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Abstract. Nonlinear diffusion equations are now widely used to restore and
enhance images. They allow to eliminate noise and artifacts while preserving
large global features, such as object contours. In this context, we propose
a differential-geometric framework to define PDEs acting on some manifold
constrained datasets. We consider the case of images taking value into matrix
manifolds defined by orthogonal and spectral constraints. We directly incor-
porate the geometry and natural metric of the underlying configuration space
(viewed as a Lie group or a homogeneous space) in the design of the corre-
sponding flows. Our numerical implementation relies on structure-preserving
integrators that respect intrinsically the constraints geometry. The efficiency
and versatility of this approach are illustrated through the anisotropic smooth-
ing of diffusion tensor volumes in medical imaging. Note: This is the draft

of a paper published in Journal of Mathematical Imaging and Vision

20:147–162, 2004. Do not distribute.

1. Introduction

Variational methods and nonlinear partial differential equations (PDEs) are now
widely used to tackle computer vision problems, such as image restoration, segmen-
tation, stereo-based 3D reconstruction, or optical flow estimation (see the textbooks
[3, 27, 31, 44] and references therein for an overview). Solutions to these problems,
whether they are curves, surfaces, images, or vector fields, are generally obtained by
continuously deforming an initial estimate through a flow defined by a PDE. The
corresponding evolution equations derive from simple local heuristics or from the
minimization of cost functionals. In the context of image restoration, the idea is to
achieve a selective smoothing that removes the noise while preserving large global
features, such as object contours. For this purpose, one generally uses anisotropic
diffusion PDEs (comprehensive reviews on nonlinear diffusion equations in image
processing can be found in [3, 36, 44]). Generalizing these techniques from gray-
valued images to multi-valued datasets has recently attracted a growing interest.
This type of problem arises, for instance, when dealing with color images, direction
fields, trajectories of camera orientations, DT-MRI volumes, or fields of statistical
parameters in Doppler analysis1. In these cases, the extension of standard methods
is usually nontrivial due to the existence of additional point-wise constraints: Unit
norm, orthogonality, positive definiteness (among others).

Several solutions have been proposed in recent works. The first approach was
suggested by Perona in [29] for images taking value into the unit circle S1. In this
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work, the problem of using a standard diffusion equation acting on a parametriza-
tion of S1 was discussed. Then, more intrinsic geometric approaches were consid-
ered, by modeling the constrained dataset as a mapping X : D → N from a domain
manifold D into a target manifold N . In this setting, a geometric formulation of
the Total Variation (TV) restoration model was given in [8], Beltrami flows were
proposed in [23, 34, 4], and nonlinear heat equations borrowed from harmonic the-
ory were presented in [25, 35, 43]. Most of these approaches were applied in the
case where the target manifold was the unit hypersphere Sn−1. The problem of
building PDEs acting on fields of orthogonal matrices was also discussed in [38, 39]
using the formalism of Lagrange multipliers.

Representing the nonlinear geometry of D and N is one of the main issues. A
very elegant way of dealing with a non-flat domain D was suggested in [5] using
an implicit formulation in terms of level-sets. Several solutions have been proposed
to represent the values of X, either using local coordinate charts on N [29, 23],
extrinsic coordinates in the embedding space [35, 38, 39], or another implicit rep-
resentation as level-set of an auxiliary function [25]. Such a choice has a strong
influence on the discretization of the problem. A complete parametrization requires
to switch between coordinate charts during the evolution, while models using ex-
trinsic coordinates may numerically violate the constraints (they require at least a
re-projection).

In this work2, our final objective is to extend and generalize some of these ideas
to matrix-valued functions undergoing orthogonal or spectral constraints. The ap-
plication of interest is the regularization of DT-MRI data in medical imaging. In a
larger perspective, we propose to model PDEs acting on constrained multi-valued
datasets as evolution equations on a suitable infinite-dimensional manifold of map-
pings. One should be aware that a rigorous definition of these concepts raises
numerous mathematical technicalities that we merely start to address here. Our
approach and derivations, developed by analogy with finite-dimensional problems,
remain essentially formal in this paper, and will have to be further investigated and
verified. However, the advantage of this geometric perspective is to yield simple
tools to design and implement the constrained counterparts to widely used PDEs in
image processing. Moreover, this setting offers a way to take into account spatially
varying constraints (such as the isospectral constraint detailed in this work). In
this case, datasets can not be modeled as mappings between manifolds.

We also strongly believe that the prior knowledge one may have on the con-
straints geometry should be integrated, not only in the design of the continuous
equations, but also in the corresponding numerical schemes. For this purpose, we
propose to generalize the idea of geodesic marching, suggested in [8], in the larger
perspective of geometric integration methods [17].

This paper is organized as follows: We propose a geometric characterization of
evolution equations on three constrained sets of matrix-valued mappings in Section
2. In Section 3, we introduce structure-preserving numerical integrators that respect
the geometry of the underlying constrained sets. In Section 4, regularizing flows
are built using a systematic approach to transform unconstrained gradient flows
into their constrained counterparts. Finally, we illustrate this formal setting with
the regularization of DT-MRI volumes in Section 5, and present our concluding
remarks in Section 6.

2This paper develops some of the ideas previously sketched by the authors in [9].
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2. Geometric setting

2.1. Basic principle. We start with a generic remark on the geometry of con-
strained flows. Let us assume a set of nonlinear constraints defines a submanifold
M in a linear space E (the initial configuration space of the problem). If V is a
smooth vector field on E , and the one-parameter family t 7→ X(t) is solution of the
evolution equation

∂tX = V(X), X(0) ∈ E ,
the following equivalence holds [1, 17]:

X(t) ∈M, ∀ t > 0 ⇐⇒ X(0) ∈ M and V(X(t)) ∈ TX(t)M, ∀ t > 0.

