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ABSTRACT

With the emergence of deep perceptual image features, style
transfer has become a popular application that repaints a pic-
ture while preserving the geometric patterns and textures from
a sample image. Our work is devoted to the combination of
perceptual features from multiple style images, taken at dif-
ferent scales, e.g. to mix large-scale structures of a style im-
age with fine-scale textures. Surprisingly, this turns out to be
difficult, as most deep neural representations are learned to be
robust to scale modifications, so that large structures tend to
be tangled with smaller scales. Here a multi-scale convolu-
tional architecture is proposed for bi-scale style transfer. Our
solution is based on a modular auto-encoder composed of two
lightweight modules that are trained independently to transfer
style at specific scales, with control over styles and colors.

Index Terms— Multiple Style Transfer; Color transfer;
Lightweight Neural Network; Texture Synthesis/Mixing;

1. INTRODUCTION

Style transfer (ST) usually consists in modifying a “con-
tent” image to embed visual characteristics from an exam-
ple “style” image. Early ST methods have been based on
the comparison of local-representations of images, such as
patch [2, 3] or wavelets coefficients [4]. Since the seminal
work of Gatys et al. [5] for texture synthesis, state-of-the-art
ST methods are nowadays based on deep neural networks,
in particular to extract “perceptual” features. They are either
pre-trained on a subordinate visual recognition task (e.g. tex-
ture synthesis [5]), or used to drive the optimization [6]. In
addition, generative networks [7, 8] or auto-encoders [9] may
be also trained to generate the stylized image.

Here, we deal with the combination of different styles to
transfer, each having a different geometric scale. Surpris-
ingly, this topic has been little studied in the literature and
mainly for texture interpolation and blending [10, 11]. With
these methods, new visual features are synthesized by the
interpolation of multiple texture features, rather than simul-
taneously exhibit them. Unfortunately, as shown for instance
in [12], using the original perceptual loss in [5] for multiple
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Fig. 1: Results of our proposed bi-scale style transfer method. Input
image is stylized with the styles a and b in combination with textures
1 and 2 with dedicated modular lightweight neural networks. Single
style transfer results for each independent style are also displayed.
More results can be found at [1].

styles fails in mixing them and results in images with distinc-
tive styles. A popular approach to circumvent this issue is to
use optimal transport framework to compute the average of
perceptual features (see e.g. [13, 12]).

In this paper, we propose an original solution for combining
geometric features at different scales for ST, which means si-
multaneously modifying an input image so that its overall ge-
ometric structure is preserved while incorporating coarse de-
tails from one style image, mixed with the fine details from
a second style image, as illustrated in Fig. 1. This has been
proved to be a difficult task in [14], as structures at different
scales are tangled in deep encoders representations.

An overview of the literature on image ST is presented (Sec-
tion 2) with a focus on [14] which aims at combining styles
at different scales. In Section 3, we propose a new modular



alternative architecture, composed of two networks that bet-
ter captures the geometric features of multiple styles for ST.
It requires very few parameters (~155k) compared to con-
current methods, enabling fast and independent training. Ex-
periments on bi-scale style transfer and texture synthesis are
finally conducted in Section 4.

2. PREVIOUS WORK AND MOTIVATIONS

2.1. Style Transfer With Perceptual Loss

Throughout the paper, we consider the following perceptual
loss introduced in [14] for texture synthesis and in [15] for
style transfer (in an iterative image data optimization pro-
cess), and used to train feed-forward networks in [9]:
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where ||.|| stands as the Frobenius norm, and ¢,(.) corre-
sponds to the normalized feature maps at the /¢-th layer
of VGG-19 [16] (often referred to ReLu_11, ReLu_21,
ReLu_31,ReLu_41, ReLu_51). Let us recall that in [15],
the first term preserves spatial information from content im-
age I in the stylized image Y. The second term enforces style
features from S with normalized Gram matrices G. In this
work, we consider three different objective functions (L 4, L¢
and L ) depending on the following choice of coefficients:

e L4 (All scales): wy =[0,0,0,1,0] and y4 = [1,1,1,1,1]

ey

* Lo (Coarse scale): we = [0,0,1,0,0]and y¢ = [0,0,1,1,1]

* L (Fine scale): wrp = [0,0,0,1,0] and vr = [1,1,0,0, 0]
Note that most methods in the literature exclusively rely on
L 4 as originally proposed in [15].

2.2. Controlling Style Transfer

As already mentioned, the problem of controlling style fea-
tures has been already studied, often by means of training
deeper networks on dataset of textures. For example, in [17],
explicit parameters are exhibited, allowing the users to select
the desired style and its intensity. [18] uses an adversarial loss
which incorporates random openings gates to encode a whole
collection of styles which can be called independently. [19]
introduces a conditional generative network which is trained
using the perceptual loss (1), capable of synthesizing mixture
from several textures.

