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Recent advances in diffusion magnetic resonance image (dMRI) modeling have led to the development of
several state of the art methods for reconstructing the diffusion signal. These methods allow for distinct
features to be computed, which in turn reflect properties of fibrous tissue in the brain and in other organs.
A practical consideration is that to choose among these approaches requires very specialized knowledge.
In order to bridge the gap between theory and practice in dMRI reconstruction and analysis we present a
detailed review of the dMRI modeling literature. We place an emphasis on the mathematical and algo-
rithmic underpinnings of the subject, categorizing existing methods according to how they treat the
angular and radial sampling of the diffusion signal. We describe the features that can be computed with
each method and discuss its advantages and limitations. We also provide a detailed bibliography to guide
the reader.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Context

Diffusion magnetic resonance imaging (dMRI) allows one to
examine the microscopic diffusion of water molecules in biological
tissue in vivo. Water molecules are in constant thermal motion,
with a locally random component, but this motion is constrained
by the presence of surrounding structures including nerves, cells
and surrounding tissue. Measurements of this diffusion, therefore,
reveal micro-structural properties of the underlying tissue. In prac-
tice, this imaging modality requires the collection of successive
images with magnetic field gradients applied in different direc-
tions. A reconstruction step is then used to estimate the 3D diffu-
sion probability density function (PDF) from the acquired images.

Since the development of the first dMRI acquisition sequence in
the mid 1960s, many applications of this modality have emerged.
These can be classified into two main categories. The first category
aims at diagnosing certain brain abnormalities that alter the
dynamics of the diffusion of water in the brain, e.g., as in the case
of a stroke. Such changes can be detected very easily in diffusion
images, but remain invisible in other ‘‘static’’ imaging modalities,
e.g., anatomical MRI and CT. The dMRI has been increasingly
exploited by neurologists for the diagnosis of a wide variety of
brain pathologies including: tumors (cerebral lymphoma, epider-
moid and cholesteatoma cysts), infections (pyogenic brain abscess,
encephalitis herpes); degenerative diseases (Creutzfeld–Jakob
ll rights reserved.
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Disease); inflammatory conditions (multiple sclerosis), and trauma
(shock, fracture) (Ron and Robbins, 2003; Moritani et al., 2004).

The second class of applications of dMRI focus on the study of
the neuroanatomy of the human brain and more specifically on
the understanding of its microstructure. In a diffusion image, each
voxel has a signal which results from the motion of a large number
of water molecules, revealing features of a portion of tissue at an
atomic scale. Early in the dMRI literature it became apparent that
this summary of local diffusion depends on attributes of the vector
magnetic field gradient, and how it affects the profile of the diffu-
sion signal in both the angular and radial directions. However, the
hardware requirements being demanding for MRI scanners of that
time, it was not until the early nineties that this kind of imaging
could be initiated.

The founding method in this area is Diffusion Tensor Imaging
(DTI), where a second-order tensor D is used to model the PDF
within a voxel, a model which is adequate when there is a single
coherent fibers population present. This tensor may be visualized
as an ellipsoid with its three axes given by the eigenvectors of D,
scaled by their corresponding eigenvalues. The eigenvector with
the largest eigenvalue reflects the orientation of the fiber popula-
tion. The extraction of further information from DTI can then take
several forms, such as scalar factional anisotropy indices which ex-
press the degree to which diffusion is restricted to particular direc-
tions at a voxel.

Advances in MRI now enable one to acquire dMRI images with a
larger number of magnetic field gradient diffusion encoding direc-
tions, typically 64–100, compared to the six directions that are the
minimum necessary for DTI. With such angular sampling, the ten-
sor formulation can be replaced with mathematical models of
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Fig. 1. Our mathematical definition of the diffusion MRI image as expressed in Eq.
(1). Left: the position x-space Xx of the image, which results as the Fourier
transform of the acquired k-space. Right: the diffusion q-space Xq for one voxel of
the x-space (depicted here as a yellow rectangle). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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higher dimension, leading to high angular resolution diffusion
imaging (HARDI) reconstructions. These models allow for better
detection and representation of complex sub-voxel fiber geome-
tries. From HARDI it is in fact possible to obtain a more accurate fi-
ber orientation distribution function (ODF) within a voxel without
a prior assumption on the number of fiber populations present, via
a spherical deconvolution method (Tournier et al., 2004). There is
also a growing interest in the development of tractography algo-
rithms to group such local estimates to reconstruct complete fiber
tract systems (Mori et al., 1999). Typical examples of such algo-
rithms are described in the recent proceedings of the 2009 MICCAI
Diffusion Modeling and Fiber Cup Workshop. With such algorithms
in hand, it becomes possible to not only recover connectivity pat-
terns between distinct anatomical regions in the human brain,
but also to define continuous measures of the degree of connectiv-
ity between two such regions.

Whereas the reconstruction of a more precise angular diffusion
profile has been the subject of much work in the dMRI community,
the study of the radial profile of the diffusion signal has also been
carried out using nuclear magnetic resonance (NMR) spectroscopy
in place of existing MRI scanners. Spectrometers can be used to
acquire radial diffusion profiles with great accuracy, but at the ex-
pense of being limited to a small, spatially unresolved, sample. The
use of this method reveals a phenomenon of ‘‘diffusion–diffraction’’
caused by the interference between water molecules and the walls
of the microscopic structures within biological tissue. From the
observation of this phenomenon, it is theoretically possible to
extract features in vivo of brain structure at a microscopic scale,
including average cell size, axon diameter, probability of diffusion
permeability of the walls, etc.

This article presents an in depth review of the diffusion MRI
reconstruction and modeling literature, including low angular
resolution methods, high angular resolution methods, methods
to sample the radial component of the diffusion signal and
methods to combine both angular and radial sampling. Our in-
tent is to provide a comprehensive treatment while emphasizing
the mathematical and algorithmic underpinnings of each meth-
od. We begin by introducing the necessary mathematical back-
ground. We first define the notation used throughout this
paper in Section 1.2. We briefly present the scanner sequence
used in dMRI to acquire the signal in Sections 1.3 and 1.4, which
is widely described using two formalisms: the Stejskal–Tanner
equation (Section 1.5) and the q-space formalism (Section 1.6).
We then review the typical shape of the diffusion signal in the
literature in Section 1.7.
1.2. Notation

Let Xx � R3 be the position space (x-space), a vector space of
dimension 3, whose natural orthonormal basis is the family of vec-
tors {ex = (1,0,0), ey = (0,1,0), ez = (0,0,1)}. Let x 2Xx be a vector so
that the coordinates are expressed as x = (x,y,z)T. Similarly, we de-
fine the diffusion space Xq � R3 (q-space) so that the natural ortho-
normal basis is now {ux,uy,uz} and a vector q 2Xq. We model the
diffusion MR image as a continuous function E:

E :
Xx �Xq ! R

ðx;qÞ ! Eðx;qÞ

���� ð1Þ

The Fig. 1 illustrate Eq. (1), so that each couple (x,q), respec-
tively, describing the spatial and the diffusion coordinates, is
associated with a diffusion value E(x,q). For the sake of simplify,
we use the equivalent notation E(q) = E(x,q) to refer to the diffu-
sion signal inside any voxel x 2Xx of the image. In the next
sections, we detail the acquisition of the position space Xx and
the diffusion space Xq.
1.3. Imaging the k-space

The MRI scanner acquires the three-dimensional anatomical
image I on a slice-by-slice basis. Let Xk � R2 be the k-space
(Ljunggren, 1983), a vector space of dimension 2, so that the
acquired image I is modeled as the function:

I :
Xk � R�Xq ! R

ðk; z;qÞ ! Iðk; z;qÞ

���� ð2Þ

where k = (kx,ky) 2Xk is a vector of the k-space proportional to the
areas of the imaging gradients and z is the third coordinate of the
vector x 2Xx. The gradients are applied along each slice z of the im-
age I; this creates a gradient in the spin phases within this slice and
enables one to locate each spin of the image I at coordinates (k,z).
We are interested in the ensemble magnetization vectors image S
which characterizes the brain tissue at each voxel x. The image S
is given by the two-dimensional Fourier transform F 2D of the image
I:

Sðx;qÞ ¼
Z

k2Xk

Iðk; z;qÞ expð�i2pk � xxyÞdk ð3Þ

where xxy = (x,y) is a two-dimensional vector so that x = (xxy,z).
Therefore, if the image is acquired in the k-space sampling with suf-
ficient samples of k in each slice z, we can recover the image S as
illustrated in Fig. 2. For more details on the encoding of the image
by MRI magnetic field gradients, readers can refer to (Pipe, 2009).
In addition to this anatomical MRI sequence presented in this sec-
tion, the imaging of the diffusion requires an additional specific
acquisition sequence.