The main idea is that building a flow in the embedding space and satisfying the
constraints amounts to characterize the tangent space at any given point on M.
We illustrate this principle in Fig. 1, with the example of a flow induced by a vector
field on sphere embedded in R

3.
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X(0)
T     M

T     M

Figure 1. Integral curve of a vector field on S2.

An alternative approach is to directly define a constrained flow using a parametriza-
tion on M. However, a parametrization is not unique, and using extrinsic coordi-
nates in the embedding space avoids dealing with several coordinate charts (which
are often necessary to coverM entirely).

2.2. Constrained sets. Note that the previous remarks are valid, at least formally,
for both finite and infinite-dimensional manifolds. Here, our embedding space is
a linear set of matrix-valued functions F(Ω, Rn×p) where Ω is a bounded region
in R

k, and the set of real-valued n × p matrices is identified with R
n×p. For our

applications, we are mostly interested in constraints acting point-wise on these
mappings. In the simplest situation, we want them to take value into a target
submanifold N ⊂ R

n×p. This leads us to consider the constrained set

F(Ω,N ) = {X ∈ F(Ω, Rn×p) / ∀ p ∈ Ω, X(p) ∈ N}.
Naturally, we can expect F(Ω,N ) to inherit most of its properties from the geome-
try of its codomain N . We refer the interested reader to [41] to see how, with a suit-
able function-space topology, F(Ω,N ) could be equipped with infinite-dimensional
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structure of Banach or Hilbert manifold3. Note that we will also consider a slightly
more generic set of mappings to take into account spatially varying constraints.

Many constraints on matrices (orthogonality, rank and other spectral constraints)
can be expressed in terms of Lie groups and homogeneous spaces. They are dif-
ferentiable manifolds that present some nice algebraic properties. A Lie group is
a manifold which has also a group structure (the group operation and its inverse
are smooth). Its tangent space at any given point can be easily defined in terms of
its tangent space at identity (its Lie algebra) by left- (or right-) translation. And
a homogeneous space is a manifold on which a transitive Lie group action exists.
We refer to differential geometry textbooks [6, 18, 26] for an introduction to this
topic. In the following, we propose to explore some of the properties of these ma-
trix manifolds to define and study three related sets of matrix-valued mappings of
particular interest in image processing.

2.2.1. Orthogonality constraints. Numerous multi-valued datasets undergo, directly
or indirectly, orthogonality constraints. We can first mention orientation fields
(for instance obtained from optical flow algorithms), and chromaticity features of
color images, which are both made of unit norm vectors. There are also camera
orientation trajectories and orientation features of DT-MRI volumes, which are
modeled as fields of orthogonal matrices. The suitable configuration space for this
type of data is the set of mappings taking value into the Stiefel manifold St(n, p).
St(n, p) is the set of matrices made of p orthonormal vectors of size n:

St(n, p) = {X ∈ R
n×p / XT X = Ip}.

St(n, p) is a homogeneous space (any element in X ∈ St(n, p) can be viewed as
X = QIn×p, where is Q is an element of the Lie group of orthogonal matrices O(n),
and In×p is an incomplete n × p identity matrix). O(n) and the unit hypersphere
Sn−1 are special instances of St(n, p), for p = n and p = 1 respectively. We introduce
here the simplified notations:

Fstiefel = F(Ω, St(n, p)) and Fortho = F(Ω, O(n)).

Note that a set of mappings taking value into a Lie group, such as Fortho, endowed
a suitable topology, is an example of infinite-dimensional Lie group [22].

2.2.2. Prescribed rank/signature. We denote Rk(r, n) the set of n×n real matrices
of rank r ≤ n. This set has a manifold structure which can be derived from a group
action of the product GL(n, R) × GL(n, R) (where GL(n, R) is the Lie group of
nonsingular n× n real matrices) [19, 26]. We will consider here fields of symmetric
matrices with a prescribed rank. The corresponding set of mappings is defined as

Frank = F(Ω, S(r, n)),

where S(r, n) is the subset of Rk(r, n) given by

S(r, n) = {X ∈ R
n×n / XT = X and Rank(X) = r}.

The (r + 1) connected components of S(r, n) are made of matrices with identical
signature (the difference between the number of positive and negative eigenvalues)
[19]. Fields of symmetric positive (semi-)definite matrices, used to represent DT-
MRI volumes in the following, can be modeled using Frank.

3Note that other manifolds of mappings have been explicitly introduced in the context of
computer vision and image processing, such as the group of diffeomorphisms considered in [37].
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2.2.3. Prescribed eigenvalues. Also in the context of DT-MRI data, we investigate
a stronger constraint: Fields of matrices with prescribed eigenvalues. Our goal
is to build isospectral flows acting on a field X0 of real symmetric matrices while
preserving their eigenvalues through time. We recall that if two matrices A and B

have the same spectrum, there exists a similarity transformation between them, i.e.
∃ Q ∈ GL(n) / A = Q−1BQ (furthermore, Q is orthogonal if A and B are real
symmetric) [20]. In this case, since we do not assume the matrix eigenvalues are
the same at all points in Ω, the point-wise constraint we impose on the field varies
spatially. The underlying set of functions is not of the form F(Ω,N ). Instead,
by analogy with the finite-dimensional isospectral manifold presented in [19], we
consider the transitive action induced by a field of orthonormal matrices. We define
our constrained configuration space as

Fiso = {UT X0U / U ∈ Fortho}.
Here and in the sequel, we assume that we extend to F(Ω, Rn×p) the standard
matrix operations: Transpose, matrix product and inverse, matrix exponential,
etc. They just apply point-wise.

