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Abstract

We present a method for the estimation of various features of the tissue micro-architecture using the diffusion magnetic resonance
imaging. The considered features are designed from the displacement probability density function (PDF). The estimation is based
on two steps: first the approximation of the signal by a series expansion made of Gaussian-Laguerre and Spherical Harmonics
functions; followed by a projection on a finite dimensional space. Besides, we propose to tackle the problem of the robustness to
Rician noise corrupting in-vivo acquisitions. Our feature estimation is expressed as a variational minimization process leading to
a variational framework which is robust to noise. This approach is very flexible regarding the number of samples and enables the
computation of a large set of various features of the local tissues structure. We demonstrate the effectiveness of the method with
results on both synthetic phantom and real MR datasets acquired in a clinical time-frame.
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1. Introduction

Diffusion Magnetic Resonance Imaging (dMRI) is an in-vivo
method which captures images of water molecule diffusion. Its
interesting ability to visualize human tissues with a high con-
trast and its extreme sensitivity to diagnose early stages of is-
chemic events and brain pathologies has been very useful in
clinical applications and brain research so far [1, 2, 3]. Indeed,
under the assumption that water molecules motion are restricted
by the nerve fiver structures, the computation of the diffusion
indexes leads to images which indirectly characterize the local
micro-structure of fibers in each voxel. The MR signal acquisi-
tion is based on the pulsed field gradient spin-echo experiment
(PFGSE) introduced by Stejskal and Tanner [4]. Until recently,
most dMRI studies used the Stejskal and Tanner equation to
analyse the signal attenuation [4],

Eg =
S g

S 0
= exp(−γ2g2δ2(∆ − δ/3)D) = exp(−bD) (1)

This equation relates the normalized signal decay Eg with the
duration, time separation and strength of the magnetic field
pulse gradients (δ, ∆ and g respectively), γ the magnetogyric
ratio, and the apparent diffusion coefficient (ADC) D. The sym-
bols S g and S 0 respectively denote the diffusion signal decay at
gradient g and the baseline image without any gradient. LeBi-
han et al. [1] introduced Diffusion Weighted Imaging (DWI)
which measures a scalar ADC along a single gradient direction
g from the signal decay. However, such an approach assumes
that the diffusion is isotropic everywhere. Therefore, this model
does not fit reliably the underlying micro-structure of tissues.
Later, Basser et al. [5] introduced the Diffusion Tensor Imag-
ing (DTI) which requires several acquisitions along at least 7
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directions of g to estimate the ADC as a symmetric, positive-
definite, 2nd-order tensor D(g). DTI is then able to compute an
angular measure of the diffusion. Despite its wide use, it as-
sumes a displacement probability characterized by an oriented
Gaussian Probability Diffusion Function (PDF). Consequently,
DTI can only map a single orientation inside a voxel and fails
in voxels having orientational heterogeneity [6]. Although high
order methods have been introduced to better fit the ADC pro-
file with more samples, one important issue remains: the ADC
peaks do not necessarily yield the underlying main fiber orien-
tations [7]. Besides, Eq.(1) describes a single population that
exhibits unrestricted diffusion and can only capture a mono-
exponential decay which is therefore what most studies above
assumed.

q-space: Built on top of the Stejskal-Tanner pulsed-field gra-
dient spin-echo experiments [4], the q-space formalism was in-
troduced by Callaghan [8] and Cory [9]. They demonstrated
that the Fourier transform of the normalized signal decay E(q),
with respect to the diffusion wave-vector q = (2π)−1γδg can be
related to the displacement probability function (PDF) P, as

P(p) =
∫

q∈R3
E(q) exp(−2πiqTp) dq, (2)

where p ∈ R3 stands for the displacement vector. Note that the
DTI method can be described in this formalism with E(q) =
exp(−4π2∆qTDq) [10]. Eq.(2) shows that under the assump-
tion of a narrow pulse approximation (δ very short and δ � ∆),
the PDF can be retrieved by a Fourier transform of the pseudo-
periodic diffusion signal. Eq.(2) leads to a method known as
Diffusion Spectrum Imaging (DSI) [11] which is not restricted
to a particular diffusion model in contrast to DTI. It is theoret-
ically one of the most promising method to recover complex
information from the diffusion data. However it is not clini-
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cal compliant since it requires a very high magnetic field and a
huge number of acquisitions to sample the whole q-space coef-
ficients meanwhile the patient must stay motionless. To over-
come these problems, two alternative subsets of methods have
been developed in the literature. They focus on the measure of
either radial or angular features of the PDF.

q-space Nuclear Magnetic Resonance (NMR) provides a ra-
dial analysis of the MR signal intensity. It was first introduced
by Tanner et al. [12, 13]. These studies are highly related
to DWI Eq.(1) with the main difference that the latter allows
to measure the signal along multiple b values. q-space NMR
experiments provides clues of the radial diffusion behavior of
solvents and solutes in heterogeneous systems, including yeast
cells, human erythrocytes and tissues [9, 14, 15]. Addition-
ally, q-space NMR enables to validate complex diffusion mod-
els such as the impermeable parallel planes method [16, 17].
This model aims to better understand the origin of the diffu-
sion MR signal under the assumption that the signal peaks are
related to the barriers that restrict the diffusion [8]. However
this method focuses only on the radial reconstruction of the
MR signal and do not recover angular information. Yet, several
promising recent studies [18, 19] propose new echo sequences
optimized for q-space NMR.

High Angular Resolution Diffusion Imaging (HARDI) intro-
duced by Tuch et al. in [20] has allowed the angular analysis
of the MR signal intensity. This sampling protocol proposes
to acquire the diffusion signal reduced to a single sphere in the
q-space. Few methods have been proposed so far to compute
the whole PDF or some angular features of it. From a quite
limited (25-100) number of samples, Tuch introduced in [21]
the Q-Ball Imaging (QBI) technique. It computes the Orien-
tation Density Function (ODF) which is the radial projection
of the PDF modeled as a spherical function able to represent
crossing fibers. The estimation of the ODF is commonly used
as a pre-process to fiber-tracking in the human brain white mat-
ter [22, 23]. The ODF computation involves the Funk-Radon
transform (FRT) which corresponds to the Fourier Transform
on the sphere. However the result is a convolution of the true
ODF with a Bessel function so that each direction undesirably
get corrupted by neighbor directions. The Fiber Orientation
Distribution (FOD) method and its derivatives [6, 24, 25] try
to compute the whole PDF volume by the deconvolution of the
diffusion signal. The considered deconvolution kernel usually
represents the signal of a single fiber model and requires a prior
on either angular or radial MR signal or both. The Diffusion
Orientation Transform (DOT) [26] method assumes a mono-
exponential radial MR decay and proposes analytical solutions
to the Fourier transform using the Hankel transform. Nonethe-
less, the HARDI technique reduces the number of samples and
the acquisition time, by restricting the acquisition to be on a
single sphere. Consequently all HARDI-based methods assume
strong priors on the radial behavior of the MR signal; and thus
an inaccurate radial estimation of the MR signal may lead to a
corrupted estimation of angular features of the PDF, because of
the duality between the q-space and the probability space.

Multi-sphere HARDI: In order to overcome the problems of
the long acquisition time (as in DSI) and the missing radial

or angular sampling (as in HARDI and q-space NMR), Hy-
brid Diffusion Imaging (HYDI) has been recently introduced
by Wu et al. in [27]. It proposes to extend the acquisition to
multiple spheres in the q-space. Since the number of samples
on a sphere varies along its radius, it does not necessarily mean
that HYDI needs more samples than HARDI. Indeed, whereas
HARDI focuses on having a lot of samples on a single sphere,
HYDI focuses on a better distribution of samples on the q-
space. Very few methods have been proposed so far to take ad-
vantage of this kind of sampling: the generalized DTI (GDTI)
method [28, 29] is based on the Fick’s diffusion law, and the
DOT method [26, 30] has been extended to multi-exponential
radial decay. Nonetheless these methods use a larger set of data
and are still based on prior models of the input signal radial
behavior. Khachaturian et al. [31] proposed to sample the MR
signal on two spheres of the q-space, to estimate the ODF inde-
pendently for each sphere and non-linearly merge them in the
spherical wavelet domain. Yet the approach relies on an em-
piric maxmod merging function. Recently, Pickalov et al. [32]
used a tomographic scheme with prior on the PDF and the MR
signal to reconstruct the whole PDF. Nevertheless, the method
still requires a large set of data samples (approximately 500).