1.4. Diffusion gradient sequence

The classical acquisition sequence used in dMRI is the gradient
pulsed spin echo (PGSE), introduced by Stejskal and Tanner (1965).
This sequence can be explained as follows (as illustrated in Fig. 3):

� the first diffusion gradient pulse g(0) ‘‘labels’’ the spins of water
molecules according to their initial positions at t = 0;
� after the 180� radio-frequency signal (which causes an adjust-

ment in spin phases at echo time TE), a second diffusion gradi-
ent pulse g(D) is applied which labels the spins after a diffusion
time t = D;
� the scanner coils receive the diffusion signal at echo time t = TE

and two situations are possible at this point: either the water
molecules did not move, so that the spin labels cancel out each
other; or some molecules moved during the diffusion time
lapse, which leads to a signal loss proportional to the displace-
ment of water molecules.



(a) Ωk (b) Slice of Ωx

Fig. 2. Acquisition of a slice of the MRI image. (a) Acquisition is done in the k-space on a slice-by-slice basis. (b) Module of the Fourier transform of the image (a).

Fig. 3. Pulsed Gradient Spin Echo (PGSE) sequence proposed by Stejskal and Tanner
(1965). The echo formation, resulting in the diffusion signal, is acquired at the echo
time TE after the 90� and 180� radio-frequency pulses.
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The diffusion gradient g sequence is expressed as a function of
time (Stejskal and Tanner, 1965):

gðtÞ ¼ ðHðt1Þ � Hðt1 � dÞ þ Hðt2Þ � Hðt2 � dÞÞu; ð4Þ

where t2 = t1 + D, the symbol H being the Heaviside step function
and u 2 S2 representing the gradient direction.

1.5. Unbounded diffusion

The diffusion signal received by the scanner coils was first de-
scribed by Stejskal and Tanner (1965). Indeed, the incorporation
of g from Eq. (4) into the Bloch–Torrey equations (Torrey, 1956)
leads to the signal attenuation equation as given by Stejskal and
Tanner (1965):

EðbÞ ¼ SðbÞ
Sð0Þ ¼ exp �c2d2 D� d

3

� �
gTDg

� �
; ð5Þ

This equation relates the normalized signal decay E at echo time
t = TE with the duration, time separation and strength of the mag-
netic field pulse gradients (d, D and g, respectively), c the gyromag-
netic ratio, and the apparent diffusion coefficient (ADC) D. For
simplicity of notation it is convenient to introduce the b factor
which groups together the main parameters of the diffusion se-
quence (Le Bihan, 1991):

b ¼ c2d2ðD� d=3Þkgk2 ð7Þ

Therefore the Stejskal–Tanner equation (5) is commonly writ-
ten as:

EðqÞ ¼ expð�bDÞ: ð8Þ

where the signal notation was simplified to drop its dependance to
the diffusion time D, i.e., E(q) = E(q,D). The result of Eq. (8) is valid
for diffusion in an unrestricted medium and is not restricted to the
limit that D� d as it will be the case in the next section (Tanner and
Stejskal, 1968).

1.6. Restricted diffusion

The Stejskal–Tanner equation (8) links the observed diffusion
signal to the underlying diffusion coefficient, under the assumption
that the diffusion is purely Gaussian. However, this Gaussian
hypothesis is often violated when the diffusion is hindered, as is
the case in the brain due to the presence of white matter fibers
(Niendorf et al., 1996; Assaf and Cohen, 1998).

The propagator formalism enable one to characterize the diffu-
sion without a prior Gaussian assumption (Kärger and Heink,
1983). Within the narrow pulse approximation (NPA) d ? 0, the
diffusion gradient does not vary with time anymore

R
gðtÞdt ¼

gð0Þ � gðDÞ. This greatly simplifies the relationship between the
spin phase difference and the position of the molecules during
the gradient pulses (Tanner and Stejskal, 1968; Cory and Garroway,
1990; Callaghan, 1991):

EðqÞ ¼
Z

p02Xx

qðp0Þ
Z

pt2Xx

Pðp0jpDÞei2pq�ðp0�pDÞdptdp0 ð9Þ

where q(p0) is the spin density at initial time t = 0, which is
assumed to be constant in the voxel and is zero elsewhere. The
propagator P(p0jpD) gives the probability that a spin at its initial
position p0 will have moved to position pD after a time interval
D. We introduce the wave-vector q which is defined as

q ¼ c
2p

Z t

0
gðtÞdt ¼ c

2p
gd ð10Þ

where q 2Xq. This simplification occurs in the NPA regime, and as a
consequence q is not a function of time anymore and only depends
on the encoding time d. An excellent review of the relationship be-
tween the Stejskal-Tanner equation and the q-space formalism ap-
pears in (Basser, 2002).

Remark. An alternative convention q = cdg is sometimes found in
the diffusion MRI literature, which comes from the convention of
the Fourier transform without the exponential term 2p. In this
paper, we use the convention described in Eq. (10).

In this formalism, the b factor defined in Eq. (7) can also be ex-
pressed as a function of the q wave vector:

b ¼ ð2pÞ2ðD� d=3Þq2 ð11Þ

where q stands for the norm of the wave-vector, i.e., q = kqk. Let p be
the net displacement vector p = pD � p0, then the diffusion Ensem-
ble Average Propagator (EAP) P(p) of a voxel is defined as
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PðpÞ ¼
Z

p02Xx

qðp0ÞPðp0jp0 þ pÞdp0 ð12Þ

Therefore, the diffusion signal E(q) at the diffusion time D is
linked to the EAP by the following relationship (Callaghan, 1991;
Cory and Garroway, 1990; Stejskal, 1965):

EðqÞ ¼
Z

p2Xx

PðpÞ exp i2pqTp
� �

dp ¼ F�1
3D ½P�ðqÞ ð13Þ

Eq. (13) is the inverse three-dimensional Fourier transform F�1
3D

of the average propagator, with respect to the displacement vector
p 2Xp of water molecules inside a voxel at position p. Similarly,
the three-dimensional Fourier transform F 3D of E relates to P:

PðpÞ ¼
Z

q2Xx

EðqÞ expð�i2pqTpÞdq ¼ F 3D½E�ðpÞ ð14Þ

In other words, the diffusion signal E is acquired in the q-space
which is the Fourier domain. The q-space formalism (or g-space
(Stejskal, 1965)) was introduced by (Stejskal, 1965; Callaghan,
1991; Cory and Garroway, 1990).

The q-space formalism is able to describe in a common frame-
work numerous estimation methods. In this case, the diffusion sig-
nal is related to the displacement of the molecules between t = 0
and t = D (cf. Fig. 4a). However, this formalism is based on several
assumptions about the diffusion signal acquisition (Cory and Gar-
roway, 1990; Callaghan, 1991):

1. It is assumed that the gradient time d 	 0 is negligible so that
there is no displacement of water molecules during that period.
In practice, the gradient duration d is not always negligible and
the measured displacement is related to the mean position of
the molecules between time intervals t = [0,d] and t = [D,d] (cf.
Fig. 4b);

2. It is assumed that that the gradient time d is very short com-
pared to the diffusion time D, so that the q wave-vector can
be assumed to not be a function of time (cf. Eq. (10)).

In the present paper we assume that these assumptions are va-
lid, since they are necessary for the definition of q-space. Several
studies (Blees, 1994; Coy and Callaghan, 1994; Mitra and Halperin,
1995; Mair et al., 2002; Bar-Shir et al., 2008) have shown that
when these assumptions do not hold, the Fourier relationship
(Eq. (13) and (14)) is still valid, but that the interpretation of the
signal should be somewhat different. Instead of the diffusion prop-
agator formalism, a center of mass propagator formalism applies,
due to a homothetic transformation of the signal features.
(a) (b)

Fig. 4. Simulated random walk as measured by the PGSE sequence. (a) Ideal case
(d 	 0), (b) real case ðd 6	0Þ. Adapted from (Hagmann, 2005).
Remark. The fundamental explicit relationship between the
acquired image I and the diffusion propagator P is expressed by
combining Eqs. (3) and (14):
Pðx;pÞ ¼ F 3D Eðx;qÞ½ �ðx;pÞ ¼ F 3D
F 2D½I�ðk; z;qÞ
F 2D½I�ðk; z;0Þ

� �
ðx;pÞ ð15Þ

where E(x,q) = S(x,q)/S(x,0) which normalizes the signal so that
variations of E along q can be attributed solely to diffusion.
1.7. Modeling the shape of the diffusion signal

Fig. 5 provides a qualitative sense of the expected diffusion pro-
file in several typical situations in brain white matter. When no fi-
bers are present the diffusion is typically equal in all directions,
with a Gaussian distribution radially (Fig. 5a). When a single fibers
bundle is present there is maximum diffusion along its direction
(Fig. 5b). When two fibers bundles cross there is preferential diffu-
sion in the direction of each (Fig. 5c). Finally, Fig. 5d illustrates a
case where there is equal diffusion all directions, but that there
is a variation in speed radially which indicates the apparent radius
of the fibers bundle.