2.3. Tangent spaces. Now, in order to build PDEs acting on Fstiefel, Frank and
Fiso, the next step is to identify their tangent spaces. The tangent space at a point
X on a manifold M is generally defined as

TXM = {H / ∃ a path Γ : (−ε, ε)→M such that Γ(0) = X, Γ̇(0) = H}.
When M is a manifold of mappings F(Ω,N ), its tangent space will be formally
identified [41] to

TXF(Ω,N ) = {V ∈ F(Ω, Rn×p) / ∀ p ∈ Ω, V(p) ∈ TX(p)N}.
2.3.1. Orthogonality constraints. We set N = St(n, p). A derivation of the con-
straint XT X = Ip yields

TXSt(n, p) = {H ∈ R
n×p / HT X + XT H = 0}.

In practice, we also use the explicit parametrization proposed in [14]:

TXSt(n, p) = {XA + X⊥B / A ∈ so(p), B ∈ R
(n−p)×p},

where so(p) is the set of p× p skew-symmetric matrices, and X⊥ is the n× (n− p)
matrix such that XXT + X⊥XT

⊥ = In. Equipped with the commutator [A,B] =
AB − BA (Lie bracket), so(n) corresponds to the Lie algebra of the orthogonal
group O(n). In the true orthogonal case: O(n) = St(n, n), the tangent space reduces
to TXO(n) = {XA / A ∈ so(n)}. Finally, if we denote Fskew = F(Ω, so(p)), we
can write

TXFstiefel = {XA + X⊥B / A ∈ Fskew, B ∈ F(Ω, R(n−p)×p)}.
Thus, we can then expect evolution equations on Fstiefel to have the following form:

(2.1) ∂tX = XA(X) + X⊥B(X) / A(X) ∈ Fskew, B(X) ∈ F(Ω, R(n−p)×p).

In particular, this equation reduces to

∂tX = XA(X) / A(X) ∈ Fskew,

on Fortho (i.e. when p = n).
We note here A and B as functions of X, but A and B could by any functions

(operators) taking respectively value in Fskew and F(Ω, R(n−p)×p). It is the choice
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of A and B that yields specific PDEs acting on Fstiefel. In our application, A and
B will be differential operators (in fact diffusion operators) allowing the progressive
smoothing of the original field X0.

2.3.2. Prescribed rank/signature. One can show (see [19] for details) that TXRk(r, n) =
{AX + XB / A,B ∈ R

n×n}, and that the expression of the tangents spaces on
S(r, n) reduces to TXS(r, n) = {AT X + XA / A ∈ R

n×n}. By extension, TXFrank

follows directly:

TXFrank = {AT X + XA / A ∈ F(Ω, Rn×n)}.
The corresponding rank/signature preserving evolution equations thus satisfy

(2.2) ∂tX = A(X)T X + XA(X) / A(X) ∈ F(Ω, Rn×n).

2.3.3. Prescribed eigenvalues. In this case, the task of characterizing the tangent
space is bit more difficult. Let X ∈ Fiso. By extension of the argument developed
in [19] in the finite-dimensional case, we use the surjective linear map between
TZFortho and TZT XZFiso induced by the differential of the smooth map:

σX(Z) : Fortho −→ Fiso

Z 7−→ ZT XZ.

In fact, its differential at point Z in the direction H in TZFortho is

dσX
Z (H) = HT XZ + ZT XH,

which yields

TZT XZFiso = {HTXZ + ZT XH / H ∈ TZFortho}
= {(ZA)T XZ + ZT XZA / A ∈ Fskew}
= {(ZT XZ)A−A(ZT XZ) / A ∈ Fskew}.

Since, ∀ Y ∈ Fstiefel there exists Z ∈ Fortho such that Y = ZT XZ, we obtain

TYFiso = {YA−AY / A ∈ Fskew}
= {[Y,A] / A ∈ Fskew},

where we use the Lie bracket notation [A,B] = AB−BA. Consequently, flows on
Fiso satisfy

(2.3) ∂tX = [X,A(X)] / A(X) ∈ Fskew.

A summary of all these constrained flows is given in Table 1 below. But before we
try to specialize them to perform image processing tasks, we propose to immediately
address the problem of their numerical implementation.

Fstiefel ∂tX = XA(X) + X⊥B(X) / A(X) ∈ Fskew, B(X) ∈ F(Ω, R(n−p)×p)

Fortho ∂tX = XA(X) / A(X) ∈ Fskew

Frank ∂tX = A(X)T X + X(A(X)) / A(X) ∈ F(Ω, Rn×n)

Fiso ∂tX = [X,A(X)] / A(X) ∈ Fskew

Table 1. Generic form of the constrained flows.
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3. Structure-preserving integrators

3.1. Numerical integration on manifolds. Previously, we looked at the intrin-
sic geometry of Fstiefel, Frank and Fiso using a representation in terms of extrin-
sic coordinates in F(Ω, Rn×p). As mentioned before, the main advantage of this
approach is to avoid switching between local coordinate charts. However, the cor-
responding numerical implementation requires a special attention. In fact, if we
use standard techniques for evolution PDEs, there is a risk of stepping out from
the manifold after each iteration. The flow does not lie in a linear space, and one
must adjust the integration method to accommodate the curved constrained geom-
etry. The point-wise constraints considered in this paper only have consequences
on the discretization in time of the equations. We assume standard finite-difference
techniques are used for the spatial discretization4 of the differential operators that
appear in the design of specific flows. We use a semi-discrete formulation in the
following.

On an arbitrary manifold M, the objective is to build a step-forward operator
Kε (ε being the time step), such that the discrete flow

Xk+1 = Kε(Xk), X0 ∈M,

provides a consistent approximation of the solution of the equation

∂tX = V(X), X(0) ∈ M, V(X) ∈ TXM.

To understand what consistency means in this case, we consider the general setting
proposed by Chorin et al. [10] for numerical algorithms and evolution equations
on (infinite-dimensional) manifolds. A consistent operator is defined as a mapping
Kε : M → M, that provides at least a first order approximation in time of the
continuous flow5. That is,











Kε :M→M,

K0(X) = X,

∂εKε(X)|ε=0 = V(X).