Robustness to MRI noise: Besides, MRI data are acquired as
complex values corrupted with thermal noise and skin depth ef-
fect [33, 34]. The amplitude of this noise is well characterized
by a Gaussian probability density function in the real and imag-
inary parts of the complex data [35]. The scanner only provides
the magnitude of the complex data, so the initial noise in com-
plex space is non-linearly transformed into Rician-distributed
noise [36, 37, 38]. When the Signal-to-Noise Ratio (SNR)
is high, it is known that the Rician distribution can be conve-
niently approximated by a Gaussian distribution. However, Ri-
cian noise induces a bias in the MR intensities especially for
lower SNR, i.e. at high q values, and undesirably leads to over-
estimated diffusion measures [36]. Several studies has tackled
this issue [39, 40, 41, 42, 43], but these methods are restricted
to HARDI acquisitions. To the extend of our knowledge, no ap-
propriate methods have been proposed for the robust estimation
of dMRI signal from a HYDI-like dataset so far.

In this paper, we present a flexible and robust method to com-
pute various features on the PDF. The proposed approach is
based on a “model-free” continuous reconstruction of the MR
signal from a HYDI-like dataset (section 2). Since in-vivo data
are corrupted by acquisition noise, we also propose a variational
variant of the estimation method, taking the Rician noise prop-
erty into account (section 3). We finally illustrate our results on
both numerical and real human datasets (section 4).

2. Estimation of PDF-based features

In this section, we focus on the estimation of PDF features
at a single voxel of a HYDI-like dataset. Since the MR sig-
nal is under-sampled in the q-space, the direct reconstruction of
the PDF (or a PDF feature) would raise numerical stability and
precision issues. Instead, we propose to reconstruct the signal
as a continuous function. Section 2.1 introduces an orthonor-
mal basis based on a series of Gaussian-Laguerre and spher-
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Symbol Description Symbol Description

PDF Probability Density Function p,k Water displacement vectors in R3

ODF Orientation Density Function q Diffusion space wave-vector in R3

FRT Funk-Radon Transform P(p) Average displacement PDF at p
SH Spherical Harmonics G(k) PDF feature at point k
SPF Spherical Polar Fourier Hk(p) Projection function of G(k)
an,l,m SPF expansion coefficient at order n, l and m S (q) MR signal at diffusion gradient q
E(q) Normalized MR signal S (q)/S (0) Ei i-th sample of the discrete signal vector E
Ê(q) Reconstructed signal at q Êi i-th sample of the reconstructed discrete signal vector Ê
ns Number of MR signal samples nc Number of SPF coefficients

Table 1: A list of major notations used in this paper.

ical harmonics functions in which we expect the signal to be
sparse. Indeed, this basis exhibits mono-exponential radial de-
cay when it comes to low-order truncation. Once the continuous
approximation of the MR signal is reconstructed, we propose in
section 2.2 a straightforward method to extract various features
that can be expressed as projection functions. We also provide
a computational optimization for spherical features only (sec-
tion 2.3). For convenience, a list of notations commonly used
in this paper is reminded in Table 1.

2.1. Spherical Polar Fourier Expansion

In the following, we present the use of an adapted series to
reconstruct the continuous signal from the MR data samples.
To take advantage of whatever the acquisition protocol is (gen-
erally one or several spheres in the q-space), we define an or-
thonormal basis from a combination of angular and radial el-
ementary functions expressed in spherical coordinates. Then,
we expand the MR signal attenuation E as the following series
in the orthonormal basis Spherical Polar Fourier (SPF):

E(q) =
S (q)
S (0)

=

∞∑
n=0

∞∑
l=0

l∑
m=−l

an,l,m Rn(||q||) ym
l

(
q
||q||

)
, (3)

so that n ∈ N is the radial index, and l ∈ N, m ∈ Z, −l ≤ m ≤ l
are the angular indexes. S (q) denote the diffusion MR signal
at a vector q in the q-space. The symbols an,l,m are the se-
ries coefficients, ym

l are the real spherical harmonics (SH), and
Rn is an orthonormal radial basis function made of Gaussian-
Laguerre (GL) functions. This basis is derived from the Gaus-
sian Type Orbital functions (GTO) used in the crystallography
community for the computation of the molecular electron or-
bitals and molecular docking [44, 45, 46]. Though the purposes
are different, the used mathematical tools are similar and the
use of the SPF basis enables to obtain a method of signal recon-
struction independently of the acquisition protocol. In practice,
the reconstructed signal Ê is estimated as:

Ê(q) =
N∑

n=0

L∑
l=0

l∑
m=−l

an,l,m Rn(||q||) ym
l

(
q
||q||

)
, (4)

where the symbols N and L respectively denotes the radial and
the angular truncation orders.

The angular component of the signal is reconstructed by ele-
mentary angular functions based on the complex Spherical Har-
monics (SH) basis Ym

l ,

Ym
l (θ, φ) =

[
2l + 1

4π
(l − m)!
(l + m)!

]1/2

Pm
l (cos(θ)) eimφ (5)

with (θ, φ) =
q
||q||
∈ S

2

where Pm
l are the associated Legendre polynomials. The com-

plex coefficients SH Ym
l form an orthonormal basis for functions

defined on the unit sphere and are the angular part of a set of
solutions to Laplace’s equation diffusion equation in spherical
coordinates [47]. For this reason they have been widely used in
dMRI [7, 48], especially with the following subset of the com-
plex basis made of real and symmetric SH ym

l :

ym
l =


√

2 Re(Ym
l ) if 0 < m ≤ l

Y0
l , if m = 0
√

2 Im(Y |m|l ) if −l ≤ m < 0
with l ∈ 2Z (6)

Indeed, as the diffusion signal exhibits real and symmetry prop-
erties, the use of the ym

l strengthens the robustness of the recon-
struction to signal noise and reduces the number of required
coefficients [7]. As a result, whereas a complex spherical har-
monics series expansion would involve (L + 1)2 coefficients, a
real spherical harmonics series expansion to order l ≤ L in-
volves only (L + 1)(L + 2)/2 coefficients.

The radial component of the MR signal is reconstructed by
the functions Rn. Since the number of radial samples is highly
limited, we expect the radial signal to be sparse in Rn, i.e. to
capture the radial attenuation of E with a few orders n. Sev-
eral studies [49, 50, 51, 52, 53] have reported that the signal
decay seems to be a composition of Gaussian functions, the
number of functions being determined by the wave-vector norm
||q||. Based on experimental observations, some studies have
proposed to model this local diffusion using a bi-exponential
function [51, 52], suggesting a slow and a fast free diffusion
in correspondence to the intra and extra cellular compartments.
Indeed, contrary to anatomical MRI, diffusion MRI has a low
spatial resolution and consequently a voxel size of 2 − 3mm
represents a local average diffusion. The spatial resolution of
voxels is such that it forms a complex physical system which
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contains numerous cells with various features. Therefore, a di-
rect relationship between the bi-exponential attenuation and the
intra-extra cellular diffusion is not obvious and has yet to be in-
vestigated [51]. It is still unclear how the bi-exponential model
accurately relates to the real diffusion behavior [50]. In this pa-
per, we propose a general estimation of the radial part of the
signal attenuation E using a normalized basis of generalized
Gaussian-Laguerre polynomials Rn:

Rn (||q||) =
[

2
ζ3/2

n!
Γ (n + 3/2)

]1/2

exp
(
−
||q||2

2ζ

)
L1/2

n

(
||q||2

ζ

)
, (7)

L(α)
n (x) = ((α + 1)n/n!) 1F1(−n, α + 1, x) (8)

where ζ denotes the scale factor, L(α)
n (x) are the generalized La-

guerre polynomials which are the eigenfunctions of the Fourier-
Bessel transform [54]. The notation (a)n denotes the Pochham-
mer symbol and 1F1 denotes the confluent hyper-geometric
function. Refer to appendix A for simplified expression of
Eq.(8) and to Fig.1b for a plot of Rn. A radial truncation or-
der n ≤ N involves (N +1) coefficients. A low order N assumes
a radial Gaussian behavior as in [26, 30]; the Gaussian decay
in the SPF basis arises from the normalization of the Laguerre
polynomials in the spherical coordinates (more details in ap-
pendix B). On the contrary, a high order N provides a model-
free estimation.

