over the last
years, deep-learning based methods have achieved significant
PSNR improvements. SRCNN [4], the first convolutional
neural network designed for SR, learns an end-to-end image
mapping function between LR and HR images. Since then,
numerous methods have been proposed mainly focusing in
improving PSNR, using deeper and wider networks, either
processing directly the low resolution input [5, 6] or its bicu-
bic / bilinear interpolation upsampling [7, 8, 9].

The aforementioned methods are trained with pixel-wise
losses, using mean square error (MSE) or mean absolute error.
The PSNR metric, based on MSE, is somehow good to quan-
tify evaluation, but ignores human perceptions and is lim-
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ited for recovering textures, as exposed for instance in [10].
To circumvent this limitation, more sophisticated losses have
been proposed, inspired from the literature in image synthesis
[11, 12], providing more visually pleasing results, although
with lower PNSR. While the former yields in texture-less im-
age, the latter make use of deep semantic features to generate
realistic details. For instance, EnhanceNet [13] builds upon
the loss introduced by Gatys et al. [12, 14] for image syn-
thesis, and is based on pre-trained features from the VGG
classification network [15] to capture high-level/semantic in-
formation, later coined as the “perceptual loss” by [16]. SR-
GAN [10] adopted the adversarial loss strategy introduced in
[11] and exhibits interesting results.

Reference-based image SR (Ref-SR) aims to transfer the de-
sired high resolution textures from a reference image to the
low resolution image. Patch matching methods can recover
textures from images [17] which is something SI-SR methods
hardly do. Recently, convolutional neural networks such as
[18, 19] aim at matching VGG features [15] from the refer-
ence image within the trained network, which yields notice-
able improvements when making use of a relevant reference
picture (e.g. same scene under a similar viewpoint).

Both SI-SR and Ref-SR methods suffer from practical
limitations. To begin with, the number of parameters used in
recent approaches is very large, typically millions of parame-
ters, especially when encoders are used to extract perceptual
features. This results in long inference times on CPU and re-
quires large memory storage, penalizing near real-time time
processing. Additionally, being deep and wide, such CNN
are difficult to train and analyze. More importantly, the afore-
mentioned end-to-end models do not leave much room for
user control, as for instance proposed in [20] for colorization
where the network lets one choose among the automatically
generated color palettes. Even Ref-SR methods such as [18]
or TTSR [19] are fully automatic after choosing a reference
image and do not offer fine and local control over the out-
come, as demonstrated in experimental section.

Contributions and outline. Our contributions are two
folds. First, we propose in § 2.1 a shallow architecture to
perform SR based on a Multi-Scale Neural Network. As
demonstrated already by [21] for texture synthesis using per-
ceptual loss, a very shallow CNN can be used to achieve high
quality synthesis by making use of a multi-scale architecture,
as opposed to adversarial methods. Unlike previous SR ap-
proaches such as LapSRN [22] or MDSR [9] using sequential
upsampling, we propose a simple parallel processing based
on linear scale-space analysis, yet efficient when compared
to state-of-the-art. Secondly, we extend in § 2.2 the network
with stylization branches which enable the user to control the
synthesis of fine and textured details. By simply specifying
locally pre-trained style, it allows the user to amend the SR
result, as illustrated in Fig. 1.

2. MULTI-SCALE STYLIZING NETWORK

In this section, we introduce a Shallow Multi-Scale Super
Resolution convolutional neural network (SMS-SR), com-
bining parallel SR branches (SR-step, presented in § 2.1)
with stylization branches (ST-step, described in § 2.2). An
overview of the proposed architecture is shown in Fig. 2.

From now on, X (resp. x) € REXN*NX3 refers to a col-
lection of K HR (resp. LR) color images of size N x N,
both used during training and evaluation. The k-th input LR
image from the collection, noted z;, € RV*NV*3 s encoded
using YCbCr color system. Note that the LR image x, is first
upsampled to the size of the desired HR, e.g. with bicubic
interpolation, before being fed to the network.

2.1. Multi-Scale Convolutional Neural Network (SR-step)

Multi-scale decomposition. The SR network is composed
of n = 6 parallel branches, which outputs are linearly com-
bined. Each branch i is filtered using a Difference of Gaussian
filter DoG; to specialize on a specific frequency bandwidth.
This ensures that each branch output is independent. Indeed,
DoG corresponds to first order approximation of the Lapla-
cian filter in linear scale space, as shown in SIFT [23] where
DoG are used to achieve multi-scale features detection. As in
[23], Gaussian filters are parametrized by standard deviation
with geometric progression.