When M is linear, a wide range of operators are available. We naturally have
the simple Euler step, defined by Kε(Xk) = Xk + εV(Xk), or the Crank-Nicolson
scheme, implicitly defined by Kε(Xk) = Xk + ε

2 (V(Xk) + V(Kε(Xk))). On a
nonlinear manifold, the first idea is to re-project on M the point given by a step-
forward operator defined on its embedding space. This operation is not always
well-defined and consistent. Hopefully, it sometimes possible to incorporate more
efficiently the geometry ofM in the design of Kε. Exploring this idea, the following
developments are inspired from existing geometric integration methods for ODEs
on Lie groups and homogeneous spaces [12, 17, 21, 24], and are related to the
optimization techniques developed in [7, 14, 19, 32]. Most of these methods rely
on the existence of closed forms for geodesics (or exponential maps) on matrix
manifolds, generally expressed in terms of the matrix exponential.

4Recall that Ω is assumed to be flat in this paper. We refer to [5] for the implementation of
PDEs acting on images whose domain is an implicit surface.

5Provided the continuous equation admits a sufficiently regular solution (Lipschitz regularity
of V or semi-group properties) Chorin et al. show that limn→∞ Kt/n ◦ · · · ◦ Kt/n = Ft where Ft

is the evolution operator such that X(t) = Ft(X0).
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Figure 2. Two steps of a geometric numerical integrator on a
nonlinear manifold M.

Fig. 2 simply illustrates the action of a step-forward operator Kε on a nonlinear
manifold.

3.2. Geometric integrators for Fstiefel, Frank, and Fiso.

3.2.1. Orthogonal flow. We propose to define Kε on Fstiefel from geodesic steps on
St(n, p). The equation of geodesics for the canonical metric on the Stiefel manifold
has a closed form expressed in terms of the matrix exponential [14]. For a given
point X on St(n, p), and a direction H = XA + X⊥B ∈ TXSt(n, p), this equation
is given by

t 7→ ExpX(tH) =
(

X X⊥

)

e
t

�
A −BT

B 0 � In×p.

In practice, geodesics can be computed in O(np2) flops with an algorithm given in
[14]. We then build the operator

∀ p ∈ Ω, Kε(Xk)(p) =
(

Xk(p) Xk⊥
(p)
)

e
ε � A(Xk)(p) −B(Xk)(p)T

B(Xk)(p) 0 � In×p,

which provides a consistent approximation for a generic flow satisfying Eq. 2.1 on
Fstiefel. For equations acting on Fortho, the previous operator reduces to the simple
expression

Kε(Xk) = XkeεA(Xk).

A similar reduction occurs6 in the case F(Ω, Sn−1), for Hk = Xk⊥
B(Xk),

Kε(Xk) =

{

Xk cos(ε‖Hk‖) + Hk

‖Hk‖
sin(ε‖Hk‖) if Hk 6= 0,

Xk if Hk = 0.

This last result corresponds to the geodesic marching procedure already proposed
in [8] for PDEs acting on direction fields.

3.2.2. Rank/signature preserving flow. In this case, we first need to introduce an
auxiliary flow on F(Ω, GL(n, R)). We identify the tangent space at a point Y on
GL(n, R) with TYGL(n, R) = {YA / A ∈ gl(n, R) = R

n×n}. Thus, the generic
form of evolution equations on F(Ω, GL(n, R)) is given by

∂tY = YA(Y) / A(Y) ∈ F(Ω, Rn×n).

6Note that B is scalar in this case, and use the property exp � 0 −α
α 0 � = � cos(α) − sin(α)

sin(α) cos(α) � .
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We also notice that the equation of the geodesic of tangent H at the identity
on GL(n, R) is t 7→ etH [18]. Using this result, and identifying any vector on
TYGL(n, R) with a vector of gl(n, R) (by left translation), we propose the following
integrator Lε on F(Ω, GL(n, R)):

Lε(Yk) = YkeεA(Yk).

Once these tools are available, we introduce a constant field Λ of diagonal matrices
diag(Ip,−Iq,0) of size n×n (with p positive eigenvalues and q negative eigenvalues).
We also define X(t) = Y(t)T ΛY(t) where t 7→ Y(t) ∈ F(Ω, GL(n, R)) (note that
such a decomposition exists for any family t 7→ X(t) ∈ Frank). If t 7→ Y(t) is
solution of

∂tY = YA(X) / Y0 ∈ F(Ω, GL(n, R)),

then t 7→ X(t) satisfies the rank/signature preserving flow of Eq 2.2, with X0 =
YT

0 ΛY0. Looking at the discrete counterpart of this property yields a natural
step-forward operator on Frank:

Kε(Xk) = Lε(Yk)T ΛLε(Yk),

which reduces to

∀ p ∈ Ω, Kε(Xk)(p) = eεA(Xk)(p)T

Xk(p)eεA(Xk)(p)).

Note that any reference to the auxiliary field Yk disappears. We can verify the con-
sistency of Kε using well-known results of matrix calculus. Let M(p) = eεA(Xk)(p),
the integration scheme becomes Xk+1(p) = M(p)T Xk(p)M(p). M(p) is a matrix
exponential, thus nonsingular. Consequently, since congruence preserves the matrix
inertia (the number of positive, negative and zero eigenvalues), Xk+1(p) and Xk(p)
have the same rank and signature (Sylvester’s law of inertia [20]). Furthermore, a
direct derivation yields

∂εKε(X)|ε=0 = A(X)T X + XA(X).

