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ABSTRACT

Diffusion tensor MRI probes and quantifies the anisotropic
diffusion of water molecules in biological tissues, making it possi-
ble to non-invasively infer the architecture of the underlying struc-
tures. In this article, we present a set of new techniques for the
estimation and regularization of diffusion tensors MRI datasets as
well as a novel approach to the cerebral white matter connectivity
mapping. Numerical experimentations conducted on real diffusion
weighted MRI will exhibit promising results.

1. INTRODUCTION

Diffusion imaging is a magnetic resonance imaging technique in-
troduced in the mid 1980s [8] which provides a very sensitive
probe of biological tissues architecture. Diffusion shows, at a
broader scale, how molecules tend to move from low concen-
tration areas to high concentration areas over distances of about
�� to �� �� during typical times of �� to ��� ��. The key
concept that is of primary importance for diffusion imaging is that
diffusion in biological tissues reflects their structure and their ar-
chitecture at a microscopic scale. For instance, Brownian motion
is highly influenced in tissues such as cerebral white matter or the
annulus fibrosus of inter-vertebral discs. Measuring, at each voxel,
that very same motion along a number of sampling directions (at
least �, up to several hundreds) provides an exquisite insight into
the local orientation of fibers and is known as diffusion-weighted
imaging. Shortly after the first acquisitions of images character-
izing the anisotropic diffusion of water molecules in vivo, Basser
et al. [2] proposed in 1994 the model, now widely used, of the
diffusion tensor featuring an analytic means to precisely describe
the three-dimensional nature of anisotropy in tissues.
Numerous works have already addressed the problem of the esti-
mation and regularization of the diffusion tensor fields. References
can be found in [25], [24], [4], [11], [17]. We will tackle these two
tasks within a common variational framework respectively in sec-
tion 2 and 3.

Most normal brain functions require that specific cortical re-
gions communicate with each other through fiber pathways. Until
very recently, there was no non-invasive imaging method capable
of resolving the white matter connections between those regions
while functional MRI or positron emission tomography give us
crucial information on the spatial localization of cerebral activa-
tion when a given task is performed. Reliable estimation of the
anatomical connectivity is thus fundamental if we want to better
understand cerebral processes and will be discussed in section 4
where we will propose a novel approach relying on a better mod-
elization of the stochastic processes describing the motion of water

molecules and that are highly dependent on the white matter ge-
ometry.

2. ESTIMATION OF DIFFUSION TENSORS

2.1. Data acquisition

Our dataset consists of 30 diffusion weighted images �� � � �
�� � � �� ���� �� as well as 1 image �� corresponding to the
signal intensity in the absence of a diffusion-sensitizing field gra-
dient (ie. � � � in equation 1). They were obtained on a GE
��� 	 Signa Echospeed with standard 		 �	
� gradient field.
The echoplanar images were acquired on 56 evenly spaced ax-
ial planes with a �	
 � �	
 pixels in each slice. Voxel size is
��
�� �� � ��
�� �� � 	�
 ��. � gradient directions ��,
each with � different �-factors and � repetitions were used. Imag-
ing parameters were: � values between � and ���� ������,
	� � 	�� �, 	� � 
��� �� and a square field of view of 	� �
[16]. Those data are courtesy of CEA-SHFJ/Orsay, France1.

2.2. Linear estimation

We recall that the estimation of a field of �� � symmetric positive
definite tensors � is done by using the Stejskal-Tanner equation
[19] for anisotropic diffusion 1 at each voxel �.

���� � �����
����

�
������ �� � � (1)

where �� are the normalized non-colinear sensitizing gradient and
� the diffusion weighting factor. Many approaches have been de-
rived to estimate the tensor �.
If we effectively restrict ourselves to 6 gradient orientations,
Westin et al. derived in [25] a compact analytical solution to equa-
tion 1 and, by doing so, eliminated the need to solve it for every
single data point. The idea relies on the introduction of a dual ten-
sor basis ���, computed from the tensor basis �� � �� �

�
� , and

which can be used to decompose any given tensor ���. We then
end up with the closed form

� �
��

���

�

�
����
��� ��� (2)

This method turns out to be highly sensitive to noise and easily
influenced by potential outliers. This is due to the low number
of measurements intrinsically used by this approach and by the

1The authors would like to thank J.F. Mangin and J.B Poline for pro-
viding us with the data
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choice of the minimization function (see [11] where the Geman-
McLure M-estimator is used in order to reduce outlier-related arte-
facts). Moreover resulting tensors may not be positive definite,
which requires a subsequent reprojection step.