Note that the truncation orders N and L are directly related to
the number of data samples in the acquisition, and conveniently
adjusts the trade-off between the number of samples and the
prior on the MR signal. In practice, N and L are chosen so
that the number of coefficients nc = (N + 1)(L + 1)(L + 2)/2 is
roughly the half of the number of samples ns, i.e. (N + 1)(L +
1)(L + 2) ≥ ns. The choice to favour N or L depends widely
on the sampling distribution of the q-space and eventually on
the feature to observe: large L for angular features (such as
anisotropy maps, fibertracking), or large N for radial features
(such as number of compartiment, axon measurement).

It is worth to note that Özarslan et al. [55] have proposed
a quite similar method for the reconstruction of MR radial
only signals (q-space NMR). Their basis is based on the Her-
mite polynomials which are the eigenfunctions of the Fourier
transform. They can be analytically related to Eq. (8) (see Ap-
pendix E for more details). Additionally, the QBI [21, 40, 56]
and the DOT [26] methods can be expressed in our approach
with respectively Rn(||q||) = δ(||q|| − q′)/q′2 and Rn(||q||) =
jn(2π||q||R0)δn,l where jn is the spherical Bessel function at or-
der n, q′ and R0 are two real constants (appendix C and D for
more details on this).

Fig.1 points out the actual adequacy of the first Rn functions
to the experimental MR signal from erythrocytes (appendix A
for more details). This experiment involves a bi-homogeneous
unrestricted diffusion for decreasing values of the hematocrit,
i.e. the proportion of red blood cells within blood. The diffusion
decay is of course expected to be more complex in the human
brain white matter, it is clear that our basis seems to be well
adapted to model complex diffusion profiles. The scale factor
ζ can be easily estimated from experimental values of decay on
data samples. We propose an empiric formula in Eq.(24).

Spherical Polar Fourier (SPF) is a set of functions which
forms a complete, orthogonal basis,∫

q∈R3

[
Rn(||q||)ym

l

(
q
||q||

)] [
Rn′ (||q||)ym′

l′

(
q
||q||

)]
dq = δnn′δll′δmm′

(9)
The square error between a function and its expansion con-
verges to zero as the truncation orders N and L become infinite.

For each voxel, we propose to fit our SPF basis to the q-
space signal using a damped least square minimization tech-
nique. Best fitting coefficients an,l,m are given by the regularized
Moore-Penrose pseudo-inverse scheme:

M =


R0(||q1||)y0

0

( q1
||q1 ||

)
. . . RN(||q1||)yL

L

( q1
||q1 ||

)
...

. . .
...

R0(||qns ||)y
0
0

( qns
||qns ||

)
. . . RN(||qns ||)y

L
L

( qns
||qns ||

)
 , (10)

E = (E[q1], . . . , E[qns])T , A = (a000, . . . , aNLL)T (11)

A = arg min
A∈Rnc

||E −MA||2 + λl||L||2 + λn||N||2

= (MTM + λlLTL + λnNTN)−1MTE (12)

where ns is the number of data samples, M denotes the SPF
basis matrix and E,A respectively denote the vectors of data
samples and the coefficients of the reconstructed signal in SPF
basis. Since the matrix M is likely to be ill-conditioned because
of the highly reduced number of samples, we introduce the reg-
ularization matrices L and N with respective entries l(l+ 1) and
n(n + 1) along their diagonals. These matrices penalize higher
frequencies of the angular and radial parts of the SPF estima-
tion, since we assume that they are likely to capture noise. The
λl and λn set the angular and radial weights of the regulariza-
tion. Similarly to [57], angular regularization is equivalent to
the application of a smoothing filter in the angular q-space do-
main. This comes from the duality between the convolution in
the q-space and the multiplication in the spherical harmonics
domain [58]. Radial frequency regularization is equivalent to
favour a mono-exponential decay.

The diffusion is a positive process, so theoretically the recon-
structed signal Ê expressed in the SPF basis should be positive,
i.e. Ê(q) ≥ 0,q ∈ R3. Note that Eq.(12) gives no guarantee that
the reconstructed signal remains positive. However in practice,
we observe that the first negative occurrence of Ê happens for
large ||q||, i.e. when the original decreasing function E is almost
vanishing (less than 1% of its maximum value E(0), more de-
tails in section 4.1). The global minimum value actually corre-
sponds to 2% of the signal maximum amplitude. Furthermore,
Ê converges to E (i.e. 0) when ||q|| tends toward infinity. All this
means that the reconstructed signal can be considered as close
enough to the true one so that a simple value cut in [0,∞] is
as an acceptable way of ensuring the desired positiveness con-
straint.
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(a) Diffusion signal decay curves for water in suspensions of human ery-
throcytes as a function of ||q|| value at different hematocrit. The hematocrit
values are in decreasing order from the top of the figure, starting from a value
of 93%, followed by 83,73,63,47,42 and ending at 25% at the bottom of the
figure (from Kuchel et al. [14])

(b) First basis functions of the radial orthonormal basis Rn with scaling fac-
tor ζ = 100. Low order n functions exhibits Gaussian attenuation behavior
whereas higher order n are helpful to capture oscillating components of the
MR signal.

Figure 1: Comparison of the proposed reconstruction radial basis (b) and an experimental plot of MR signal decay (a).

The condition number C is a measure of how numeri-
cally well-conditioned the regularized matrix Mreg = MTM +
λnNTN + λlLTL is,

C = ||Mreg||∞||M−1
reg||∞ (13)

Therefore the parameters λn and λl should be chosen so that the
condition number of the matrix Mreg is not too large, typically
C ≈ 104 according to our experiments.

2.2. Features of the PDF
Now, we have a continuous representation of the signal Ê

from the SPF coefficients. Let G(k) be a feature of the PDF at
point k, expressed as:

G(k) =
∫

p∈R3
P(p) Hk(p)dp (14)

where Hk denotes a projection function at point k. Table 2
represents several popular features G which can be evaluated
using our computational scheme. A naive way to retrieve G
would be to reconstruct E from the SPF coefficients, compute a
Fast Fourier Transform (FFT) to get the complete PDF and fi-
nally calculate G on the estimated PDF volume; however such a
scheme would induce cumbersome computations which would
raise numerical accuracy issues. Instead, we propose to com-
pute G(k) directly from the SPF coefficients. Indeed, since the
SPF are an orthonormal basis the following relation holds:

G(k) =
∫

p∈R3
P(p)Hk(p)dp =

∫
q∈R3

E(q)hk(q)dq =
∞∑

n,l,m

an,l,mbk
n,l,m

(15)

where hk is the inverse Fourier transform of Hk and an,l,m, bk
n,l,m

respectively denote the SPF expansion of E and hk. Therefore,
the computation of G(k) from Eq. (15) simply turns into a very
fast dot product between two vectors of SPF coefficients. Yu-
Chien et al. proposed a similar approach in [27] where some
specific features of the PDF are computed by a projection in
the q-space between a feature function h and diffusion signal E.
However, the latter method is not based on a continuous repre-
sentation of the signal, and numerical issues coming from the
computation of the integral

∫
q E(q)h(q)dq with a discrete sam-

pling arise. Note that with our settings, the QBI and the DOT
methods analytically express themselves as specific features of
the PDF, respectively the FRT and the iso-radius.