It is presently impractical to acquire a dense radial and angular
sampling of the diffusion space due to the significant acquisition
time this would imply. As a result, several advanced methods exist
in the dMRI literature to sample and process the signal. The anal-
ysis of the diffusion signal is closely related to the sampling of
the q-space as illustrated in Fig. 6. In the remainder of this article
we review the state of the art methods, organized into three
groups: low and high angular sampling methods (Sections 2
and 3), radial sampling methods (Section 4), and methods which
combine radial and angular sampling (Section 5). We also include
an appendix which reviews the mathematical concepts and tools
required to understand and apply these methods.

The description of each method is organized according to the
following themes:

1. Local diffusion modeling: We express the mathematical models
used for the interpretation of the diffusion signal in the q-space,
while clarifying the underlying assumptions;

2. Model estimation from the data: We describe the model estima-
tion methods from the data acquired from the MRI scanner;

3. Processing and extraction of diffusion features: We present com-
mon post-processing techniques on the estimated model, to
extract features of tissue microstructure;

4. Advantages and limitations of the method: We enumerate the
main advantages (denoted with the + symbol) and limitations
(denoted with a � symbol) of the method.

2. Low angular resolution diffusion imaging (DTI)

Diffusion anisotropy, as captured by diffusion nuclear magnetic
resonance (NMR), was pointed out in early investigations involving
controlled environments (Stejskal, 1965; Tanner and Stejskal,
1968; Tanner, 1978). This was followed by studies of the diffusion
process within brain tissue using dMRI (Moseley et al., 1990). The
acquired diffusion image depends on the orientation u of the diffu-
sion wave-vector q. Hence, the use of a tensor, a rotationally invari-
ant object, is convenient to characterize the anisotropy of the
apparent diffusion coefficient (ADC) of brain tissue, as suggested
in several studies (Onsager, 1931a; Onsager, 1931b; De Groot
and Mazur, 1962; Casimir, 1945; Stejskal, 1965). In this section,
we describe the major method used for the characterization of this
anisotropy of diffusion, in the case of low angular sampling of the
q-space.



Fig. 5. Examples of local diffusion profiles E observed in the brain matter measured by dMRI. The data are represented here as volumetric images 64 � 64 � 64, where the
center of the q-space q = 0 is the center of each image. (a) Free isotropic Gaussian diffusion. (b) Restricted diffusion due to the presence of a single fiber bundle. (c) Restricted
diffusion in the presence of two fiber bundles in a crossing configuration. (d) Restricted diffusion which is isotropic in direction, but has a multi-Gaussian profile radially.

(a) (b) (c) (d) (e)

Fig. 6. The analysis of the diffusion signal is closely related to the sampling of the q-space. (a) Full sampling of the q-space is currently impractical in vivo due to the significant
acquisition time it would imply. (b) Low angular resolution sampling used in DTI. (c) High angular resolution sampling (HARDI). (d) Radial only sampling used in diffusion
NMR. (e) Sparse sampling which combines radial and angular measurements.
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2.1. Local diffusion modeling

Whereas the scalar ADC measure is modeled with a zeroth-or-
der tensor, DTI introduces the use of a second-order tensor D,
allowing a more accurate angular characterization of the diffusion
process in the brain (Stejskal, 1965; Moseley et al., 1990; Filler
et al., 1992; Basser and LeBihan, 1992). The mathematical frame-
work which explicitly relates the diffusion tensor to the NMR sig-
nal was demonstrated by (Stejskal, 1965; Basser and LeBihan,
1992; Basser et al., 1994):

EðqÞ ¼ expð�4p2sqTDqÞ ð16Þ

In this formalism, the average local diffusion process is de-
scribed by a second-order tensor D, whose coordinates in the q-
space basis {ux,uy,uz} are given by a 3 � 3 symmetric and posi-
tive-definite matrix:

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

0
B@

1
CA ð17Þ

In a environment such as water, the diffusion process D is assumed
to be symmetric (i.e., D = DT) according to the principles of thermo-
dynamics (Onsager, 1931a,b; De Groot and Mazur, 1962; Casimir,
1945; Stejskal, 1965; Basser et al., 1994).

2.2. Model estimation from the data

The apparent diffusion tensor profile D is expressed as a func-
tion of the wave-vector diffusion q defined in the q-space, so that
the logarithm of Eq. (16) is:

DðqÞ ¼ qTDq ¼ � lnðEðqÞÞ
4p2s

ð18Þ

Since the diffusion tensor D is symmetric, it is entirely defined by
six components which can be grouped into a vector D (Basser
et al., 1994):

D ¼ ðDxx;Dxy;Dxz;Dyy;Dyz;DzzÞT: ð19Þ
The construction of the sampling matrix of the q-space requires at
least n = 6 acquisitions qi, i 2 [1,n] and one additional acquisition
at q = 0 for normalization (Stejskal, 1965; Basser et al., 1994; Tuch,
2002):

B ¼ 4p2s

qx
1qx

1 2qx
1qy

1 2qx
1qz

1 qy
1qy

1 2qy
1qz

1 qz
1qz

1

qx
2qx

2 2qx
2qy

2 2qx
2qz

2 qy
2qy

2 2qy
2qz

2 qz
2qz

2

..

. ..
. ..

. ..
. ..

. ..
.

qx
nqx

n 2qx
nqy

n 2qx
nqz

n qy
nqy

n 2qy
nqz

n qz
nqz

n

0
BBBBB@

1
CCCCCA ð20Þ

where the wave-vector is decomposed as qi ¼ qx
i ux þ qy

i uy þ qz
i uz.

The sampling matrix defined in Eq. (20) is traditionally named the
B-matrix, in reference to its multiple b-factor entries bij = 4p2sqiqj

(cf. Eq. (7)).
The logarithm of the data samples Ei, i 2 [1,n] are grouped in a

vector Y:

Y ¼ ð� lnðE1Þ;� . . . ;� lnðEnÞÞT: ð21Þ

Finally, Eq. (16) which links the model to the data, is expressed
in the matrix form as:

Y ¼ BD: ð22Þ

In the case where there are exactly six acquisitions in different
orientation of the q-space, the components of the diffusion tensor
can be computed by the relationship D = B�1Y. However, such a
process is very sensitive to the quality of the data and to perturba-
tions due to acquisition noise. In practice, scanners are now able to
acquire many mores images (typically up to n = 60 directions).
From these n images, the tensor is estimated to be the one which
minimizes a notion of error to the set of acquired data (Johan-
sen-Berg and Behrens, 2009). There are several methods for the
estimation and regularization of second-order tensor fields, includ-
ing: weighted least squares (Basser et al., 1994), variational meth-
ods for the estimation of the image volume with positivity and
regularity constraints (Chefd’hotel et al., 2002; Tschumperlé and
Deriche, 2003a; Tschumperlé and Deriche, 2003b; Chefd’hotel
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et al., 2004; Neji et al., 2007), estimation in a Riemannian space
(Lenglet, 2006; Arsigny, 2006; Fillard et al., 2007) and the use of
sparse representations (Bao et al., 2009; Luo et al., 2009).
2.3. Processing and extraction of diffusion features

DTI data is often visualized using a field of ellipsoids, where
each voxel is represented by an isosurface of the diffusion tensor
(Basser, 1995):

DðqÞ ¼ qTDq ¼ constant: ð23Þ

In such a visualization, the eigenvectors of D give the principal
axes of the ellipsoid, with their lengths scaled by the corresponding
eigenvalues. Fig. 7 illustrates DTI data of an adult human brain
data. In regions where there is a dominant local fiber direction
the ellipsoids appear elongated to reflect it. The formalism of the
second-order tensor contains rich information at a voxel scale.
Nonetheless, this information is hard to grasp qualitatively in a
volumetric image consisting of thousands of voxels. As a result, a
wide variety of measures have been proposed to process and sim-
plify the diffusion information reflected in the second-order tensor.
In the following paragraphs, we classify these measures into two
groups: scalar features and vectorial features.