2.3. Variational estimation

In order to deal with a more complete estimation approach, we
propose to incorporate some important priors such as tensor pos-
itivity and regularity into a variational formulation of the estima-
tion problem by minimizing the following energy on the manifold
of positive definite tensors � ��

������
��� ���
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��
���

�� ����
���� ��������� � ���������

(3)
where � controls the robust estimation and the Lagrange mul-

tiplier � together with the scalar function � drive the anisotropic
regularity of the solution. Note that if ��� � �� and � � �, the
criterion reduces to a simple multilinear regression by least square
that generalizes the linear estimation method of Westin et al [25]
and provides a positive definite solution since the minimization is
done on the constrained space � � �� of the positive definite ten-
sors. This variational method converges to a much more consistent
solution thanks to its global behavior. We refer the interested read-
ers to the article [21], where we give more details and adress the
problem of carefully designing numerical schemes, based on man-
ifold integration, to ensure that the estimate stays on � �� at each
step of the gradient descent used to solve the associated Euler-
Lagrange equations.

3. REGULARIZATION OF DT-MRI DATASETS

The variational estimation method naturally brings some spatial
coherency and smoothness into the generated tensor field. How-
ever, the fundamental properties of diffusion tensors, like diffusiv-
ities and principal orientations, are contained in their spectral fea-
tures. It can then be interesting to regularize the tensor field with
regard to those spectral elements. This will bring more coherence
into the tensor structural information and thus improve the tracking
of neural fibers.

3.1. On some non-spectral methods and their limitations

Non-spectral methods are based on a direct anisotropic smoothing
of the diffusion weighted data �� [23] or consider each tensor as �
independent scalar components ��� (by symmetry) with possible
coupling. We thus evolve each ��� by minimizing the following
quantity:
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� � �������� (4)

where �� designates the initial noisy tensor field and the field
gradient norm ���� behaves as a coupling term between the
tensors components. However, eigenvalues tend to diffuse faster
than eigenvectors, resulting in a swelling effect on the tensors.

Spectral methods separately consider the eigen-elements of
the tensors. Eigenvalues smoothing is typically perfomed by
a vector-valued anisotropic PDE ([18] and references therein)

satisfying the maximum principle in order to preserve the
positiveness. The three orthonormal eigenvectors define a matrix
of ��� which can be regularized by acting only on the principal
eigenvector �� and then reconstructing the associated tensor [6].
The field of orthonormal matrices can also be evolved ([20]) under
a scheme preserving the eigenvectors norms and angles. This
boils down to solving a system of coupled and constrained PDEs.
However, all these approaches require a time-consuming step of
eigenvectors realignment since a given vector and its opposite are
both solution of the same singular value decomposition and thus
yield artificially discontinuous vectors fields.

3.2. A fast isospectral method

In [4], we proposed a versatile and efficient alternative to the pre-
vious spectral techniques which do not require any spectral de-
composition by building flows acting on a given submanifold �
of the linear space of matrix-valued function and preserving some
constraints. We showed that this amounts to characterize the ve-
locity of the flows (ie. the tangent space of �) at each point of
�. Actually the contraints of interests here (orthogonality, eigen-
values conservation ...) can be expressed in term of Lie groups and
homogeneous spaces. For example, an isospectral flow acts on a
field of real symmetric matrices and preserves their eigenvalues.
Moreover its velocity is directly derived from the matrix gradient,
hence no need for realignment. If ����� denotes the Lie bracket,
the general form for our isospectral flow is given by:

��

��
� ��� ��� ���� ��� (5)

where � � ���� prescribes the desired regularization process,
such as

��� � div��������	��
����� (6)

where � denotes the same scalar function as in section 2.3 and pre-
serves important structures of the tensor field. A specific numer-
ical scheme based on the exponential map was also proposed for
the actual implementation of the PDE 5. Results of non-spectral
smoothing and isospectral flow on diffusion tensors estimated in
the genu of the corpus callosum are presented on figure 1.