Denoting 6 the trainable parameters of the model, Ry, ,
corresponds to the k-th convolution module (1 < k£ < 4)
parametrized by 6; j, for the branch indexed by 7. Each of such
module begins with a 3 x 3 convolution, followed by a batch
normalization, and ends up with a ReLLU module. Finally, the
1-channel residual output of branch 1 < ¢ < n can be written
(SRG)Z(xk) = [tanhODOGiORgiA ORQ«;,B OR9i,2 OR9i,1} (mk)
Since high frequencies are the most important missing data to
recover, the number of channels in each branch increases for
smaller scales. The total number of parameters is about 120k.

Finally, the YCbCr color output of the SR network (for
pixel indexed by t¢) is the sum of outputs from parallel
branches, concatenated with the input color channels

n

SRy (1) () = @ (t) + | S (SRa)i(a)(1); 0; 0| € BY,

i=1

SR Training. As previously mentioned in the introduction,
we combine MSE with a perceptual loss to train the SR net-
work, as it is widely known that optimizing MSE alone fa-
vors texture-less reconstruction in SR [13]. The SR Network
is optimized by solving: ming Lsg (X, SRy (x)), with the fol-
lowing objective function

K
Lsn(X,Y) = | Xp = Yil® + Asr Leere (X, Yi). (D)
k=1
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Fig. 2: Overview of the proposed architecture (left) composed of parallel branches SR and ST (detailed on right), respectively
for super-resolution and stylization. The output is synthesized using multi-scale representation based on DoG filters.

where ||.|| stands as the Frobenius norm, Lpec(z,y) =
> terp Pe(z) — de(y)||? is the perceptual loss, and ¢y(.)
corresponds to the normalized feature maps at the /-th layer
of VGG-16 [15]. Large scale details are mainly provided by
the upsampled input image. Driven by the MSE loss func-
tion, the first branches of the network learn mostly to remove
artifacts from the interpolated input such as aliasing. We con-
sider features from different layers of the VGG network in
order to capture different scale details : Lpe,e = {5,9,13}. As
reported by [13], such perceptual loss induces checkerboard
artifacts that we suppress using a 2 x 2 median filter.

2.2. Style Branches (ST-step)

In order to transfer details from user-defined reference images
into the SR output, we now design additional style branches
operating in parallel of the previous SR network. For the sake
of simplicity, only one of such branch is represented in Fig. 2.
Each style branch is trained independently in adding coherent
details to the output of the pre-trained SR network.

Denoting ~y the trainable parameters of the style branches,
T,, ,, refers to a residual module (number & for branch 7), con-
sisting in two 3 x 3 convolutional layers, as proposed in [16].
The 1-channel residual output of the ¢-th style branch can be
written as followed: S., (x)) = [tanho DoG50T,, ,oT,, ,0
T,,, 0T, ](xx). Note the DoG filter used at the end of the
branch to generate only small scale details. The number of
parameters -y per style branch is less than 35K.

In order to control the residual, a normalization module
fs is used. It aims at enforcing the first and second order
moment (Y, and o, ) of the output residual batch of patches
(number p) y, = S, () to be close to 0 and 0., © .

To(wp) = B 2y, ~ )

Yp

where © indicates pixelwise multiplication, and (3 is a user-
defined pixel map, as illustrated in Fig 1. Considering m
style branches, the output of the proposed SMS-SR network
at pixel ¢ is given by

m

ST (x1)(t) = SRo (k) (t) + | D F5( Sy, (k) (£)); 050

i=1

ST Training. During training we set 3 = 1.We define the
following objective function Lg7, for a given reference style
image Y;

K
Lst(X,Yi, Z) = Y st Lrere( Xk, Zk) + Lren(Yi, Zi).

k=1

where the texture function is defined with normalized Gram
matrix GG, accordingly to [12]

Z 1G(¢e(

le LTex

Lrex (,9) ~GloW)*> @

In order to favor small scale details synthesis from the
reference image, we consider Ltx = {2,5,7,9} and set
Lpere = {7} to preserve large scale information from the
SR output. The style branch is then optimized by solving
min%. EST (X, }/i, STgﬂi (X)), V1 < 7 < m.