Scalar features: There are various scalars features based on the
second-order tensor which summarize the diffusion information
at each voxel, enabling the depiction of qualitative aspects of diffu-
sion on a larger scale (Pierpaoli and Basser, 1996; Papadakis et al.,
1999). In contrast to the DWI and ADC methods, these scalar
images are not dependent on the orientation of the patient with re-
spect to the scanner, and they allow for straightforward inter-sub-
ject statistics to be computed. An example of such a scalar feature
is the trace of the diffusion tensor, which is defined as the sum of
the eigenvalues ki, computed in the basis of tensor eigenvectors
(see Appendix A.2):

Trace ¼
X3

i¼1

ki ð24Þ

It is interesting to note that the trace/3 is the mean diffusion in
a voxel. In a healthy patient this feature tends to lead to an image
with relatively homogeneous intensity (Pierpaoli and Basser,
1996). This is useful in clinical applications since it is likely that
any diffusion anomaly (such as due to an acute brain stroke) will
lead to a local hyper- or hypo-intensity (Lythgoe et al., 1997).
Fig. 7. DTI visualization using ellipsoids: from a global to a local view. (a) Visualization o
the corpus callosum. The privileged diffusion direction is the left–right axis, this is cohere
orientation of the principal eigenvector of each tensor (more details in Fig. 8).
A second popular feature is the fractional anisotropy (FA) which
measures the normalized angular variance of diffusion within a
voxel. It is defined as:

FA ¼
ffiffiffi
3
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
i¼1ðki � hkiÞ2P3

i¼1k
2
i

vuut ; ð25Þ

where hki is the mean of the eigenvalues ki. At a voxel scale, the FA
measures the alignment and the coherence of the underlying micro-
structure. Thus, voxels with compact fibers bundles have a high FA
value (e.g., in the corpus callosum), whereas voxels with non-
aligned bundles tend to have a low FA value (e.g., as in the case of
crossing fibers). The FA is likely the most used scaler anisotropy in-
dex in the dMRI literature because it is relatively robust to noise in
comparison to other features (Pierpaoli and Basser, 1996).

Several features related to the geometric shape of the second-
order tensor have also been proposed in the literature (Basser,
1997; Westin et al., 1997). These are typically based on the ratio
between the eigenvalues, sorted in a decreasing order, and can
help distinguish between flat, elongated, and other profiles.

Vectorial features: It is often useful to extract vectorial features
based on the DTI. A colour-coded orientation map of nerve fibers
in the brain (Pajevic and Pierpaoli, 1999) is shown in Fig. 8a. The
direction of nerve fibers is also shown using random texture
smoothing (Tschumperlé and Deriche, 2005; Weickert and Hagen,
2006) (Fig. 8c) and using three-dimensional curves (Mori et al.,
1999; Conturo, 1999; Jones et al., 1999b) (Fig. 8b) The process of
tracking to reconstruct fiber bundles in DTI is generally based on
a continuous tensor field which requires an interpolation of tensors
(Fillard et al., 2007; Pennec et al., 2006; Arsigny, 2006).

2.4. Advantages and limitations of DTI

With improvements in the quality and speed of MRI scanners,
the DTI model is somewhat limited. Indeed, it is not uncommon
to have an angular acquisition resolution of the q-space of up to
128 directions (in comparison to the minimum seven directions re-
quired for a DTI reconstruction). When such angular precision is
available, the model over-simplifies the diffusion process.
Although the model is valid when there is a single dominant diffu-
sion direction, such as in the corpus callosum (illustrated in Fig. 7),
is it not accurate enough to characterize more complex diffusion
profiles in the brain. These limits, those of modeling the diffusion
coefficient by a second-order tensor, can be analyzed through a
Taylor expansion of the diffusion signal E at q = 0. The diffusion sig-
f the corpus callosum by a second-order tensor field. (b) Zoom on the bottom part of
nt since the corpus callosum links both brain hemispheres. The colours indicate the



Fig. 8. Some vectorial features based on the principal eigenvector of the DTI (second-order tensor field). (a) The colour encodes the orientation of the vector and its norm is
encoded by the brightness (red for left–right, blue for superior–anterior, green for anterior–posterior). (b) The curvature encodes the direction of each fiber and the brightness
the smoothness strength. (c) Fiber tracking: A visualization of nerve fiber bundles as three-dimensional curves overlaid on the diffusion ellipsoids. These images are adapted
from (Tschumperlé, 2002). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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nal E is usually considered to be a symmetric function, so that the
odd terms are equal to zero (Wedeen et al., 2005):

EðqÞ ¼ exp 0� ð2pÞ2

2
qT hppT � hpihpiTiqþ O kqk4


 �
:


 � !
ð26Þ

Here h�i is the expected value and hppT � hpihpiTi is the covari-
ance matrix of the diffusion propagator. Furthermore, the DTI mod-
el discards the terms with order higher than two, under the
assumptions that: (i) the diffusion vector q is small (qThppTiq
 1
– typically this is true in brain tissues for b < 1000 s/mm2) and (ii)
the local diffusion is Gaussian (moments greater than two are
zero). Under these assumptions Eq. (26) becomes:

EðqÞ 	 exp �ð2pÞ2

2
qThppTiq

 !
¼ exp �4p2sqTDq

� �
ð27Þ

where the coefficient hppTi = 2Ds is given by the Einstein–Smolu-
chowski relationship (Einstein, 1905), yielding Eq. (16) of DTI.

Since the ADC is estimated with the hypothesis that the local
diffusion follows a zero mean Gaussian function, the DTI method
is expressed in the diffusion propagator P formalism as:

PðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ð4psÞ3jDj

s
exp

pTD�1p
4s

 !
; ð28Þ

where P(p) is the probability that a water molecule inside a voxel
travels a distance p during the diffusion time s. Under these
assumptions, the second-order tensor captures the diffusion covari-
ance, which corresponds to the second-order moment of the diffu-
sion propagator P.

The Gaussian hypothesis of the DTI model does not hold in the
general case, e.g., when crossing fibers are present (cf. Fig. 9b). In
such situations the moments of order greater than two are not
equal to zero. As a result, the representation of a crossing or any
complex sub-voxel geometry is excessively simplified by DTI (Bas-
ser et al., 2000). Furthermore, fiber tracking results based solely on
DTI can be unreliable in the presence of crossing fibers or other
complex geometries (Campbell et al., 2005). We now summarize
the advantages and limitations of DTI.

+ The time during which the patient must lie motionless is short,
since the reconstruction requires a minimum of only seven
acquisitions in q-space.

+ The second-order tensor appears to adequately model brain
white matter regions where there is a single dominant direction
of diffusion. The measured angle between the principal eigen-
vector and the ground-truth fiber orientation is approximately
13� (Lin et al., 2001).
+ The DTI model has became a standard method in the dMRI com-
munity and there is a vast literature on topics such as noise
robustness (Basu et al., 2006), data regularization (Mangin
et al., 2002; Tschumperlé and Deriche, 2005), sampling
(Poupon, 1999; Jones et al., 1999a) and statistical studies
(Chung et al., 2006).

– The modeling of the angular profile of the diffusion signal by a
Gaussian function is often violated in the presence of complex
geometries, such as fiber crossings, Y-configurations, bottle-
necks, etc. (Savadjiev et al., 2008).

– Similarly, the modeling of the radial profile of the diffusion sig-
nal by a Gaussian function prevents one from retrieving more
complete radial information, thus excluding features such as
mean cell size, axon diameter, etc (Cory and Garroway, 1990;
Callaghan et al., 1991; Kuchel et al., 1997; Assaf and Cohen,
1998; Regan and Kuchel, 2003).

3. High angular resolution diffusion imaging (HARDI)

High angular resolution diffusion imaging (HARDI) was pro-
posed by Tuch et al. (1999) to enable a more precise angular char-
acterization of the diffusion signal, while keeping the acquisition
time compatible with clinical constraints. HARDI reduces the diffu-
sion signal sampling to a single sphere of the q-space, and has ini-
tiated a significant interest in the scientific community as
indicated by the numerous methods to tackle the recovery the
geometry of crossing fibers, as illustrated in Fig. 9. In the following
we describe the principal methods in the literature, which fall into
two classes: parametric and non-parametric. The first class repre-
sents the diffusion signal as a sum of functions, each of which mod-
els a single fiber population. The second represents the diffusion
signal as a mathematical series. A detailed quantitative comparison
of several of these methods is available in (Jian and Vemuri, 2007;
Ramirez-Manzanares et al., 2008).