2.3. Optimization for angular features

At this point, we have to compute Hk, hk and bk
n,l,m for each

probability vector k ∈ R3. Actually, all these computations are
required only once and can be stored in computer memory for
several use since they are data-independent. Nonetheless, an al-
ternative faster and memory-saving scheme arises for features
which are angular-dependent only; i.e. k ∈ S2 where S2 is the
unit sphere domain. Note that features G as defined in table 2
satisfy this constraint. In this case, we use the rotation property
of spherical harmonics which states that a rotation of a spherical
harmonic can be computed as a linear combination of spherical
harmonics of the same degree [58]. Therefore, under a rotation
transform expressed in terms of Euler angles (α, β, γ), any ro-
tated SPF can be expressed as a linear combination of SPF of
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G ODF FRT ISO P(0)

Hk(p) δ(1 − p·k
||p||||k|| ) 2πq′J0(2πq′ ||p||(1 − p·k

||p||||k|| )) δ(||p − k||) + δ(||p + k||) δ(p)

hk(q) δ( q·k
||q||||k|| ) δ(||q|| − ||q′ ||)δ( q·k

||q||||k|| ) cos(2πq · k) 1
Z3

Table 2: A non-exhaustive list of some PDF features G and their projection function Hk at point k. This features are computed as volumic image of size Z3 = 643

voxels and shown below each formula. So given a direction k, it illustrates how the PDF features and its expression in the q-space respectively looks like. The first
two figures of the first column (line 2 and 4) indicates the direction of k in R3. FRT stands for the Funk-Radon Transform used in QBI, where J0 is the Bessel
function of the first kind and ||q′ || is the radius of the q-ball sphere. ISO stands for isoprobability profiles. P(0) stands for the probability of non-displacement.

the same order:

a
′

n,l,m = Rotα,β,γ
[
an,l,m

]
=

l∑
m′=−l

an,l,m′D
(l)
m′m(α, β, γ), (16)

where an,l,m and a
′

n,l,m are respectively the coefficients of the
original SPF and its rotation. D(l)

m′m stands for the real Wigner
rotation matrix expressed in terms of the Euler angles (α, β, γ)
in the zyz convention [59] (refer to appendix F for more details).

In practice, as we want to compute the projection of the PDF
feature on a unit sphere, we set (α, β, γ) = (φ, θ, 0), where φ ∈
[0, 2π) and θ ∈ [0, π] follow spherical coordinates from physics
convention. In this case, Hk has to be constructed only once
with k = (θ, φ) = (0, 0), i.e. k initially taken as the z-axis unitary
vector z. We provide an overview of the proposed method in
Fig.2. A step by step algorithm for angular features defined on
the unit sphere S2 is detailed in the following.

Algorithm 1 Construct PDF features (data-independent)
1: Hz ← Create an image of size Z3 at direction z, i.e. (α = 0, β = 0)
2: hz ← Compute the inverse FFT of Hz
3: for all ζ ∈ [ζmin, ζmax] do
4: az

n,l,m ← Estimate SPF coefficients of hz: Eq.(12)
5: for all k ∈ S2, i.e. k = (α, β) do
6: ak

n,l,m ← Generate SPF coefficients on direction k: Eq.(16)
7: end for
8: end for

Algorithm 2 Extract PDF features from the MR signal
Require: PDF features coefficients ak

n,l,m
1: ζ ← Estimate scale factor: Eq.(24)
2: bn,l,m ← Estimate SPF coefficients of the signal E: Eq.(12)
3: for all k ∈ S2 do
4: G(k)← Compute PDF features at point k: Eq.(15)
5: end for

Hz hz az
n,l,m

∀k ∈ S2

ak
n,l,m

E bn,l,m

G(k)

iFFT Eq.(12) Eq.(16)

Eq.(12)

Eq.(15)

Figure 2: Algorithm overview for the computation of PDF features G at point
k, defined on the unit sphereS2. iFFT stands for the inverse Fast Fourier Trans-
form.

3. Adding robustness to Rician noise

It is known that MRI data are acquired as complex values
and corrupted by white noise. This noise can well be charac-
terized by a Gaussian PDF in the real and imaginary part. In
practice, magnitude images are traditionally used as there are
insensitive to phase shifts artifacts (such as chemical shifts of
inhomogeneities) [37].

It is common practice to assume that the noise in the magni-
tude images follows a Gaussian PDF. However, several stud-
ies have shown that the noise is Rician distributed [36, 60],
which reduce to a Rayleigh distribution in area with no MR sig-
nal [61]. The Rician noise induces a bias in the MR intensities,
which on average leads to overestimated values.

Since the acquisition noise on the MR signal is not Gaussian,
a least square fit (12) is definitely not the best choice for the
data estimation process. This issue arises especially when deal-
ing with low SNR data as this is the case for very high q values.
Furthermore, independent voxel estimation does not reflect the
spatial regularity of the diffusion function. We propose to tackle
these issues with a variational framework which is adaptable to
noise distribution and is able to use valuable information pro-
vided by nearby voxels. We focus now on the estimation of
PDF features of a entire volume of voxels from a noisy dMRI
dataset.
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3.1. Variational Formulation

The key idea is to estimate and regularize the whole vol-
ume of PDF features at the same time. This enables to take
into account correlation between all local data samples of the
processing pipeline instead of doing the different parts sepa-
rately. Let Ω ⊂ R3 be the domain of datasets voxels x and
E : Ω → Rns the acquired dMRI volume at voxel x corrupted
by Rician noise. We seek the SPF coefficients A : Ω → Rnc of
the filtered dMRI volume at voxel x so that Ê =MA, where the
symbol M = (Rn(||q j||) ym

l ( q j

||q j ||
))(n,l,m× j)∈(nc×ns) denotes the SPF

basis matrix Eq.(12). We propose to estimate and regularize the
SPF coefficients field from the dataset volume simultaneously
by minimizing the following nonlinear functional energy:

A = arg min
A∈Rnc


∫

x∈Ω

 ns∑
i=0

ψ(Êi)

 + αrϕ(||∇A||) dΩ

 (17)

The likelihood term ψ(Êi) measures the dissimilarities at voxel
x ∈ Ω between E and its reconstruction Ê for the i-th sample.
Let ψ : R → R and ϕ : R → R are both real functions, αr ∈ R
is the regularization weight and ||∇A|| the gradient norm defined
as

||∇A|| =
∞∑

n=0

∞∑
l=0

l∑
m=−l

||∇An,l,m|| (18)

Note that if ψ(s) = s2 and αr = 0 in Eq.(17), we minimize
the least square criterion given at Eq. (12). However, in the
general case the minima cannot be computed straightforwardly,
so we apply a gradient descent coming from the Euler-Lagrange
derivation of Eq.17. It leads to the following set of multi-valued
Partial Differential Equations (PDE). In practice, we first set
A(t=0) to At0 , an initial estimate of the SPF coefficients. The
velocity ∂A

∂t gives the direction from the current At to the next
At+1 until the nearest minimum is computed. At=0 = At0

∂A j

∂t =
∑ns

i Mi, j
∂ψ
∂A j

(Êi) + αr div(ϕ(||∇A||)) (19)

where ∂ψ
∂A j
=

∂ψ

∂Ê
∂Ê
∂A j

and Ê = MA. The iterative gradi-
ent descent is then applied until convergence (typically when
ε ∈ R+, ε → 0, ∂A

∂t < ε), Similar methods have been pro-
posed for the regularization of the DTI [62, 63, 64, 65], of the
ADC [66, 67] and the ODF [43]. Yet none of these methods is
able to take full advantage of the information provided by the
HYDI sampling.

3.2. Likelihood function ψ

Choosing the ψ function is done by considering the Rice dis-
tribution of the noise whose probability density function is:

p(E|Ê, σ) =
E
σ2 exp

(
−(E2 + Ê2)

2σ2

)
I0

(
E · Ê
σ2

)
(20)

where σ is the standard deviation of the noise and I0 is the
modified zeroth-order Bessel function of the first kind. We
adapt the Rician bias correction filter introduced in [68] from

the 2nd-order DTI to the SPF basis. It is based on a maximum a
posteriori approach so we construct the filtered volume Ê that
maximizes the log-posterior probability. We are interested in
the likelihood term p(E|Ê), and Eq.(20) leads to the pointwise
log-likelihood:

log p(E|Ê, σ) = log
E
σ2 −

(E2 + Ê2)
2σ2 + log I0

(
E · Ê
σ2

)
= ψ(Ê)

(21)

Figure 3: Energy p(E|Ê, σ) associated to respectively Gaussian and Rician like-
lihood ψ functions. Note the bias introduced by the Rician function on low SNR
data. E = 1 and σ = 0.5.