A different approach consists in changing the metric. As orig-
inally shown in [10], the optimal transport distance allows
to define and compute the average of several distributions of
style features. This framework can be used to either explic-
itly compute the barycenter of different styles before synthe-
sis [13], or implicitly drive the optimization itself [12].

All those approaches succeeds in blending different styles in
different fashion, but none of them allow the user to specifi-
cally control the scale at which geometric features should be
transferred into the content image.

(f) 2nd step of [14]:
Stylization of Content
image with (e) (loss L)

(e) 1st step of [14]: ST
of Style I with Style II
(loss L)

(d) Single optimization
of [15] (loss Lo and
Lp)

o Vge £
(h) 1st step of bi-level
ST using the coarse
network (loss L)

(i) 2nd step of bi-level
ST using the fine
network (loss L g)

(g) Proposed bi-style ST
(image optimization)

Fig. 2: Comparison of different techniques for mixing styles at dif-
ferent scales, with the approach of [14], [15] and ours (last row).

2.3. Bi-scale Style Transfer

Multi-scale style transfer has been hardly studied in the liter-
ature. As far as we know, only Gatys et al. [14] introduced
a method for mixing several styles by preserving some style
features at different scales. The reason is likely that such aim
is not trivial: even if perceptual features are extracted from
several layers in (1), therefore at different resolutions, they
are not independent. As a consequence, fine details and colors
are still encoded in deep layers. For instance, as illustrated in
Fig. 2d, optimizing simultaneously the perceptual loss func-
tion Lo and Ly results in synthesizing an image where style
features are in different locations, but not mixed.

To avoid this issue, [14] introduces a 2-step ST approach. It
consists first in combining two styles (Style I, Fig. 2b, and
Style II, Fig. 2¢) by performing ST with the fine scale loss
function L. Color transfer from the content image (Fig. 2a)
is used as a post-processing. Then, this new image (Fig. 2d)
is used to perform ST at coarse scale with L¢.

While achieving the desired result, this method needs to be
reconducted for each inference. To this end, we propose an
alternative optimization strategy that is illustrated in the last
row of Fig. 2 with image data optimization. In Fig. 2g, the
content image is first stylized at coarser scale with Lo, and
then at finer scale with L. This strategy allows for train-
ing two separate and independent neural networks (Fig. 2h&i)
that are presented in the next section.



3. BI-SCALE NETWORKS

Our modular network is built with the cascading of two com-
plementary multi-scale networks fed with inputs at different
scales. An overview of the proposed bi-level architecture is
shown in Fig. 3.

1.Coarse network trained with style S, : C,,

>

I

Fig. 3: Overview of the proposed bi-level architecture. The Coarse
network (top) synthesizes large geometric features. The Fine net-
work (bottom) adds fine details to the input I. The two networks are
trained independently and combined during evaluation.

The first network (“Coarse” network C,,, ~ 110k parame-
ters, in Fig. 3.1) synthesizes large structures from a first style
Su. The second network generates thin textures (“Fine net-
work” F,, ~ 45k parameters, Fig. 3.2) from a second style
S.,. During evaluation, the two networks are combined by the
user to produce the desired style transfer. This modular ar-
chitecture makes it possible to train each module separately,
without requiring to train simultaneously for every possible
combination of styles.

The two multi-scale networks are inspired from the Tex-
ture Network V1 [7] (originally between ~ 74k for texture
synthesis and ~ 110k for style transfer) in which the input
data [ is decomposed and processed at different resolutions.
Roughly speaking, the architecture of network C (respectively

F) is here mirroring the VGG layers required to compute the
coarse Lo (resp. fine Lp) loss function. As a result, the
Fine network with a low receptive field only acts on the first
two scales, while the Coarse network, with a much larger
receptive-field, conversely processes the following ones.

3.1. Details of the Architecture

On Fig. 3, the Conv modules are composed of three succes-
sive 3 x 3 convolution layers, each followed by a batchNorm
and a Relu activation. Each Up module is composed of a con-
volution module, followed by a nearest neighbor upsampling
layer (x2), and a batchNorm. A Light Up module is equiv-
alent to two successive Up modules (leading to a x4 upsam-
pling). Such module has very few parameters so that most
of the parameters are encoded before upsamplings, favoring
large structures.