3.1. Mixture models (parametric)

3.1.1. Local diffusion modeling
A variety of models in the literature assume that the diffusion

signal can be decomposed as a weighted sum of generic diffusion
models hi:

EðqÞ ¼
Xn

i¼1

fihiðqÞ with
Xn

i

fi ¼ 1; ð29Þ

where fi stands for the weight of the ith bundle of nerve fibers and n
is the total number of bundles. The mixture models of the literature
can be expressed in the formalism of Eq. 29.



Fig. 9. HARDI sampling of the diffusion signal: a schematic overview of the modeling of an intravoxel crossing of bundles nerve fibers. (a) Two fiber bundles crossing at 90�
inside a voxel generate a diffusion signal. (b) ADC modeling using a DTI reconstruction. (c) Generalization of the ADC modeling with HARDI sampling. The maxima of the
angular profile do not match the underlying fiber bundle directions given in (a). (d) Angular feature estimation of the diffusion propagator with HARDI sampling. Adapted
from (Descoteaux, 2008).
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The multi-Gaussian (or multi-DTI) model proposed in (Tuch,
2002) generalizes DTI with the assumption that the diffusion signal
is the sum of signals from several bundles of fibers, each modeled
as a second-order tensor:

hiðqÞ ¼ expð�4p2sqTDiqÞ: ð30Þ

The parametric ‘‘Ball and Stick’’ (Behrens et al., 2003; Hosey et al.,
2005) model describes the signal as a bi-Gaussian function (n = 2),
where the two components hiso and haniso correspond respectively
to an isotropic ADC D and an anisotropic ADC D:

hisoðqÞ ¼ expð�4p2q2sDÞ ð31Þ
hanisoðqÞ ¼ expð�4p2q2suTDuÞ ð32Þ

with D ¼ RkRT ¼ R
1 0 0
0 0 0
0 0 0

0
B@

1
CART ð33Þ

with the rotation matrix R being that between the basis of the q-
space and the basis defined by the eigenvectors of D.

The CHARMED model (Assaf and Basser, 2005) proposes a
parametrization with several components, one for the hindered
diffusion modeled by a Gaussian function, and the others for
the restricted diffusion modeled by diffusion inside a cylinder
(Neuman, 1974):

EðqÞ ¼ f hindhhindðqÞ þ
Xn

i¼2

f restr
i hrestr

i ðqÞ

hhindðqÞ ¼ exp �4p2sððq?Þ2k? þ ðqkÞ2kkÞ

 �

hrestr
i ðqÞ ¼ expð�4p2KiÞ

with Ki ¼ sðqkÞ2Dki þ ðq
?Þ2 7

96
2� 99

112
R2

D?i s

 !
R4

D?i s
: ð34Þ

The symbols fhind and frestr are the population fractions of the
hindered and restricted terms, respectively; qk and q\ are the
components of the q vector parallel and perpendicular to the fibers,
respectively; kk and k\ are the eigenvalues of the diffusion tensor
parallel and perpendicular to the axons (for a single coherent fiber
bundle), respectively; Dparallel and D\ are the parallel and perpendic-
ular diffusion coefficients within the cylinder; R is the cylinder
radius; and s is half of the echo time (Assaf and Basser, 2005).

3.1.2. Model estimation from the data
The estimation of these models is generally non-linear and is

obtained by an iterative computation in which various priors
(e.g., positivity, tensor shape) on n, Di and fi are introduced to in-
crease the numerical stability of the estimation (Alexander, 2005;
Tuch et al., 2002; Chen et al., 2004; Behrens et al., 2003; Hosey
et al., 2005). The noise and the number of samples influence the
number of parameters and the estimation is carried out by a
non-linear iterative numerical process such as gradient descent
(Tuch et al., 2002), a Levenberg–Marquardt scheme (Maier et al.,
2004; Assaf and Basser, 2005), a Gauss–Newton scheme (Peled
et al., 2006) or an unscented Kalman filter (Malcolm et al., 2010).
The choice of the number of components n is either arbitrarily
set (Tuch et al., 2002), or is chosen by a statistical criterion (Parker
and Alexander, 2003; Tuch et al., 2002; Behrens et al., 2007).
3.1.3. Processing and extraction of diffusion features
The diffusion features which characterize the brain micro-

architecture are directly obtained from the estimated model
parameters. Thus, no additional postprocessing is required.
3.1.4. Advantages and limitations

+ The modeling of non-Gaussian angular profiles allows crossing
fibers to be identified, which is a problematic case for DTI
(Frank, 2002; Alexander et al., 2002; Özarslan et al., 2005).

+ The extraction of diffusion features does not require any post-
processing once the reconstructions have been obtained.

+ The number of samples in the q-space is modest, e.g., typically
64 directions on a sphere suffice (Alexander, 2005).

– The estimation of the number of compartments requires addi-
tional processing (Behrens et al., 2007). Often the choice is
somewhat arbitrary and under or over estimation of this param-
eter can be problematic.

– The estimation of the diffusion signal is based on an empirical
hypothesis of the nature of diffusion within a healthy brain, in
a context where the origin of the diffusion is still debated (Nien-
dorf et al., 1996; Cohen and Assaf, 2002). Consequently, there
are no guaranties that these models remain valid for the diffu-
sion in other tissues, e.g., in diseased brains, the heart, etc.

– The stability and the accuracy of the non-linear estimation step
depends on the initial parameters, which vary with data (Aubert
and Kornprobst, 2006). The estimation time is notably slower
than the linear estimation of DTI, since it requires a iterative
minimization process, e.g., this takes approximately 2 h for a
slice of 64 � 64 pixels according to (Assaf and Basser, 2005).

– As is the case with DTI (cf. Section 2), the modeling of the radial
profile by a Gaussian function is inadequate since it excludes a
wide range of features, including mean cell size, axon diame-
ters, etc.

3.2. Spherical deconvolution (parametric)

3.2.1. Local diffusion modeling
The dMRI estimation by the spherical deconvolution (SD) was

proposed by Anderson and Ding (2002), Tournier et al. (2004),
and Jian and Vemuri (2007). Let S2 be the single sphere domain
and SO(3) the rotation group in R3. The diffusion signal E is mod-
eled by the convolution of a kernel h 2 L2(S2) and a function
f 2 L2(SO(3) which respectively represent the signal response for
a single bundle of nerve fibers and the fiber orientation density
function (fODF), ideally composed of n Dirac delta functions for n
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bundles of fibers. The spherical deconvolution operator is ex-
pressed as (Healy et al., 1998):

EðqÞ ¼ ðf � hðqÞÞðuÞ ¼
Z

R2SOð3Þ
f ðRÞhðq;RTuÞdR; ð35Þ

where u 2 S2 and the symbol u0 = RTu stands for the rotation of the
vector u by the matrix R.

Jian et al. (2007) proposed a kernel based on the Wishart distri-
bution, which is a multidimensional generalization of the v2 distri-
bution (Wishart, 1928):

hðq;u0Þ ¼ 1þ 4p2q2su0TDu
� ��p ð36Þ

with D 2 Pn and Pn the set of the 3 � 3 positive-definite matrices, i.e.,
u0TDu0 > 0. The parameter p 2 R should satisfy p P n with n the de-
gree of freedom and this generalizes other approaches in the liter-
ature (Jian et al., 2007). Indeed, when p ?1, the kernel h given
by Eq. (36) is Gaussian as in several methods (Anderson and Ding,
2002; Tournier et al., 2004; Anderson, 2005; Seunarine and Alexan-
der, 2006; Descoteaux et al., 2009a). When p = 2, the kernel h fol-
lows a Debye–Porod distribution proposed for the use of dMRI in
(Sen et al., 1995).

The persistent angular structure (PAS-MRI) method, proposed
by Jansons and Alexander (2003), is formally expressed as the
function defined on the sphere of radius k 2 R for which the in-
verse Fourier transform best fits the signal. This method can also
be expressed as a deconvolution of the signal E with a kernel h ex-
pressed as (Alexander, 2005; Seunarine and Alexander, 2006):

hðq;u0Þ ¼ k�2 cos kquTu0
� �

: ð37Þ

Some other studies propose the use of a kernel h which is
dependent on the data, and which is computed by statistical esti-
mation on the whole diffusion image (Tournier et al., 2004; Kaden
et al., 2007).