Fig.3 illustrates variation of the opposite function with scalar
values of Ê when E = 1 and σ = 0.5. The energy is low when
E ≈ Ê and increases with their dissimilitudes. Note that σ has
to be known a priori and can be either retrieved from multiple
images [69, 38] or a single image as described in [37, 70, 71].
Combining Eq.(19) and the derivative of Eq.(21) with respect
to A j gives the PDE that minimizes Eq.(17) and is adapted to
Rician noise,

∂A j

∂t
=

∑ns
i Mi, j

σ2

−Êi + Ei


I1

(
Ei·Êi
σ2

)
I0

(
Ei·Êi
σ2

)



+ αr div(ϕ(||∇A||)) (22)

Eq.(22) relates the MR signal samples to its continuous function
taking into account the specific PDF of the acquisition noise.
Therefore Eq.(22) should be preferred to the least square esti-
mation especially when dealing with low SNR quality data as
the Gaussian assumption for noise is no more valid in this case.

3.3. Regularization function ϕ

The few number of samples coupled with the acquisition
noise lead to a high uncertainty of the voxel signal intensity.
We partially attenuate this uncertainty by combining data from
voxels in a same local neighborhood, this assumption being
weighted by αr as shown in Eq.(19). We compute the distance
between two voxels directly from the SPF coefficients. There
are at least two advantages of this approach: it is fast to compute
and it conveniently separates the distance measure in angular
and radial parts (

∑
l,m ||∇An,l,m|| and

∑
n ||∇An,l,m||) thanks to the

SH rotational property Eq.(16) and the low-order GL Gaussian
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behavior. Note that the regularization term ||∇E|| = ||∇A|| (more
details in appendix G).

Various functions ϕ from the image processing literature can
be used here as long as they preserve the important features
of the signal (discontinuities of the SPF coefficients). In the
following experiments, we chose the hyper-surface function
1/

√
1 + ||∇A||2 as it is numerically stable for ||∇A|| ∈ R3 and

provides an anisotropic regularization behavior which fits well
to the previous constraints.

3.4. Initialization of the gradient descent

The choice of the initial field At0 is important as it influ-
ences the quality of the signal reconstruction. Bad initialization
could undesirably increases the computational time as well. A
good choice requires to start from an initial field which is not
so far from the global minimum. The linear LS minimization
at Eq.(12) presented in section 2 seems to be an adequate al-
ternative since it is the global minimum when ψ(s) = s2 and
αr = 0. Fig. 4 illustrates that the gradient descent with At0 set to
LS is smoother than choosing a random initialization At0 . Thus
with the former, it is possible to increase the evolution step dt to
bring down the number of iterations required to converge with-
out compromising the numerical stability. Besides, the results
in Fig.4b show that gradient descent with a random initializa-
tion gives a worse result (PSNR=20.40 dB) than the linear LS
estimation (PSNR=26.04 dB). However, Rician estimation un-
doubtedly gives the best reconstruction (PSNR=33.62 dB).
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Figure 4: Influence of initial estimate A0 on the convergence of the gradient
descent. Data were noised so that the PSNR(Truth,Noisy)=19.5 dB. The Rician
likelihood function refers to Eq.(22). a) Rate of convergence. Label from the
top to bottom: least square initialization, random initialization 1 and 2, least
square initialization with an evolution step dt twice as big. b) Quality of the
result. Label from the left to the right: PDE with 50 random initialization,
linear LS, PDE with LS initialization.

4. Experiments

In this section, we present the estimation improvements
along with the number of diffusion MR signal samples and
demonstrate the robustness of our framework to noise. The pro-
posed method was run on various datasets. We illustrate the re-
sults obtained on synthetic simulations (section 4.1) with both
noise-free and Rician noise datasets, as well as on real human
brain data (section 4.2).

4.1. Numerical Simulations
4.1.1. Protocol

We applied the above scheme to the simulations of a sin-
gle fiber and crossing fiber configurations. The following syn-
thetic multi-exponential model was used to generate the syn-
thetic data,

E(q) =
Nb∑
i=1

fi exp
(
−

(||q|| − mi)2

||q||2
qTDiq)

)
(23)

where
∑Nb

i=1 fi = 1. The symbol Nb stands for the number of
fibers, mi is the mean diffusion and Di is a 3 × 3 symmetric
definite positive matrix defining the diffusion anisotropy for the
i-th fiber. The scale factor ζ was set empirically so that the
decay of the basis eigenfunctions have the same scale as the
sampled data. Let x = Rn(||q′||)/Rn(0) where x ∈ [0, 1]. This
leads to

ζ ≈
||q′||2

√
πN!

−4Γ (N + 3/2) log
(
x L1/2

N (0)
) (24)

where N denotes the radial truncation order. In this work,
||q′|| = 30 mm−1, x = E(||q′||)/E(0) = 0.01 and leads to the
scale factor shown in Fig.5.

Figure 5: Scale factor ζ empiric evolution along truncation order N with data
attenuation x = 0.01 and ||q′ || = 30mm−1

4.1.2. Ground Truth
Fig. 6 shows the MR signal attenuation E(||q||) along a radial

line [0, qmax]. Two cases of data samples were studied: mono
and bi-exponential decay. Diffusion coefficients were synthe-
sized with Di = − ln(xi)/q2

max. For mono-exponential decay,
we set qmax = 40, f1 = 0, m1 = 0, x1 = 10−10, D1 ≈ 0.0144.
For bi-exponential decay, we set qmax = 40, f1 = 0.8, f2 =
0.2, m1 = 0, m2 = 20, x1 = 10−10, x2 = 10−7 so that D1 ≈

0.0144, D2 ≈ 0.0101. For the reconstruction of the MR signal,
high resolution sampling protocol was used. The parameter x
is related to the scale factor ζ and can lead to erroneous val-
ues since it has to be set empirically. In this experiment, we
arbitrary set the scale factor Eq.(24) with the signal attenua-
tion to x = 0.01. Consequently, this is a bad case scenario as
the first term of the SPF reconstruction series R0 has an ADC
Dx = 0.0028, i.e. 5 times less than the input data. However the
reconstruction successfully converges to the true data in very
few terms n ≈ 3 (c.f . Fig. 6). This demonstrates the robustness
and the stability of the estimation against wrong values of the
scale factor.
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Figure 6: Radial reconstruction of signal E using scaled Gaussian Laguerre
functions. The scale ζ was arbitrary chosen to demonstrate the robustness of
the reconstruction to wrong values. Top: Mono-exponential decay. Bottom:
Bi-exponential decay.

Diffusion images from Fig.7 were synthesized following 3
sampling protocols: low (1 sphere, b = 3000 s/mm2), medium
(2 spheres, b = {1000 , 3000} s/mm2) and high resolution
(5 spheres, b = {500, 1000, 1700, 2400, 3000} s/mm2) along
with a single baseline image acquired at b = 0 s/mm2. Each
sphere is composed of 42 directions along the edges of a sub-
divided icosahedron. Estimation parameters were chosen em-
pirically for each sampling protocol: low {N = 0, L = 4,
ζ = 100, λN = 0, λL = 10−6}, medium {N = 1, L = 4,
ζ = 70, λN = λL = 0}, high resolution {N = 4, L = 6, ζ = 50,
λN = λL = 10−9}. Fig.7(b-c) demonstrates that our method
can successfully reproduce the ODF obtained with the QBI ap-
proach, with a standard HARDI acquisition. Note that the re-
sulting ODF is a sharp approximation of the true ODF. Besides,
given the same dataset, we designed a PDF feature which simu-
late a HARDI acquisition with a higher gradient strength. This
naturally leads to a sharper ODF (c.f . Fig.7d). In the same man-
ner, Fig.7e illustrates the reconstruction of the true ODF using
the corresponding PDF projection function. The results show a
more precise representation of the estimated ODF. This is due
to the Gaussian assumption of our model at low radial N order
which enables to better fit the synthetic data. We investigated
the effect of increasing number of samples on the true ODF
estimation at Fig.7(e-g). As expected the results exhibits suc-
cessive accuracy improvements and converge to the true ODF
shape Fig.7a. Using this synthetic experiments, we observed
that more signal samples than our high resolution sampling pro-
tocol negligibly influence the estimation precision.