3.2.3. Isospecral flow. We use a similar mechanism for the isospectral flow. We
consider the numerical approximation of an auxiliary problem on Fortho. Let X(t) =
Y(t)T X0Y(t), such that t 7→ Y(t) ∈ Fortho is solution of the orthogonal flow:

∂tY = YA(X), Y0 = In ←→ Yk+1 = Lε(Yk), Y0 = In,

where A(X) ∈ Fskew and Lε denotes the corresponding step-forward operator. A
simple computation shows that t 7→ X(t) is actually solution of an isospectral flow
(Eq. 2.3). By analogy with the continuous equations, we propose to define the
step-forward operator on Fiso as

Kε(Xk) = Lε(Yk)T X0Lε(Yk),

which reduces to

∀ p ∈ Ω, Kε(Xk)(p) = eεA(Xk)(p)T

Xk(p)eεA(Xk)(p)

= e−εA(Xk)(p)Xk(p)eεA(Xk)(p),

since A(Xk) ∈ Fskew. Kε is consistent by construction: If we set M(p) = eεA(Xk)(p),
the integration scheme becomes Xk+1(p) = M(p)−1Xk(p)M(p) = M(p)T Xk(p)M(p).
M(p) is nonsingular and orthogonal. Since similarity preserves the eigenvalues [20],
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the discrete flow is isospectral. Moreover, the property of first order approximation
in time follows from the Baker-Campbell-Hausdorff formula [1]:

e−εAXeεA = X + ε[X,A] +
ε2

2
[[X,A],A] + · · · .

A summary of the previous numerical schemes is given in Table 2. One will notice
that they all require the numerical evaluation of the matrix exponential. This
problem is discussed in the appendix.

Fstiefel Kε(Xk)(p) =
(

Xk(p) Xk⊥
(p)

)

e
ε � A(Xk)(p) −B(Xk)(p)T

B(Xk)(p) 0 � In×p

Fortho Kε(Xk)(p) = Xk(p)eεA(Xk)(p)

Frank Kε(Xk)(p) = eεA(Xk)(p)T

Xk(p)eεA(Xk)(p)

Fiso Kε(Xk)(p) = e−εA(Xk)(p)Xk(p)eεA(Xk)(p)

Table 2. Geometric numerical integrators.

4. Cost functional minimization

Using our previous developments, we now try to answer the following question:
How to design a specific flow to achieve an image regularization or restoration task?

From the large literature on PDE-based techniques for scalar images (we refer
to [3, 31, 44] for surveys on this topic), three strategies emerge: The equations
come from local heuristics (geometry-driven diffusion), they are derived within an
axiomatic framework (nonlinear scale-space), or they are obtained as minimizing
flows of suitable cost functionals. The resulting PDEs usually include nonlinear
diffusion operators. The idea is to allow a selective “edge-preserving” smoothing of
the image.

In the matrix-valued case, a direct specialization of the first two approaches
seems far from obvious, due to the specific form imposed by the constraints. For
this reason, the cost functional minimization approach is preferred here. The goal
is to build a minimizing flow for a functional providing some “image irregularity”
measure. Assuming such a functional is given (its choice will be discussed later),
we consider below the design of the corresponding flow.

4.1. Minimizing flows. Let us consider a cost functional f : M → R
+ (which

we assume sufficiently regular). From a suitable initial guess X(0) ∈ M (the
original image in the case of regularization problems), we build a minimizing flow
by following the direction of steepest descent onM. This direction is given, up to
the choice of a metric, by the corresponding gradient vector field ∇f :

∂tX = −∇f(X), X(0) ∈M.
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The gradient ∇f(X) is generally defined [1, 41] as the element of the tangent space
TXM which satisfies7:

(4.1) dfX(H) = gX(∇f(X),H), ∀ H ∈ TXM,

where gX(·, ·) is an arbitrary Riemannian metric on M, and dfX(H) denotes the
first variation (first differential) of f in the direction H. In practice, we can choose
an arbitrary curve Xε onM such that X0 = X and ∂εXε|ε=0 = H, and obtain the
first variation as dfX(H) = ∂εf(Xε)|ε=0.

4.1.1. Unconstrained gradient. Given a functional f defined on the linear function
space F(Ω, Rn×p), the idea is to express its first variation as follows:

(4.2) dfX(H) =

∫

Ω

Trace(G(X)(p)T H(p)) dp.

For this purpose, it will sometimes be necessary to assume that H (∈ TXF(Ω, Rn×p) '
F(Ω, Rn×p)) vanishes on the domain boundary ∂Ω, or impose homogeneous Neu-
mann8 boundary conditions on the components of X. Once G has been identified,
if we define gX as a standard L2 scalar product on F(Ω, Rn×p):

gX(U,V) = 〈U,V〉L2 =

∫

Ω

Trace(U(p)T V(p)) dp,

we get ∇f = G. Note that in this case, the equality G(X) = 0 would correspond
to the classical Euler-Lagrange equations of variational calculus.

4.1.2. Natural constrained gradient. By extension, we would like to obtain the nat-
ural gradient9 of the restriction of f to Fstiefel, Frank and Fiso. In all three cases,
we need to identify the element ∇f(X) of TXM which satisfies Eq. 4.1, using the
first variation of f when H is restricted to TXM (now H depends on X). We also
need to choose a suitable metric gX.

In fact, assuming the first variation of f is still given by Eq. 4.2, we can provide
a systematic method to convert the unconstrained L2 gradient of f on F(Ω, Rn×p)
into the natural gradient of its restriction to Fstiefel, Frank or Fiso. Up to the change
of metric, this operation is a projection of G into the suitable tangent space10.

We choose to endow Frank, Fstiefel and Fiso with metrics obtained by integrating
over Ω existing canonical metrics on Lie groups and homogeneous spaces [14, 19, 33].
Our argument is that these manifolds also have an algebraic structure of group, or
result from a group action, which can (and should) be taken into account through
the choice of relevant metrics.

In each case we give below the expression of the corresponding gradient. We also
detail its derivation in the orthogonal case.