3. EXPERIMENTS

Data and training setup. To evaluate our method, we train
and test our model on the DIV2K dataset [1] for the x4 SR
bicubic challenge. Note that it only provides LR and HR im-
age pairs for training and validation datasets. As a result, the
last 150 images (out of 800) from the training set were hold
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Fig. 3: Comparison of 4x SR results on cropped baby (Set5
dataset) for various SISR methods (first row) and RefSR meth-
ods (TTSR on third row, and proposed on fourth) with different
styles Y; (on second row). Zoom on the images to appreciate
the details. More examples can be found at [3].

out to build a testing dataset with ground-truth HR images.
During training, square patches (254x254) are extracted from
training image indexed from 001 to 650 and fed through the
network. More than 20K patches (with a minimum variance)
are used for training.

SR-Step Evaluation. While the main purpose of the pro-
posed method is to offer a user-friendly controllable environ-
ment for stylized super-resolution, we first investigate here
the quality of the proposed shallow SR network using PSNR.
Even if PSNR is somewhat a flawed metric (as illustrated in
Table 1 for [10]), it remains a standard metric for benchmarks.
Table 1 shows the average PSNR gains compared to bicu-
bic upsampling for various methods showcased in the first row
of Fig. 3. The values correspond to the PSNR of the average
MSE computed on Y channel. The evaluation is conducted
on the DIV2K test set described above and on three other
standard benchmark datasets (Set5, Setl4, and BSD100). The
number of parameters (#Params) is rounded up to thousandth
of parameters. We denote SMS-SR (MSE), our multi-scale
model trained optimizing MSE only, i.e. Agg = 0 in (1).
Note that we have used tensor-flow implementations of other
methods, trained on the whole training set of DIV2K.
Observe that, while having significantly less parame-
ters than other methods, the proposed shallow network still
achieves interesting performance. Indeed Fig. 3 shows that,
similarly to SRCNN [4] (large configuration) and EDSR [9]

Model # Param. | DIV2K Set5 Setl4 Bsd100
SMS-SR (MSE) 120K 0.86 228 098  0.59
SRCNN [4] 440K 0.72 195 0.81 0.54
EDSR [9] 1517k 1.54 471 1.86 1.24
SRGAN [10] 1554k -0.50 2.00 -0.19 -048
RDN [24] 2205K 1.59 476 1.83 1.29

Table 1: Comparison of Average PSNR gains on different
datasets for 4x SR. Methods are ranked based on the number
of parameters. SMS-SR (MSE) corresponds to the proposed
method restricted to the SR-step (without the stylization step).

which are trained with pixel-wise loss, SMS-SR (MSE) allows
a good reconstruction of simple structures (such as edges and
lines) for a good amount of parameters. However and as ex-
pected, the proposed method restricted to the SR-step is not
able to generate missing textures, contrary to very-deep ad-
versarial methods such as RDN [24] which has approximately
18 times more parameters. Instead, the proposed network
lets the user choose the desired type of generated details
by selecting the appropriate branch (which adds barely 35k
parameters to the model), as shown in Fig. 3 (ST-step) and
discussed in the next paragraph.

Stylization with ST-step. We now consider the full SR net-
work trained with the perceptual loss (i.e. setting A\gp = 1
in (1)). As described in § 2.2, style branches are trained one
by one after training the SR network. Then, as illustrated in
Fig. 1 and 3, the user may use a mask or a brush to apply the
desired missing texture. This idea is similar to [25] where tex-
tures are transferred locally, using patch based optimization
methods. TTSR [19], which has more than 9M parameters,
is used here as state-of-the-art baseline for Ref-SR. Observe
how it does not allow to enforce the style of the reference
image texture locally, contrarily to the proposed framework.

4. DISCUSSION AND CONCLUSION

We have proposed a shallow network architecture for styl-
ized super-resolution. It is composed of parallel and indepen-
dent SR branches combined in a multi-scale representation
of the image. Stylization branches, trained independently,
allows to generate texture details being lost in the degrada-
tion process. While having significantly less parameters, the
proposed method competes favorably with Ref-SR based ap-
proaches and offers local control of the output result, as op-
posed to fully automated methods from the literature. The
multi-scale architecture makes the method simple to train and
easy to update by adding stylization branches.

Future works include the use of adversarial techniques,
which remains a challenging problem with shallow networks,
and guided segmentation to assist the user in generating
masks.
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