4.1.3. Performance on noisy datasets
In order to assess the robustness to noise of our proposed

variational framework and simulate dMRI acquisitions, we
added Rician noise of variance σ to the signal E which was
then sampled into 29 values along the interval q ∈ [0, 30] as
described above. Fig.8 shows a comparison between the Gaus-

sian and the Rician likelihood functions on a noisy dataset. On
one hand, the Gaussian function is classically used in the least
square minimization as in Eq.12 for its simplicity and its low
computational cost, on the other hand it is not robust to noise
since it creates undesirable radial oscillations at high q values.
On the contrary, the Rician likelihood function does not have
this drawback and gives a correct estimation of E (Fig.8e).

To investigate the benefit of the spatial regularization, we
produced a numerical phantom of crossing fibers (horizon-
tal and vertical networks) surrounded by water regions (upper
left area) (c.f . Fig.9a). The Generalized Fractional Anisotropy
(GFA) measure [20] was computed on the ODF. GFA is a gen-
eralization of the fractional anisotropy (FA) measure of DTI
and is adequate to have hindsight on the global coherence of
the dataset volume estimation. Indeed, every voxel is sum-
marized by a scalar value (c.f . Fig.9b). In addition, each im-
age was normalized independently to enhance the visualization
contrast. This qualitative comparison highlights the need for
spatial regularization within the estimation process. Indeed,
when it comes to noisy data, anisotropic spatial regularization
greatly improves the coherence of the volume estimation as il-
lustrated in Fig.9c and 9d. It is worth noting that the gradient
norm ||∇A|| is an adequate measure to set apart isotropic area
from anisotropic area and subsequently, divergence div(ϕ||∇A||)
performs well in regularizing homogeneous area without de-
grading the discontinuities of the feature.

Fig.10 shows statistics on the performance of the PDE esti-
mation with various likelihood and regularization functions ψ
and ϕ. It illustrates the PSNR (Peak Signal to Noise Ratio)
of the reconstruction versus the quality of input datasets. The
PSNR of the reconstruction stands for the PSNR between the
known ground truth dataset volume E and its estimation Ê in
which values were restricted to [0, 1] in order to reflect the sig-
nal attenuation properties.

Out of the results of Fig.10a, the Rician likelihood func-
tion outperforms the Gaussian function and greatly improves
the PSNR of the estimation. The explanation of this major im-
provements is to be found in the robustness of the Rician like-
lihood radial fit (c.f . Fig.8). Concerning the spatial regulariza-
tion, Fig.10b shows the influence of regularization function ϕ
on the PSNR of the reconstruction Ê. Although the results in-
dicates modest improvements, the spatial regularization ensures
numerical stability of the estimation by adding constraints when
there are only very few samples available. This also brings sta-
bility to the fiber-tracking algorithms and helps to better esti-
mate the white matter nerve fibers tracks [43].

4.1.4. Influence of the q-space sampling scheme
The number of data samples is limited because of the time re-

quired to acquire them. So the sampling scheme is critical and
should be chosen wisely. Indeed, given a fixed number of sam-
ples (clinical constraint), which repartition of q-space samples
is the best ? Which radial order truncation N should be chosen
to fit Gaussian and bi-Gaussian MR datasets ? Which acquisi-
tion protocol gives the best results is the focus of the following
experiments.
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a) Truth b) QBI c) G=FRT d) G=FRT e) G=ODF f) G=ODF g) G=ODF
Low Resolution Med. Res. High Res.

Figure 7: ODF comparisons: ODF versus QBI and ODF at low resolution versus ODF at high resolution. The first line corresponds to a single fiber direction
Nb = 1. The second and third lines correspond to crossing fibers Nb = 2 respectively in face and profile view. From the left to the right: (a) True ODF computed
analytically, (b) ODF given by QBI [40, 56], (c) simulation of QBI with our method, (d) FRT with higher q′, (e-g) ODF estimations given by our method, with
increasing number of samples.

(a) Original Data (b) Noisy data (c) Gaussian (d) Rician

(e) Reconstruction of the radial profile

Figure 8: Reconstruction of isotropic diffusion signal E. Visualization of the
radial attenuation profile along ||q||. Rician noise of σ = 0.1 was added to the
original data. Noisy data have a PNSR of 18.3 dB.

Two sampling schemes were compared: non-uniform and
uniform sampling of the q-space. Let ns ∈ N be the total num-
ber of samples and nb ∈ N the number of sampling sphere. Let
f be the number of samples on one sphere x ∈ [1, nb] so that

f (η) =
qηx∑nb

i=1 qηi
ns (25)

where qi refers to the radius of the i-th sphere. The radius are
distributed uniformly in the interval [qmin, qmax]. Then, f (η = 0)
corresponds to the non-uniform sampling, with a constant num-
ber of samples on each sphere. The case f (η = 2) corresponds

(a) Phantom:
crossing fibers

(b) No noise.
PSNR:∞

(c) Without
Regul.
PSNR: 12.8 dB

(d) With Regul.
PSNR: 16.6 dB

Figure 9: Effects of the spatial regularization on the Generalized Anisotropy
(GFA) [20]. Isotropic area are black, anisotropic area are white.
PSNR (Truth,Noisy)=18.5 dB. (a) The ODF of the synthetic phantom which
is composed of two groups of fiber, horizontal and vertical, and surrounded by
water. (b) GFA of the perfect dataset. (c) GFA of the LS estimation on a noisy
dataset (without regularization). (d) GFA of the PDE estimation on the same
noisy dataset (with regularization).

to the uniform sampling considering spherical normalization.
Here ns = 300, nb ∈ [1, 10], the scale factor ζ = 80 and the an-
gular truncation order is set to L = 4. The sampling points are
as evenly spread on each sphere as possible and were computed
by electrostatic energy minimization [72].

Fig.11(a) shows the evolution of C the condition number
Eq.(13) along with the number of sampling sphere nb and the
radial truncation order N. Left and right figures respectively
correspond to the non-uniform and uniform sampling. As ex-
pected, C is very high when N > nb and leads to very unstable
results. When N ≤ nb, the condition number increases slowly
along with increasing values of N and is quite constant along
variations of nb. Results using the non-uniform sampling ex-
hibit more monotonous evolution than the uniform sampling.
Fig.11(b) and (c) illustrate the PSNR evolution of the recon-
struction of a Gaussian MR signal along variation of the same
parameters. Although the maximum of the PSNR for both sam-
pling protocols are quite the same (≈ 40 dB), it is clear that the
non-uniform sampling protocol is more robust to wrong values
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(a) Likelihood functions. (b) Regularization functions.

Figure 10: Synthetic phantom of networks of crossing fibers (c.f . Fig.9a).
(a) Evolution of the PSNR of the reconstruction Ê versus the PSNR of the
input signal E and different likelihood functions. (b) Evolution of the PSNR of
Ê versus the regularization weight αr and various regularization functions.

of N and nb. Besides, the robustness to wrong values of the
scale factor ζ is represented by the lines of the figures. There-
fore, as showed in Fig. 6, whereas the first order N = 0 of the
SPF basis has a Gaussian behavior, Gaussian data may not be
well captured for very low N because of wrong values of scale
factor ζ not adapted to the signal decay. Once again, Fig.11(b)
shows that the non-uniform sampling protocol is the most ro-
bust to wrong values of ζ. Fig.11(d) shows the results on a
bi-Gaussian noisy dataset, estimated using the damped linear
least square Eq.(12). Besides the lower PSNR average com-
pared to Fig.11(c), it is remarkable that best results of Fig.11(d)
were also obtained from lower radial truncation order N than
Fig.11(c). Indeed, a reconstruction using high N can signifi-
cantly capture more noise than using lower N.

Out of the results, the non-uniform (η = 0) sampling protocol
surprisingly gives better global results than the uniform proto-
col (η = 2). The best reconstructions are obtained for N ≈ 3 and
nb ≈ 4. It confirms that the non-uniform sampling protocol is
more efficient as it has a lot of samples on low q-space frequen-
cies. It leads to a better reconstruction of the low frequencies of
the MR signal and consequently a better reconstruction of the
whole signal since low frequencies carry the greatest part of the
MR signal energy.