3.2.2. Model estimation from the data
Let f be the orientation density function of fibers. Tournier et al.

(2004) propose to express the spherical convolution expressed in
Eq. 35) directly in the spherical harmonics domain, as a simple
multiplication of the coefficients hlm and flm (Healy et al., 1998):

E ¼ ðf � hÞ ¼
X1
l¼0

X1
m¼�l

flmhlm: ð38Þ

The matrix formulation of Eq. (38) is interesting as the flm can be
computed by a simple matrix inversion.

The deconvolution operation is nonetheless unstable in the
presence of noisy data, notably when h is an anisotropic kernel.
Alexander (2005) and Tournier et al. (2008) suggest to regularize
the function f with a Tikhonov filter. This frequency regularization
can favourably be expressed in the spherical harmonic basis as a
simple linear relationship which is easy to implement (Tournier
et al., 2004; Descoteaux et al., 2006; Tournier et al., 2007).

3.2.3. Processing and extraction of diffusion features
The visualization of the distribution of fiber bundles f as a

spherical function is useful to indicate the orientations of the
sub-voxel fiber bundles (Seunarine and Alexander, 2006; Jansons
and Alexander, 2003). This is often used as a preprocessing step
in the context of using spherical deconvolution as an input to fiber
tracking algorithms, as it reduces the angular estimation error
(Descoteaux et al., 2009a; Savadjiev et al., 2008).

3.3. Advantages and limitations

+ When using a spherical harmonics basis the estimation is linear
and is hence very fast.
+ In contrast to the mixture models, for which the number of
compartments has to be determined a priori (cf. Section 3.1),
this parameter can be obtained by simple thresholding of the
reconstructed f distribution.

+ The non-Gaussian modeling of the angular profile enables the
characterization of regions with crossing fibers.

+ The use of spherical harmonics for HARDI sampling generally
requires approximately 60 samples on a sphere in the literature,
which leads to a modest acquisition time (Tournier et al., 2004;
Alexander, 2005).

– The choice of the deconvolution kernel h is empirical and is
based on a priori assumptions about the data.

– As with DTI (cf. Section 2), the Gaussian modeling of the radial
profile is inadequate and this excludes several features includ-
ing apparent cell size, axon diameter, etc.

3.4. High angular ADC (non-parametric)

3.4.1. Local diffusion modeling
The first experiments to characterize multiple fiber bundle

configurations were based on the generalization of the modeling
of the apparent diffusion coefficient (ADC) from a low to a high
angular resolution, without the Gaussian assumption imposed by
DTI (Frank, 2002; Alexander et al., 2002; Tuch et al., 2002). Recall
that the normalized diffusion signal E is modeled by the
Stejskal–Tanner equation (Stejskal and Tanner, 1965):

EðqÞ ¼ expð�4p2sq2DðuÞÞ: ð39Þ

In contrast to DTI, HARDI sampling allows high angular
modeling of the ADC with functions of order higher than the
second-order diffusion tensor used in DTI. Thus, Özarslan and
Mareci (2003) and Descoteaux et al. (2006) propose to model the
ADC by a higher order tensor (HOT):

DðuÞ ¼
XJl

j¼1

Djlj

Yl

p¼1

ujðpÞ; ð40Þ

where the symbol Jl = (l + 1)(l + 2)/2 corresponds to the number of
terms of a l-order tensor, uj(p) is the pth value of the jth tensor
component Dj and lj is the multiplicity index (Özarslan and Mareci,
2003).

In parallel, several studies suggested the use of spherical har-
monics (SH) for angular ADC estimation (Frank, 2002; Alexander
et al., 2002; Zhan et al., 2003; Chen et al., 2004):

DðuÞ ¼
XJl

j¼0

DjyjðuÞ; ð41Þ

where Jl = (l + 1)(l + 2)/2 corresponds to the number of terms of an
order l harmonic expansion (cf. Eq. (133)), the symbols yj stands
for the real and symmetric spherical harmonics, and Dj are the
weighting coefficients.

Remark. There is a mathematical equivalence between spherical
expansions which use the same order of spherical harmonics (Eq.
(40)) and Cartesian tensors (Eq. 41) (Johnston, 1960; Özarslan and
Mareci, 2003; Descoteaux et al., 2006).
3.4.2. Model estimation from the data
As with the DTI method detailed in Eq. (16), the high angular

ADC coefficients Dj result from the dot product between the
log-normalized diffusion signal E and the higher order tensors:

Dj ¼
Z

u2S2
� ln Eð Þ

4p2sq2 lj

Yl

p¼1

ujðpÞdu: ð42Þ
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Hence, the ADC is expressed in the spherical harmonics basis as:

Dj ¼
Z

u2S2
� ln Eð Þ

4p2sq2 yjðuÞdu: ð43Þ

In practice, the estimation of the parameters Dj of the HOT (Eq.
(40)) and SH (Eq. (41)) models is solved by a linear least squares
method because this is simple and fast to compute (Descoteaux
et al., 2006), which can be seen as follows. Let us group the param-
eters into a vector D:

DT ¼ ðDjÞ16j6Jl
: ð44Þ

The resulting system of linear equations can be written in the
matrix form Y = MD, with E being the vector of samples given by
Eq. (21) and M being the corresponding basis matrix, that is for
the Jth-order tensors

M ¼ lj

Yl

p¼1

ui
1ðpÞ

 !
16i6nq ;16j6Jl

; ð45Þ

with nq being the number of samples. For a spherical harmonics ba-
sis, the basis matrix is written as:

M ¼ ðEjðuiÞÞ16i6nq ;16j6Jl
: ð46Þ

Finally, the vector D of model parameters is given by the pseudo-in-
verse of the matrix M:

D ¼ ðMTMÞ�1MTE: ð47Þ

Other studies have proposed the use of estimation techniques
that are more robust to noise, which can have a significant effect
in MR images (Gudbjartsson and Patz, 1995), notably the use of
regularized least squares (Descoteaux et al., 2006) and of a varia-
tional estimation framework (Chen et al., 2004).

Whereas Eq. (47) enables a fast estimation, it does not ensure
positivity of the vector D. Hence, in (Barmpoutis, 2007), the esti-
mation is expressed as a ternary quartic (a homogeneous polyno-
mial of degree 4 with three variables), such that the Hilbert
theorem (Hilbert, 1888) ensures positivity. Alternatively, Ghosh
et al. (2008a) proposed the use of a Riemannian metric on the ten-
sor space in order ensure positivity of the components of D.

3.4.3. Processing and extraction of diffusion features
Scalar features: DTI has become a standard method for clinical

use. The indices (i.e., scalar features) based on higher order models
therefore attempt to overcome the modeling limitations of DTI,
particularly the detection of ‘‘crossing fibers’’ in brain tissue. In
the following we enumerate three indices extracted from higher
order models that are directly computed using the spherical har-
monics or higher order tensor coefficients.

In the case of a spherical harmonics expansion of the diffusion
signal, Frank (2002) demonstrates that the D coefficients can dis-
criminate between the cases of isotropic diffusion (index F0), aniso-
tropic diffusion with a single intravoxel direction (index F2) and
anisotropic diffusion with several intravoxel directions (index
Fmulti):

F0 ¼ jD0j F2 ¼
X
j:l¼2

jDjj Fmulti ¼
X
j:lP4

jDjj ð48Þ

Some studies have proposed other scalar features based on a ratio
between these three indices (F0, F2, Fmulti) to obtain more accurate
results (Chen et al., 2004; Frank, 2002; Chen et al., 2005).

As mentioned in Section 2, fractional anisotropy (FA) is one of
the most widely used scalar features of DTI, which motivates a
generalization of this index to the higher order models. The gener-
alized fractional anisotropy (GFA) is defined as the normalized var-
iance of a spherical function, here the ADC, and is expressed for a
discretization of the sphere in a set of n points by {ui}16i6n (Tuch,
2004):

GFAðDÞ ¼ stdðDÞ
rmsðDÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

n� 1

Pn
i¼1
ðDðkiÞ � hDiÞ2

Pn
i¼1

DðkiÞ2

vuuuuut : ð49Þ

The GFA index can be directly computed using the spherical har-
monics basis:

GFAðDÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

0PJ

j¼0
a2

j

vuuuut : ð50Þ

Like the FA, the GFA is defined on the interval [0,1]: a value of zero
indicates a perfectly isotropic diffusion, while a value of one indi-
cates a totally anisotropic diffusion.