7If (TXM, gX) is a Hilbert space and dfX a continuous linear form on TXM, the existence
and uniqueness of ∇f(X) is a direct consequence of Riez representation theorem [1].

8 �
k ∂pk

Xi,j(p) · nk = 0, ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ p, ∀ p ∈ ∂Ω, where n is the unit outward

normal vector on ∂Ω.
9We borrow the terminology of natural gradient from Amari [2] who takes into account Rie-

mannian metrics to build efficient minimizing flows in learning and information theory.
10This process corresponds to the use of Lagrange multipliers in classical variational calculus.
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4.1.3. Orthogonality constraint. For two vectors V1 = XA1 +X⊥B1,V2 = XA2 +
X⊥B2 ∈ TXFstiefel, we set

gX(V1,V2) =

∫

Ω

Trace((V1(p))T (In −
1

2
X(p)X(p)T )V2(p)) dp(4.3)

=
1

2
〈A1,A2〉L2 + 〈B1,B2〉L2 ,

using the canonical metric induced from the quotient space structure of St(n, p).
We refer to [14] for a justification of this choice. Now, given an arbitrary direction
H = XA + X⊥B ∈ Fstiefel, and using the properties of the trace operator, we can
rewrite the first variation of f (Eq. 4.2) as

(4.4) dfX(XA + X⊥B) =
1

2
〈{X,G(X)},A〉L2 +

〈

XT
⊥G(X),B

〉

L2
,

using the bracket notation {A,B} = AT B−BT A (∈ Fskew). If we set ∇f(X) =
XC + X⊥D ∈ TXFstiefel, we can identify

(4.5) gX(∇f(X),XA + X⊥B) =
1

2
〈C,A〉L2 + 〈D,B〉L2

with Eq. 4.4, for arbitrary A ∈ Fskew and B ∈ F(Ω, R(n−p)×p)). We then obtain

∇f(X) = X{X,G(X)}+ X⊥XT
⊥G(X)

= X{X,G(X)}+ (In −XXT )G(X)

= G−XGT X.

Thus, the natural gradient flow of f on Fstiefel is given by

∂tX = XGT X−G, X0 ∈ Fstiefel.

Note that the same equation was also derived in [39] using Lagrange multipliers.

4.1.4. Prescribed rank/signature. In this case, we extend to Frank the canonical
metric on S(r, n) discussed in [19]. The gradient computation, based on similar
derivations also proposed in [19] (in the finite-dimensional case), leads to

∇f(X) = (G(X) + G(X)T )X2 + X2(G(X) + G(X)T ).

4.1.5. Prescribed eigenvalues. The same procedure, applied to Fiso equipped with
the metric inherited from its finite-dimensional counterpart, yields a double-bracket
expression:

∇f(X) = [X, [X, [G(X) + G(X)T ]]].

The corresponding gradient flows are summarized in Table 3.

Fstiefel ∂tX = XG(X)T X−G

Frank ∂tX = −
((

G(X) + G(X)T
)

X2 + X2
(

G(X) + G(X)T
))

Fiso ∂tX =
[

X,
[

X,−
(

G(X) + G(X)T
)]]

Table 3. Natural gradient flows.
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4.2. Anisotropic regularization. As direct application of these results, we design
a simple image-driven anisotropic regularization scheme.

4.2.1. φ-function formulation. Our goal is to build a regularizing flow that reduces
the noise and the artifacts corrupting a matrix-valued mapping X0 (which belongs
to Fstiefel, Frank or Fiso) while preserving its large global features (equivalent to the
“edges” or object contours of gray-valued images). For a field X ∈ F(Ω, Rn×p), we
consider a functional relying on an increasing function φ : R

+ → R
+ of the norm

of its spatial variations:

(4.6) f(X) =

∫

Ω

φ (‖dX(p)‖) dp,

with

‖dX(p)‖ =

(

k
∑

i=1

Trace(∂pi
X(p)T ∂pi

X(p))

)1/2

.

Regularization techniques derived from this type of functionals have proven their
efficiency in the scalar case (see [3] and references therein). Computing the first
variation of f , together with homogeneous Neumann boundary conditions on X,
yields:

(4.7) G(X)(p) = −
k
∑

i=1

∂pi

(

φ′ (‖dX(p)‖)
‖dX(p)‖ ∂pi

X(p)

)

.

For a suitable choice of φ, we can expect gradient flows based on this nonlinear
differential operator to exhibit a robust anisotropic smoothing behavior (the convex

function φ : s 7→ 2
√

1 + s2 − 2 is used in the numerical experiments). Then, we
consider a one-parameter family of matrix-valued mappings which is solution of

∂tX = −∇f(X), X(0) = X0,

the natural gradient flow of f on Fstiefel, Frank or Fiso. This initial value problem
is simply obtained by replacing G with the expression given in Eq. 4.7 in the
corresponding equation of Table 3. In practice, unless a data-attachment term is
added to f (in which case we look for the asymptotic solution X(+∞)), we set an
arbitrary time τ > 0 and define X(τ) as solution of our regularization problem.

When we use the word solution in the previous discussion, we implicitly assume
the well-posedness of our gradient flows (existence, uniqueness). However, it is
important to notice that our derivations followed essentially from geometric argu-
ments, and such a proof has not been established. To achieve this goal, additional
assumptions on the regularity of our matrix-valued functions would be needed, and
the properties of the functional should be carefully studied.

4.2.2. Toward intrinsic cost functionals. So far, we assumed the functional was de-
fined on the embedding space F(Ω, Rn×p), regardless of the underlying constraints.
Geometry and metrics of the constrained set of mappings were taken into account
in the gradient flow computation and its numerical implementation, but not in the
functional itself. As we will see in the next section, this approach already yields
very satisfactory experimental results.