Overall, there are two points to consider. First, as there is no
certainty on the data model we want to retrieve, one should not
distribute the samples according to a specific model. In other
words, the samples should capture “unpredictible” variations of
the MR signal. In Fig.11(b), the variations are mostly angular as
the data represent a crossing fibers. Therefore the non-uniform
sampling is more adequate as it defines many samples in the
inner spheres. Second, the condition number given in Fig.11(a)
indicates how ill-conditioned the matrix basis is, independently
of the data. Out of this results, the non-uniform sampling seems
to be more adequate to the SPF basis than the uniform sampling.
Note that there are similar conclusions concerning the radii dis-
tributions in the k-space in the field of anatomical MRI [73].

4.2. In-vivo experiments

Our set of diffusion-weighted images were acquired in two
spheres along 32 directions at b = 1000 s/mm2 and b =
3000 s/mm2, and a single image at b = 0 s/mm2. Thus, there
were a total of 65 images acquired in a sequence of 15 minutes.
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(c) Bi-Gaussian dataset.
The higher the better.
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Figure 11: Comparison of constant vs adaptive sampling (respectively left and
right image) on Gaussian and bi-Gaussian crossing fibers datasets. N stands
for the radial truncation in the SPF basis and nb is the number of sampling
sphere in the q-space. (a) Influence on the log condition number log(C). (b) Re-
construction PSNR on a Gaussian dataset. (c) Reconstruction PSNR on a bi-
Gaussian dataset. (d) Reconstruction PSNR on a bi-Gaussian noisy dataset
(PSNR (Truth,Noisy)=18.9 dB).

The SENSE parallel imaging protocol was used with a factor of
acceleration set to 2; and only 80% of the k-space was acquired.
Matrix size was 112 × 112 × 60 and the image resolution was
2 × 2 × 2 mm3. Repetition time was TR=11490 ms, echo time
was TE=85 ms. Time between two pulses and time of diffu-
sion gradients were respectively ∆ = 42.2 ms and δ = 26.3 ms.
The probability maps were computed by following the proce-
dure described in Fig.2. Terms up to N = 1 and L = 4 were
used in the calculations. Concerning computation time, the to-
tal time is less than a minute on a 3 Ghz processor using the
linear estimation Eq.(12). The variational framework is an iter-
ative process which requires 70 minutes for approximately 200
iterations (c.f . Fig. 4). Although it is very penalizing in terms of
computational time, is also computes far more precise estima-
tors considering the Rician distribution of the noise, as shown
in Fig. 10a. The computations includes calculations of SPF co-
efficients and projections along the 642 directions for the whole
data-set 112 × 112 × 60 volume.

The in-vivo data were processed using the Generalized Frac-
tional Anisotropy (GFA) around the area of the corpus callosum
(c.f . Fig.12). Additionally, the DTI and the ODF on the genu
of the corpus callosum reveals the details of this anisotropy
(c.f . Fig.13). As expected, DTI performs well in corpus callo-
sum but fails in voxel with orientational heterogeneity as shown
in Fig.13a. Therefore the FA at Fig.12b is reliable only inside
corpus callosum. On the contrary, QBI can successfully retrieve
multiple fibers orientations but is sensible to noise, especially in
region of cerebrospinal fluid where the SNR of the MR signal is
low (c.f . Fig.13b). Besides, the QBI is a sharp approximation of
the true ODF and thus enhances the noise in the cerebrospinal
region (c.f . Fig.12c). Whereas cerebrospinal fluid area are ex-
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(a) S 0 (b) DTI [5] (c) QBI [56] (d) G=ODF
[74]

(e) Rice (f) Soft Reg. (g) Med.
Reg.

(h) Strong
Reg.

Figure 12: Comparison of GFA [20] on region of corpus callosum and lateral
ventricles. (a) Baseline image, q = 0. (b) DTI anisotropy map. (c) Q-Ball
Imaging. (d) Previous work using damped least-square estimation. (e) Vari-
ational approach using Rician likelihood function. (f-g) Variational approach
using Rician likelihood function + Hyper Surface regularization function.

pected to exhibits isotropic diffusion, the ODF obtained by the
QBI method exhibits anisotropy. This may lead to wrong fiber
reconstruction in fiber-tractography algorithms. On the con-
trary, the ODF obtained by our approach does not fall into this
pitfall (Fig.12d), it successfully retrieves anisotropic shapes in
brain white matter fibers regions and isotropic shape in cere-
brospinal fluid area (c.f . Fig.13c).

5. Discussion and conclusion

The diffusion MRI challenge is to robustly estimate various
features of the tissue micro-architecture using a highly reduced
number of noisy samples. In this paper, we presented a method
which tackles these issues by the use of a projection performed
between a PDF feature and the diffusion signal in the Spherical
Polar Fourier (SPF) basis. The direct consequence is that our
approach can compute various features of the PDF without any
further modification of the algorithm. Moreover, the SPF basis
enables to reconstruct an accurate continuous MR signal with
a reduced number of samples. Concerning the noise issue, we
proposed a formulation of the estimation as an energy that si-
multaneously considers the Rician model of the MRI noise and
regularization on spatial constraints. Our experiments indicate
that our approach is able to reproduce results from the stan-
dard QBI method and also estimates more accurate ODF esti-
mations. The results demonstrate the importance of the Rician
likelihood term in the accuracy of the diffusion signal recon-
struction. Since acquisition are usually averaged several times
to increase the SNR, this could lead to the abandonment of this
practice to the profit of more data samples.

A. First radial Rn

We give the formula of the first radial functions Rn, n ∈ [0, 3]
of the SPF basis.

R0(q) =
2

π1/4ζ3/4 exp
(
−

q2

2ζ

)
(26)

R1(q) =
3 23/2

(
1 − 2q2

3ζ

)
2
√

3π1/4ζ3/4
exp

(
−

q2

2ζ

)
(27)

R2(q) =
15 25/2

(
−

4q2

3ζ +
4q4

15ζ2 + 1
)

8
√

15π1/4ζ3/4
exp

(
−

q2

2ζ

)
(28)

R3(q) =
35

(
−

2q2

ζ
+

4q4

5ζ2 −
8q6

105ζ3 + 1
)

2
√

35π1/4ζ3/4
exp

(
−

q2

2ζ

)
(29)

B. Radial eigen-functions: spherical normalization

We seek an eigenfunction Rn with n ∈ N+ so that low-order
Rn has a Gaussian behavior. We also want the basis made of
the Rn functions to be orthogonal and normalized according to
spherical coordinates. From all the candidates, the generalized
Laguerre polynomials Ll

n form a orthogonal basis but do not fit
the Gaussian and normalization constraints:∫ ∞

q=0
exp(−q)qlLl

n(q)Ll
m(q)dq = δnm

(l + n)!
n!

(30)

Nonetheless, from this equation it is straightforward to see that
Rn made of normalized Ll

n fit all the constraints. Let n = m,
l = 1/2 and ρ = q2/ζ, so that Eq.(30) is∫ ∞

ρ=0
exp(−ρ)ρ1/2 (n − 1)!

Γ(n + 1/2)

[
L1/2

n−1(ρ)
]2

dρ = 1 (31)

where dρ = 2q
ζ

dq and the symbol ζ denotes the scale factor.
Finally we have

Rn (q, ζ) =
[

2
ζ3/2

n!
Γ (n + 3/2)

]1/2

exp
(
−

q2

2ζ

)
L1/2

n

(
q2

ζ

)
, (32)

We can verify that we have spherical normalization∫ ∞

q=0
Rn(q, ζ)Rm(q, ζ)q2dq = δnm (33)

C. QBI

Let Gq′ [E](k) be the Funk-Radon Transform (FRT) at vector
k such as k ∈ S2, where the q-space is restricted to the sphere of
radius q′. We denote q a vector of q-space such as q = ||q|| q

||q|| =

qu. For clarity reason, we denote
∞∑

n,l,m

=

∞∑
n=0

∞∑
l=0

l∑
m=−l

. The FRT

of E on a sphere of radius q′ and direction k is defined as:

Gq′ [E](k) =
∫

u∈S2
E(q′u) δ(uTk) du

=

∫
q∈R3

[
E(q)δ(q′ − q)

] [
δ(uTk)δ(q′ − q)

]
dq (34)
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(a) DTI [5] (b) QBI [56] (c) Our method, G=ODF

Figure 13: In-vivo brain white matter ODF overlaid on GFA maps in a region of interest. S 0 image show the region of interest surrounding the corpus callosum-genu
and the frontal horn, corpus callosum horizontal fibers appears from the right. DTI (a) and QBI (b) were computed with the outer sphere b = 3000 s/mm2. Our
method (c) shows the ODF obtained from both spheres b = 1000 and 3000s/mm2.