4. WHITE MATTER FIBERS TRACTOGRAPHY

4.1. Introduction

The main idea on which rely most classical algorithms for brain
connectivity mapping ([12], [13], [15] and references therein) is
that, despite the potentially multi-directional environment within a
voxel, water diffusion in many regions of the white matter is highly
anisotropic and thus, within the limits imposed by the Gaussianity
assumption, the orientation of the major eigenvector aligns with
the predominant axonal direction. It is then safe to say that we
should be able to identify macroscopical three-dimensional archi-
tectures of the white matter by using simple line propagation tech-
niques. These local approaches provide fast algorithms to estimate
3D curves, more or less accurately, by integration of the major
eigenvector field. Euler or higher-order Runge-Kutta schemes are
typically used with intravoxel interpolation of the diffusion ten-
sor field to achieve subvoxel accuracy and reconstruct smooth and
more precise curves. By taking into account the anisotropy infor-
mation in the interpolation process, dynamicaly adjusting the time
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step (in high curvature regions for example) or constraining the an-
gle between successive steps, various studies have shown coherent
results for known anatomical regions.
All these approaches however fails to recover fibers bundles when-
ever they enter a region of low anisotropy. The estimate of the
curve tangent becomes highly unreliable and Lazar et al. [7] pro-
posed a method based on advection-diffusion equations and mak-
ing use of the whole diffusion tensor in order to propagate in the
most coherent fashion without getting stopped by locally isotropic
regions (see figure 2 where we reconstructed about 8000 fibers in
less than 5min on a 1Ghz PC. Well known structures such as the
corpus callosum, the external capsule or cortico-spinal tracts can
easily be identified). These algorithms have been augmented to
incorporate some natural constraints such as regularity, stochastic
behavior or local non-Gaussianity ([1], [3], [14]).
To better describe the complexity of the diffusion profile, high
angular resolution DWI [22] or q-space and Diffusion Spectrum
Imaging [10] have been proposed but still yield long acquisition
times. Finally more global algorithms ([5]) have been introduced
to better handle situations of false planar or spherical tensors (with
underlying fibers crossings) or fascicles junctions [17] using some
a priori knowledge of the low curvature of most of the fascicles.

4.2. White matter as a Riemannian manifold

In this section, we propose to use stochastic processes and differ-
ential geometry to derive a physically motivated distance function
in the white matter seen as a 3-manifold � and thus show how
to estimate fibers bundles by geodesics computation. The outline
of this work, detailled in [9], is as follows: A Brownian motion
in linear homogeneous space is entirely determined by its initial
distribution � and a transition mechanism which is either a proba-
bility density function � or an infinitesimal generator 	. By Fick’s
law and conservation of mass for a linear anisotropic homogeneous
medium, � is actually the fundamental solution (the gaussian ker-
nel) of

��

��
� ������ � 	� (7)

However, the solution of equation 7 in the case of a nonlinear
anisotropic inhomogeneous (as white matter is) medium is non-
trivial. But we actually do not need the explicit solution of this
problem since the differential operator 	, which is nothing but
the Laplace-Beltrami operator, will give us everything we need
to characterize the geometry of the manifold supporting the diffu-
sion process, ie. the white matter. Indeed, it can be shown that
the inverse of the diffusion tensor ��� is the metric � � ����
of that manifold. Thus, the sole knowledge of the diffusion tensor
shall enable us to compute the intrinsic distance in the space of
the brain white matter to any voxel ��. It can be shown that the
distance function  is Lipschitz on all � and verifies


grad 
� �
� 

���

� 

���
��� � �

with ���� � ��� denoting the metric of the cotangent space. In
[9], we propose a level-set formulation and the associated numer-
ical scheme to solve the intrinsic eikonal equation on �� ��. Fi-
nally, numerical schemes were proposed to estimate the geodesics
on � converging towards ��. Estimation of the integral curves
of the intrinsic distance function are classicaly obtained by back-
propagating in its gradient directions ���� or by solving the

actual geodesic equation. This last approach is efficiently imple-
mented by computing the Christoffel symbols and using the expo-
nential map, which yields accurate schemes for the estimation of
geodesics. Computation of neural fibers as geodesics in the region
of the splenium of the corpus callosum yields the results presented
on figure 3. As we can notice, the main advantage of this method
over line propagation techniques is that it is not at all influenced
by localized isotropic areas (as we can see on the figure, the red
areas do not affect the shape of the recovered fibers).

5. CONCLUSION

Diffusion MRI gives a direct insight into the microstructure of
biological tissues through the observation of random molecular
motion. This challenging project requires various sophisticated
computational techniques before beeing able to actually infer any
conclusion on the anatomical connectivity. In this paper, we have
presented some major trends for the estimation and the regulariza-
tion of the diffusion tensor fields as well as adressed the problem
of white matter connectivity mapping. Our ongoing efforts are in
validating all these techniques on a larger set of real data.

Fig. 1. Left to right: (a) RGB mapping of the major eigenvector
weigthed by FA and ROI (b) Raw tensors in the genu of the corpus
callosum and regularized fields by (c) a non-spectral method, (d)
an isospectral flow
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