Of course, our framework would remain valid for more complex functionals that
also include geometric and metric information. Energy functionals inspired from
(p−)harmonic maps theory were suggested in [25, 35, 43]. For a mapping X ∈
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F(Ω,N ), the corresponding energy would be similar to Eq. 4.6 with φ : s 7→ sp,
and a norm of the spatial variations induced by a Riemannian metric on N . Along
the same line of ideas, we can mention the Polyakov action functional and the
Beltrami framework proposed in [23, 34]. These approaches could be extended to
the matrix-valued mappings considered in this paper. In this perspective, we refer
to [13, 40, 41] for existing theoretical works on harmonic maps into Lie groups and
homogeneous spaces.

5. Experiments

In this section, we illustrate the previous theoretical framework and experiment
different ways of regularizing a field of symmetric positive definite matrices. For
this purpose, we use successively the rank/signature preserving, orthogonal, and
isospectral flows. The application of interest is the regularization of Diffusion Tensor
MRI data (DT-MRI) in medical imaging. This technique allows to measure the
motion of water molecules in the white matter of the brain. After estimation, we
assume here that each voxel of a DT-MRI volume is modeled as a 3× 3 symmetric
positive definite matrix (the so-called diffusion tensor). Its eigenvalues give the
diffusivities of water molecules along principal directions given by its eigenvectors.
The idea is to reconstruct the underlying white matter fiber tracts by following at
each voxel the direction given by the eigenvector of largest eigenvalue (the motion
of water molecules, restricted by the axons, tends to follow the fiber tracts [46]).
When regularizing this type of data, the objective is twofold:

• Remove the noise inherent to the acquisition/estimation process,
• Allow an easier retrieval of the global fiber bundle structures (to build

models of cerebral connectivity).

Previous related works can be found in [11, 30, 38, 42, 46].
The initial configuration space of our problem is the set of mappings X : Ω 7→ P(3),

where P(3) denotes the set of 3×3 symmetric positive definite matrices. Note that
P(n) is a convex half-cone [26]. Consequently, any regularizing PDE whose numer-
ical implementation reduces to a positive linear combination of the original data
will preserve the symmetry and positive definiteness of the field (a similar remark
can be found in [45]). Here, we propose the alternative use of our geometric flows as
a more efficient way to integrate the intrinsic properties of the underlying field. In
particular, we want to emphasize the importance of the tensor orientations which
are essential in the fiber reconstruction process.

In the following, we evaluate the qualitative behavior of the regularizing flows
on a synthetic dataset and then apply our tools to a real DT-MRI volume.

5.1. Synthetic experiments. Let us consider a synthetic field X : Ω 7→ P(3). A
simple graphical representation is obtained in terms of ellipsoids whose radii and
axis orientations are given respectively by the eigenvalues and the eigenvectors of the
symmetric positive define matrices (Fig. 3a). Then, we corrupt its eigenvectors11

with noise to form a new field X0 (Fig. 3b).

11A Gaussian noise was applied to the 6 independent coefficients of each matrix, followed by
a spectral decomposition used to force the eigenvalues to their initial value.
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1st method. Since P(3) is one of the 4 connected components of S(3, 3) [19], we
naturally propose to use the rank/signature preserving flow to regularize X0 by
minimizing the cost functional f (Eq. 4.6) on Frank. Note that in all the experi-

ments, we use φ : s 7→ 2
√

1 + s2−2. We present the results after 40 iterations. The
time step ε is always chosen empirically to ensure the stability of the discrete flow.
In this case, the recovered field is clearly smoother (Fig. 3c) but presents an eigen-
value swelling effect. The information about the eigenvalues and the eigenvectors
is mixed by the regularizing flow. There is a risk of losing the principal direction
of the initial field.

2nd method. To cope with this issue, the first idea is to perform a spectral decom-
position of X0, such that ∀ p ∈ Ω, X0(p) = U(p)T diag(λ1(p), λ2(p), λ3(p))U(p),
and regularize its eigenvalues (diffusivities) and eigenvector matrices (orientation
feature) separately. As explained in [38], this approach requires an additional align-
ment step due to the non-uniqueness of the spectral decomposition (eigenvectors of
similar orientation with opposite directions) which can create artificial “disconti-
nuities” disturbing the regularization of U. Assuming this procedure was applied,
U (∈ Fortho) is regularized by minimizing f on Fortho with the corresponding or-
thogonal flow. In this case, the initial field X is almost perfectly recovered (Fig.
3d), including the sharp variation (the “edge”) observed on its orientations.

3rd method. A simple alternative to the previous method is the application of the
isospectral flow. It allows us to directly regularize X0 (by minimizing f on Fiso)
while preserving the initial diffusivities. In this case, there is no need for an explicit
spectral decomposition and a realignment procedure. The result is also very satis-
factory (Fig. 3b). Note that despite similar results, the second and third methods
are quite different. The edge preserving property of the regularization functional
depends respectively on the spatial variations of the orientation field U and X0.

5.2. DT-MRI regularization. Now, we test our regularization PDEs on a 128×
128×56 DT-MRI image of a human brain12 (Fig. 4). To make visualization easier,
our results are presented on a small region of a slice of the initial volume (white
square area of Fig. 4a). The left side of each figure shows the DT-MRI data as a
field of ellipsoids, while the right side corresponds to streamlines of the principal
direction field. The results highlight properties already observed with the synthetic
experiments:

• The rank/signature preserving flow (Fig. 4b) tends to blend the orientation
and diffusivity features (eigenvalue swelling effect). We quickly lose the
structure of the underlying network of fiber tracts.

• The orthogonal flow applied to the field of eigenvectors (Fig. 4c) performs
an efficient selective smoothing of the orientation feature, but requires a
spectral decomposition and a realignment step. The fiber tracts network is
simplified but keeps its main structures.

• The isospectral flow (Fig. 4d) exhibits a quite similar behavior. Moreover
it does not require an explicit tensor decomposition, thus reducing the
computational burden.