Özarslan et al. (2005) proposed an alternative generalization of
the FA, for a signal estimation based on higher order tensors. The
obtained index, namely the generalized anisotropy (GA), is defined
by the generalized trace Trgen and variance Vargen operators:

TrgenðDÞ ¼
3

4p

Z
u2S2

DðuÞdu

VargenðDÞ ¼
1
3

Trgen
D2

TrgenðDÞ

 !
� 1

3

 !
: ð51Þ

The GA is normalized in the interval ½0;1Þ using an ad hoc data-
dependent mapping (Özarslan et al., 2005):

GA ¼ 1� 1þ ð250VargenÞf ðVargenÞ

 ��1

f ðVargenÞ ¼ 1þ 1þ 5000Vargen
� ��1

: ð52Þ

Further details on this index are described in (Özarslan et al., 2005).
Furthermore, a numerical comparison of selected scalar features of
the high angular ADC is presented in (Descoteaux, 2008).

Vectorial features: The modeling of the ADC profile by higher
order models leads to a more accurate characterization of intra-
voxel anisotropy than that provided by DTI. However, as illus-
trated in Fig. 9a and b, the maxima of the estimated ADC do
not coincide with the directions of the underlying fiber bundles
(von dem Hagen and Henkelman, 2002). Therefore the high
angular resolution ADC cannot be used directly to extract mean-
ingful vectorial features, and a fortiori for fiber tracking in brain
white matter.

3.4.4. Advantages and limitations

+ The non-Gaussian modeling of the angular profile enables the
characterization of brain regions with crossing fibers, which is
a problematic case for the DTI (Frank, 2002; Alexander et al.,
2002; Özarslan et al., 2005).

+ The use of parametric models for HARDI sampling generally
requires approximately 60 samples on a sphere in the literature,
which leads to a modest acquisition time (Tournier et al., 2004;
Alexander, 2005). However this number of samples is variable
and depends on the model order in use. The studies in the liter-
ature generally recommend an order equal to four or six, which
is sufficient for the representation of crossing fibers (Frank,
2002; Alexander et al., 2002).

– The fact that maxima of ADC profile are not aligned with the
underlying fiber directions prevents the direct extraction of
accurate vectorial features, and a fortiori the use of fiber track-
ing algorithms in brain white matter (von dem Hagen and
Henkelman, 2002).
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– As is the case with DTI (cf. Section 2), the Gaussian modeling of
the radial profile is inadequate and this excludes a wide variety
of features including apparent cell size, axon diameter, etc.

3.5. Q-Ball Imaging (non-parametric)

3.5.1. Local diffusion modeling
Tuch (2004) introduced the technique of Q-Ball Imaging (QBI),

which is primarily aimed at extracting the diffusion orientation
density function (ODF). The ODF is a spherical feature of the
ensemble average propagator, which we shall explain in greater
detail after describing the signal modeling process.

In practice, a few samples from a HARDI sampling can be used
to infer a continuous approximation process using a spherical basis
to reconstruct the signal. In its original version (Tuch, 2004), the
authors interpolate the diffusion signal with a spherical Radial
Basis Function (sRBF) with a Gaussian kernel (Fasshauer and
Schumaker, 1998). Later work (Anderson, 2005; Hess et al., 2006;
Descoteaux et al., 2007) suggest the use of the spherical harmonics
basis, which lowers the number of samples needed. In the latter
basis, the normalized diffusion signal E, sampled by a HARDI
acquisition on a sphere of radius q0 in the q-space, is expressed as:

EðqÞ ¼
XL

l¼0

Xl

m¼�l

almym
l ðuÞdðq� q0Þ: ð53Þ

Several recent studies suggest the use of other spherical functions
including: spherical ridgelets (Michailovich et al., 2008), spherical
wavelets (Kezele et al., 2008; Khachaturian et al., 2007), or Watson,
de von Mises and de la Vallé Poussin density functions (Rathi et al.,
2009). The diffusion signal expansion in these latter bases requires
fewer samples, but at the expense of a stronger prior assumption on
the signal (concentration parameter which narrows the support of
the functions).

3.5.2. Model estimation from the data
The coefficients alm of the signal E in the real spherical harmonic

basis ym
l of order l are the results of the following projection:

alm ¼ E; ym
l

� 

¼
Z

u2S2
EðuÞym

l ðuÞdu: ð54Þ

In practice, the (l + 1)(l + 2)/2 system of Eq. (54) is over-determined,
and a least squares estimation method is used.

Poupon et al. (2008) tackles the issue of ‘‘real-time’’ QBI estima-
tion, during the repetition time (TR) of the diffusion MRI acquisi-
tion sequence. At each new acquisition, the authors recursively
estimate the incomplete set of images by a Kalman filter, for which
Deriche et al. (2009) proposes an optimal resolution for Q-Ball
Imaging.

Following the work of (Lustig et al., 2007), which uses com-
pressed sensing to reduce the number of required samples in the
k-space and the scanning time a fortiori, several studies recently
propose the use of compressed sensing in the q-space (Landman
et al., 2010; Michailovich et al., 2008; Michailovich and Rathi,
2010; Merlet and Deriche, 2010; Michailovich et al., 2010; Yin
et al., 2008; Lee and Singh, 2010; Menzel et al., 2010). These esti-
mation methods assume that the diffusion signal is sparse in the
basis of modeling functions, i.e., that most coefficients are equal
to zero. Thus, the ideal estimation would minimize the number
of non-zero coefficients (also known as the L0 norm). However,
solving this problem is not computationally feasible since it is
non-deterministic polynomial-time hard (NP-hard). Estimation
methods generally approximate this problem by minimizing the
L1 norm instead of the L0 norm (e.g., Candès et al., 2006; Donoho,
2002).
3.5.3. Processing and extraction of diffusion features
Scalar features: These are the same as the high angular ADC fea-

tures which have been detailed in Section 3.4.
Spherical features: Eq. (55) links the diffusion orientation den-

sity function (ODF) that QBI aims to compute to the ensemble aver-
age propagator (EAP) formalism. The computation of the ODF
overcomes the limits of ADC by correctly recovering the direction
of crossing fibers, and thus is very often used as a preprocessing
step for fiber tracking (Savadjiev et al., 2008; Lenglet et al., 2009;
Anwander et al., 2007).

The exact diffusion ODF is defined as the radial projection of the
diffusion EAP P on the unit sphere. Let k 2 S2 be a point on this
sphere. The ODF is then expressed in the following general form
(Canales-Rodrı́guez et al., 2010):

ODFjðkÞ ¼
1
Zj

Z 1

p¼0
PðpkÞpjdp; ð55Þ

where j is the order of the radial projection and Zn is a normaliza-
tion constant such that 1=Zj

R
k2S2 ODFjðkÞ ¼ 1. The classical ODF

was introduced in the QBI method by Tuch (2004) as the zero-order
radial projection, and will be denoted as ODF0. Similarly, the sec-
ond-order radial projection will be referred to as ODF2. It has been
used in other methods including the diffusion spectrum imaging
method (DSI, Section 5.1), the diffusion orientation transform
(DOT, Section 3.6) and the spherical polar Fourier expansion (SPF,
Section 5.8).

Despite the fact that all the above ODF definitions capture angu-
lar information of the diffusion propagator, each one leads to
slightly different results. Higher values of order j will favour a
longer displacement length.

The classical ODF0 can be reformulated in the q-space as (Tuch,
2004):

ODF0ðkÞ ¼
1
Z0

Z
p2R3

PðpÞd 1� rTk
� �

dp ð56Þ

¼
Z

q2R3
EðqÞdðuTkÞdq ð57Þ

It is important to remark that the computation of the exact ODF0 re-
quires the value of the signal E in the whole q-space.

Since HARDI limits the samples to lie on a sphere of radius q0,
the QBI method cannot compute the exact ODF0 but rather com-
putes an approximate ODF0. More precisely, the QBI method as-
sumes that the diffusion signal is equal to zero outside the
HARDI sampling sphere in the q-space, and retrieves an approxi-
mate ODF using the Fourier transform, which is equivalent in this
particular setting to the Funk–Radon transform FRTq0 (Tuch,
2004):

FRTq0 ðkÞ ¼
Z

u2S2
Eðq0uÞdðuTkÞdu

¼ 2pq0
Z

p2R3
PðpÞJ0ð2pq0pÞd 1� rTk

� �
dp; ð58Þ

with k 2 S2, and the symbol J0 representing the zeroth-order Bessel
function of the first kind (Abramowitz and Stegun, 1964):

J0ðzÞ ¼
X1
n¼0

ð�1nÞ z2n

4nðn!Þ2
: ð59Þ

Thus, the ODF given from the QBI Eq. (58) is an approximation of the
exact ODF defined in Eq. (55), i.e., ODF 	 FRTq0 .