We expand the previous expression into a series made of spher-
ical harmonics ylm and radial functions Rn(q) = q′−2δ(q′ − q),

Gq′ [E](k) =
∫

q∈R3

 ∞∑
n,l,m

bn,l,mRn(q)ylm(u)


 ∞∑

n′l′m′
ak

n′l′m′Rn′ (q)yl′m′ (u)

 dq

(35)

Using Parseval’s theorem, we express the FRT similarly to
Eq.(15) as:

Gq′ [E](k) =
∞∑

n,l,m

bn,l,m ak
n,l,m (36)

where

bn,l,m =

∫
q∈R3

E(q)Rn(q)ylm(u)dq

=

∫
u∈S2

E(q′u)ylm(u)du (37)

ak
n,l,m =

∫
q∈R3

δ(uT · k)δ(q′ − q)Rn(q)ylm(u)dq

= 2πPl(0)ylm(k) (Funk-Hecke theorem [40, 56]) (38)

Note that Tuch demonstrated in [21] that the FRT of the sig-
nal E is expressed in the displacement space as:

Gq′ [E](k) =
∫

p∈R3
P(p) 2πq′J0(2πq′||p||) δ

(
1 −

pTk
||p||

)
dp (39)

Similarly to our framework, we see from Eq.(36) that QBI
can be expressed with a basis made of real SH ylm and ra-
dial functions Rn(q) = q′−2δ(q′ − q). In this basis, Hk(p) =
2πq′J0(2πq′p) and ak

n,l,m = 2πPl(0)ylm(k).

D. DOT

The Diffusion Orientation Tensor (DOT) [26] method aims
to compute the PDF P(R0k) at radius R0, for all orientation of

the unit sphere k ∈ S2. We can express the DOT in the dis-
placement probability space as:

P(R0k) =
∫

p∈R3
P(p)δ(k − p)dp (40)

Using Parseval’s theorem, we express the DOT in the q-space
as:

P(R0k) =
∫

q∈R3
E(q) exp

(
i2πR0qkTu

)
dq (41)

Using the plane wave expansion, we have:

P(R0k) =
∫

q∈R3

[
E(q)

] ∑
l′m′

4πil
′

jl′ (2πqR0)yl′m′ (k)yl′m′ (u)

 dq

(42)

=

∫
q∈R3

 ∞∑
n,l,m

bn,l,mRn(q)ylm(u)


 ∞∑

n′l′m′
ak

n′l′m′Rn′ (q)yl′m′ (u)

 dq

(43)

where Rn(q) = jl(2πqR0)δnl. Using Parseval’s theorem once
more, we express the DOT similarly to Eq.(15) as:

P(R0k) =
∞∑

n,l,m

bn,l,m ak
n,l,m (44)

where

bn,l,m =

∫
q∈R3

E(q)Rn(q)ylm(u)dq =
∫

u∈S2

Il(u)
4π

ylm(u)du (45)

Il(u) =
Rl

0 Γ
(

l+3
2

)
2l+3π3/2 (

− ln(E(u))4−1(πq)−2)(l+3)/2
Γ(l + 3/2)

× 1F1
 l + 3

2
; l +

3
2

;
R2

0

ln(E(u))(πq)−2


(Spherical Bessel transform Eq.27[26])

ak
n,l,m = 4πilylm(k) (46)
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Similarly to our framework, we see from Eq.(44) that DOT
can be expressed with a basis made of real SH ylm and radial
functions Rn(q) = jl(2πqR0)δnl. In this basis, Hk(p) = δ(k − p)
and ak

n,l,m = 4πilylm(k).

E. Relation of SPF to Hermite polynomials

Ozarslan et al. proposed in [55] to reconstruct the radial part
of the diffusion signal using a series made of Hermite polyno-
mials. In this section, we express the relationship between our
SPF basis and Ozarslan et al.’s approach. Hermite polynomi-
als are eigen functions of the Fourier transform. Recall that the
Hermite polynomials Hn are related to the Laguerre polynomi-
als by the following equation:

H2n+1(x) = (−1)n22n+1n!x L1/2
n (x2) (47)

Let q = x
√
ζ, we have:

L1/2
n

(
q2

ζ

)
=

(−1)n

22n+1n!
ζ1/2

q
H2n+1

(
q
ζ1/2

)
(48)

Finally we have

Rn(q) =
[

n!
Γ(n + 3/2)

]1/2 2−2n−1/2(−1)n

ζ1/4 n!
1
q

exp
(
−q2

2ζ

)
H2n+1

(
q
ζ1/2

)
(49)

F. Real Wigner matrix rotation

In this section, we express the mathematical tools necessary
to implement the rotation of real spherical harmonics. Under a
rotation transformation expressed in terms of the Euler angles
(α, β, γ), the rotated complex spherical harmonics Ym

l can be
expressed as a linear combination of Ym′

l .

Rotα,β,γ
[
Ym

l (θ, φ)
]
=

l∑
m′=−l

Ym′
l (θ, φ)

[
e−im′αd(l)

m′m(β)e−imγ
]

(50)

where the d-small Wigner matrix [75] is:

d(l)
m′m(β) =

[
(l + m′)!(l − m′)!
(l + m)!(l − m)!

]1/2

(51)

min(l−m′,l+m)∑
k=max(0,m−m′)

[
(−1)k+m′−m

(
l + m

k

)(
l − m

l − m′ − k

)
(cos β/2)2l+m−m′−2k (sin β/2)2k+m′−m

]
(52)

We are interested in the real Wigner rotation matrix D(l)
m′m so

that

Rotα,β,γ
[
ym

l (θ, φ)
]
=

l∑
m′=−l

ym′
l (θ, φ)D(l)

m′m(α, β, γ) (53)

Recall that the real SH can be expressed as a linear combina-
tion of the complex SH, this leads to [76], appendix B.4:

D(l)
m′m =


d(l)

m′m(β) cos(F) + (−1)m′d(l)
−m′m(β) cos(G) m′ ≥ 0,m ≥ 0

(−1)m′+1d(l)
m′m(β) sin(F) + d(l)

−m′m(β) sin(G) m′ < 0,m ≥ 0
(−1)md(l)

m′m(β) sin(F) + (−1)m+m′d(l)
−m′m(β) sin(G) m′ ≥ 0,m < 0

(−1)m+m′d(l)
m′m(β) cos(F) + (−1)m+1d(l)

−m′m(β) cos(G) m′ < 0,m < 0

where F = mγ + m′α and G = mγ − m′α.

G. Gradient

We demonstrate here that ||∇E|| = ||∇A|| where E is the diffu-
sion MR signal and A is its coefficients in the SPF basis so that
Ψn,l,m(q) = Rn(||q||)ym

l ( q
||q|| ). Let x be a voxel of the data volume,

i.e. x ∈ Ω.

||∇E|| =
∫

q∈R3

[
∂E(q)
∂x

]2

dq (54)

=

∫
q∈R3

∑
n,l,m

Ψn,l,m(q)
∂an,l,m

∂x

2

dq

=

∫
q∈R3

∑
n,l,m

[
Ψn,l,m(q)

∂an,l,m

∂x

]2

dq

+ 2
∫

q∈R3

∑
n,l,m

Ψn,l,m(q)
∂an,l,m

∂x

(n,l,m)−1∑
n′ ,l′ ,m′

Ψn′ ,l′ ,m′ (q)
∂an′ ,l′ ,m′

∂x


 dq

Since Ψ is an orthonormal basis and all voxel x have the same
basis, this leads to:

||∇E|| =
∫

q∈R3

∑
n,l,m

[
∂an,l,m

∂x

]2 [
Ψn,l,m(q)

]2 dq

=
∑
n,l,m

[
∂an,l,m

∂x

]2

= ||∇A||
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