12The authors would like to thank J.-F. Mangin and J.-B. Poline (SHFJ-CEA) for the DT-
MRI data (this work was partially supported by ARC MC2). We also thank R. Fournier for his
visualization tool TensView.
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(a) slice of synthetic

3D tensor field
(b) noisy field

(c) rank/signature

preserving flow

(d) spectral

decomposition +

orthogonal flow

(e) isospectral flow

Figure 3. Synthetic experiments.

In Fig. 5, we show the action of two of the previous methods on a part of the
dataset that corresponds to the corpus callossum, a bundle of nerve fibers that con-
nects the two hemispheres of the brain. In this particular region, the fiber tracts
are known to lie almost entirely on axial planes. The isospectral regularization
approach naturally enhances this property, thanks to a coherent tensor orientation
smoothing.

A complete validation and physiological interpretation of these results remains
to be done, but these preliminary experiments seem to show that our regularizing
flows reduce the level of noise and yield a smoother and more coherent model of
the fiber tracts structures.

6. Conclusion

Our objective was to introduce a set of tools and a systematic approach to de-
sign and implement regularizing PDEs acting on constrained multi-valued images.
The suitable flows were obtained by considering the geometry of constrained sets of
matrix-valued mappings, which inherit most of their properties from finite dimen-
sional Lie groups and homogeneous spaces. The corresponding structure-preserving
numerical methods were also proposed, based on existing geometric integration
techniques on Riemannian manifolds. The efficiency and versatility of this formal-
ism was demonstrated on the problem of DT-MRI regularization.

We believe that our geometric approach gives new perspectives on some of the
ideas previously developed in the field of PDE-based methods for multi-valued im-
ages [8, 23, 29, 43, 38, 39]. At this point, our derivations are essentially formal, leav-
ing out numerous technicalities that arise when working with infinite-dimensional
sets of mappings (involving both functional analysis and differential geometry).
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(a) slice of a DT-MRI of

the brain (mean diffusivity)

(b) local

tensors/streamlines

corresponding to the white

square area

(c) rank/signature

preserving flow

(d) spectral decomposition

+ orthogonal flow
(e) isospectral flow

Figure 4. DT-MRI regularization.

A rigorous study of both the well-posedeness of the resulting equations and the
convergence of the geometric integrators shall form the next step of this work.

7. Appendix

Approximation of the matrix exponential. The numerical schemes proposed
in this paper require the evaluation of matrix exponentials. The truncated power
series representation eB ' ∑p

k=0 Bk/k! is hardly tractable in practice due to its
slow convergence. Instead, we use the rational (Padé) approximation with scaling



18 C. CHEFD’HOTEL, D. TSCHUMPERLÉ, R. DERICHE, AND O. FAUGERAS

(a) original data

(b) rank/signature preserving flow (c) isospectral flow

Figure 5. DT-MRI regularization (corpus callosum area).

and squaring proposed in [16]. This method relies on a two-parameter family of
approximants eB ' Rp,q(B), with Rp,q(B) = Dp,q(B)−1Np,q(B) such that

Dp,q(B) =

p
∑

k=0

(p + q − k)!p!

(p + q)!k!(p− k)!
Bk, Np,q(B) =

q
∑

k=0

(p + q − k)!p!

(p + q)!k!(q − k)!
(−B)k.

When dealing with skew-symmetric matrices, other techniques are considered (of-
fering a lower computational cost). In particular, we use a reformulation in terms
of trigonometric functions (Rodrigues’ formula) or replace the exponential with the
Cayley map, as detailed below.

Exponential of skew-symmetric matrices and Rodrigue’s formula. Rodrigues’ for-
mula [1] gives a closed form of the matrix exponential of 3 × 3 skew-symmetric
matrices in terms of trigonometric functions. We give here its generalization to
n ≥ 3 proposed by Gallier and Xu in [15]:

Theorem (Generalized Rodrigues’ formula). Given any non null skew-symmetric
n×n (n ≥ 3) matrix A, if {iθ1,−iθ1, . . . , iθp,−iθp} is the set of distinct eigenvalues
of A, where each iθ1 (and −iθ1) has multiplicity kj ≥ 1, there are p unique skew-
symmetric matrices A1, . . .Ap such that ∀ 1 ≤ i, j ≤ p,

A = θ1A1 + . . . + θpAp

AiAj = AjAi = 0 (i 6= j)

A3
i = −Ai

Furthermore,

eA = In +

p
∑

i=1

(sin θiAi + (1− cos θi)A
2
i ).
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In particular, for A =
( 0 −c b

c 0 −a
−b a 0

)

, we have p = 1, θ1 =
√

a2 + b2 + c2, and A1 =

A/θ1.

Cayley Map. The Cayley map (or Cayley transform) [17, 21] is the mapping

Cay : A 7−→ (In − ρA)−1(In + ρA),

where ρ ∈ R \ {0} is an arbitrary constant. The Cayley map is well-defined, i.e.
In − ρA is nonsingular, for all skew-symmetric matrix A (since skew-symmetric
matrices have complex eigenvalues), and is a computationally efficient alternative to
matrix exponentials in some of our numerical schemes. This mapping shares two key
properties with the matrix exponential. First, for a n×n skew-symmetric matrix A,
Cay(A) ∈ SO(n) (this follows from the skew-symmetry of A and the commutativity
of the product (In + ρA)(In − ρA)). Moreover, ∂ε Cay(εA)|ε=0 = ∂εe

εA
∣

∣

ε=0
= A

for ρ = 1/2 (this result is obtained using the chain rule of derivation and the
differential of the matrix inverse d(X−1)(X) · H = −X−1HX−1). These results
show that one can use Cayley maps instead of exponentials in the orthogonal and
isospectral step-forward operators. Their consistency with the continuous flows is
preserved. Note that for ρ = 1/2, the Cayley map is equal to the Padé approximant
R1,1(A).
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