3.2. Independent Training of the Networks

During training, each network is trained independently for a
given style image S and a dataset of content images I from
DIV2K dataset [20]. The input of the network is composed
of a batch of 6 content images, decomposed at different res-
olutions, starting from 356 x 356 pixels. Theses images
are concatenated with random gaussian tensors at the same
resolutions, as done in [7]. The Fine network F is trained
with the fine scale loss function Lp(I,S,F(I)) and the
Coarse network C is trained with the coarse scale loss func-
tion Lo (I, S,C(I)). Parameters from both networks con-
verge in a few thousands iterations using the Adam algorithm
(learning rate: 5e~2).

4. EXPERIMENTS

Style transfer results Figure | demonstrates the ability of
the proposed bi-level network to combine styles at different
scales. The approach performs bi-scale style transfer on a
content image (top-left) with two large-scale style images a
and b and two fine-scale style images / and 2. All combina-
tions (F; o C,(I) with © =a or b and ¢ =1 or 2) are shown,
including results of single-style transfer (i.e C, (1) and F;(1)).
Observe that an additional color transfer is subsequently per-
formed to preserve the content color distribution with respect
to the luminance modifications, as discussed later on.
Figures 2h&i respectively show the results of the Coarse net-
work alone Cp, (1) and of the bi-scale network F.oCy(I). Fea-
tures from style images at are effectively transferred to the
content image at two specific scales, preserving features from
each image. The comparison to iterative optimization with the
same loss function (Figures 24) demonstrates that the multi-
scale architecture of the network F successfully manages to
restrict the style modification to very fine scales yet with lim-
itations due to the low number of parameters involved.



Bi-scale texture synthesis In Fig. 4, we illustrate the ability
of the proposed method to achieve bi-scale texture mixing.
Two large-scale style images (a and b) and two fine-scale style
images (/ and 2) are used to train the associated networks for
texture synthesis. For such a task, only the random tensor is
fed into the network, and weight parameters for the content
term in the training loss (1) is set to 0 (w = 0). It leads
to single scale texture synthesis (/, 2, a and b). Note that
single scale Coarse networks favor large scale (large structure
of the bricks rather than its grain from b to b). Inversely, Fine
networks favor thin details (synthesized strokes in / are not
as long as in the style image /).

For texture mixing and texture synthesis Coarse networks are
combined with style transfer Fine networks, which generate
the 4 possible combination results. Again, observe how dif-
ferent features are preserved while being mixed.

Fig. 4: Illustration of the proposed modular architecture for single
texture synthesis and bi-scale texture mixing. Coarse Networks a,b
are combined with Fine Networks 1,2.

Control on color palette When training, colors are predicted
through perceptual loss (1), which may involve false colors
for the Coarse network trained with deep features which
slightly embody color information. Thus, to control the color
distribution of the stylized image, we resort to two simple
techniques. To begin with, we add a color transfer affine
layer to the end of each network to enforce the color mean
and covariance of an image. During evaluation, this simplis-
tic module can be used to impose any first and second order
color statistics (12 parameters). See for instance examples in
Fig. 4 where different color distributions are enforced.

Also, we may combine the stylized luminance with the
chrominance of the content image. To avoid any artefacts,
we make use of the NLMR filter from [21] which can be
accelerated using guided filtering [22]. On the right part
of each combination from Fig. 5 this filter is applied to the
chrominance channels and guided by the stylized luminance.

@+

(a) alone (a) +(1)
zoom w/NLMR  w/o NLMR

Fig. 5: lilustration of the control allowed by the color transfer step.
The content image Input is stylized with the tiger image (a) and op-
tionally one of the textures (1),(2). Each stylized result is split in two
parts, where reference colors are transferred from the style (left) or
the content image (right). Last row shows the role of the NLMR filter
to avoid artifacts from using chrominance from the content image.

Ablation study Images a,b, 1,2 from Fig. 1 and Fig. 4 are sin-
gle neural network independent results (i.e single style trans-
fer and single texture synthesis). Observe how the Coarse and
Fine networks may be used independently but also in com-
binations between each other, allowing the user to combine
styles at chosen scales.

5. CONCLUSION

We have presented a new bi-scale neural network architec-
ture to perform image style transfer from several examples by
combining features at different scales. We favor fine or coarse
features synthesis tuning architecture, VGG features depth
and by choosing coherent style image. To the best of our
knowledge, this is unique as other neural network methods in
the literature focus on mixing features across scales without
preserving original characteristics. Also, our method is orig-
inal since it is based on two scale-complementary modular
lightweight architectures (~ 155k total parameters) which are
combinable in a plug-and-play manner. Our method which
allows for fast and robust training would benefit, during in-
ference and combination, from considering deeper and larger
architectures to generate more complex features.
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