Some studies propose the use of the spherical harmonics basis
for the approximation of the diffusion signal (Anderson, 2005; Hess
et al., 2006; Descoteaux et al., 2007), which interestingly simplifies
the computation of the Funk-Radon transform as stated by the
Funk–Hecke theorem (Andrews et al., 1999):
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FRTq0 ðkÞ ¼
XL

l¼0

Xl

m¼�l

2pPlð0Þalmym
l ðkÞ; ð60Þ

The Funk–Radon formulation of Eq. (60) is interesting since the
computation involves only a matrix multiplication between the
coefficient vectors (alm) and (2pPl(0)).

Note that similar analytical Funk–Radon relationships to Eq.
(60) were proposed for the spherical ridgelets functions (Michailo-
vich et al., 2008) and the Watson, de von Mises and de la Vallé
Poussin density functions (for approximate ODFs) (Rathi et al.,
2009).

Extraction of fiber bundle directions: As in the context of fiber
tracking in DTI, fiber bundles are usually reconstructed by follow-
ing the direction of the principle eigenvector of the second-order
tensor. When using the QBI method or other models capable of
representing complex geometries, such as fiber crossings (illus-
trated in Fig. 9), the extraction of fiber bundle directions requires
post processing.

The numerical lookup of the approximated ODF maxima, dis-
cretized on a grid of n points {ki}i6n distributed on the sphere for
Eq. (60), requires significant computing time and the precision is
dependent on the chosen number of points n. More recently, Bloy
and Verma (2008) and Ghosh et al. (2008b) have proposed an ana-
lytical space reduction for the lookup of the maxima, from the
higher order tensor coefficients. These maxima are expressed as
fixed points of homogeneous polynomials. Ghosh et al. (2008b)
have suggested that these methods can be also applied to spherical
harmonics coefficients.

Once the ODF maxima are extracted for each voxel of the image,
fiber tracking is carried out on the maxima field using three-
dimensional curves (Savadjiev et al., 2006). Some studies have pro-
posed a validation of the fiber tracking based on the QBI method,
using a comparison with fiber tracking based on DTI (Campbell
et al., 2005; Perrin et al., 2005).
3.5.4. Advantages and limitations
The original QBI method (Tuch, 2004) assumes that

P(p) 	 P(p)J0(2pq0p). This approximation of the diffusion propaga-
tor leads to the corruption of the neighbourhood of direction k
by the Bessel function J0, which narrows in extent as the value of
q0 grows (Tuch, 2004). As a consequence, the obtained ODF0 using
the QBI method generally has a low angular contrast.

To solve this problem, the methods in the literature tradition-
ally use an ad hoc postprocessing step, such as min–max normal-
ization (Tuch, 2004) or a deconvolution with the Laplace–
Beltrami operator (defined in Section A.3.2) (Descoteaux et al.,
2009a). Aganj et al. (2009a) has suggested the use of a second-
order ODF2 in place of the zero-order ODF0 which suppresses
the need for such an ad hoc normalization (more details in Sec-
tion 3.6). The advantages and limitations of QBI are summarized
below.

+ The estimation of the angular diffusion profile is carried out
without any biologic prior assumptions on the signal.

+ The linear estimation algorithm of the ODF in the spherical har-
monics basis is very fast.

– As in the case of high angular ADC, described in Section 3.4, QBI
requires approximately 60 samples on the sampling sphere.

– The method allows the extraction of only a single spherical
feature.

– The estimation of the ODF0 as proposed in the original QBI
method (Tuch, 2004) is an approximation of the exact ODF.
The corruption arises from the inappropriate Dirac modeling
of the radial decay of the signal.
3.6. Diffusion orientation transform (DOT) (non-parametric)

3.6.1. Local diffusion modeling
Özarslan et al. (2006) proposed the diffusion orientation trans-

form (DOT) method which computes the iso-radius of the diffusion
propagator P(p0k), with radius p0 2 Rþ and k 2 S2 a point on the
unit sphere. This results in a spherical feature of the diffusion,
however it is important to note that the iso-radius is different from
the ODF feature proposed by the QBI method (detailed in the pre-
vious section). Nonetheless, several groups recently proposed to
estimate an approximation of the ODF from the DOT modeling
(Aganj et al., 2009a; Tristan-Vega et al., 2009; Canales-Rodrı́guez
et al., 2010). We shall explain these features in greater details after
describing the signal modeling process.

Assuming that the radial diffusion follows a Gaussian distri-
bution, the normalized diffusion signal E is modeled by the
Stejskal–Tanner equation (Stejskal and Tanner, 1965; Basser
et al., 1992):

EðqÞ ¼ expð�4p2sq2DðuÞÞ: ð61Þ

However, Özarslan et al. (2006) propose to estimate the Fou-
rier–Bessel transform Il of the diffusion signal, which is the radial
part of the Fourier transform decomposed as a plane wave expan-
sion into the spherical harmonic basis and spherical Bessel of order
l:

IlðuÞ ¼ 4p
Z 1

q¼0
EðqÞjlð2pqp0Þq2dq

avecjlðzÞ ¼ ð�1Þlzl d
zdz

� �l sin z
z

ð62Þ

Here the symbols jl stand for the spherical Bessel functions
(Abramowitz and Stegun, 1964). The use of the Gaussian prior on
the radial diffusion profile, as expressed in Eq. (61), enables one
to solve Eq. (62) (Özarslan et al., 2006) analytically:

IlðuÞ ¼
Rl

0C
lþ3

2

� �
1F1 lþ3

2 ; lþ 3
2 ;

R2
0

lnðEðuÞÞðpqÞ�2


 �
2lþ3p3=2 � lnðEðuÞÞ4�1ðpqÞ�2


 �ðlþ3Þ=2
Cðlþ 3=2Þ

; ð63Þ

with 1F1 the confluent hypergeometric function of the first kind
(Abramowitz and Stegun, 1964):

1F1ða; b; xÞ ¼
X1
k¼0

ðaÞkxk

ðbÞkk!
with ðaÞk ¼

Cðaþ kÞ
CðaÞ ; ð64Þ

where (a)k stands for the Pochhammer symbol (Abramowitz and
Stegun, 1964).

3.6.2. Model estimation from the data
The alm coefficient resulting from the expansion of Eq. (63) in

the spherical harmonics basis ym
l is expressed as:

alm ¼ Il; ym
l

� 

¼
Z

u2S2
IlðuÞym

l ðuÞdu: ð65Þ

The system of (l + 1)(l + 2)/2 equations given by Eq. (65) can be
solved by a linear least square method.

Özarslan et al. (2006) suggest to speed up the estimation of Eq.
(63) by using a table of precomputed values of the confluent hyper-
geometric 1F1 function defined in Eq. (64).

3.6.3. Processing and extraction of diffusion features
Scalar features: These are the same as the high angular ADC fea-

tures (detailed in Section 3.4).
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Spherical features: As mentioned in Section 3.4, the ADC formal-
ism does not allow for the recovery of fiber bundle orientations.

On the other hand, the classical DOT method, as proposed by
Özarslan et al. (2006), uses the diffusion EAP P in order to extract
the iso-radius, defined as the surface P(p0k) with k 2 S2 at a con-
stant arbitrary distance p0 2 R. This feature can be expressed di-
rectly using the signal coefficients of Eq. (65) in the spherical
harmonics basis ym

l (Özarslan et al., 2006):

Pðp0kÞ ¼
XL

l¼0

Xl

m¼�l

almð�iÞlym
l ðkÞdp with k 2 S2: ð66Þ

The estimation of Eq. (66) is fast and precise since it analytically
links the EAP iso-radius to the diffusion signal coefficients in the
spherical harmonics basis.

More recently, Aganj et al. (2009a), Tristan-Vega et al. (2009),
and Canales-Rodrı́guez et al. (2010) have proposed to extend the
DOT method to approximate the ODF. As mentioned for the QBI
method (Section 3.5), the exact resolution of the {ODFj}j={0, 2} re-
quires a complete sampling of the q-space, which is not available
for HARDI (spherical sampling). These methods use a single Gauss-
ian prior on the radial diffusion profile E. We detail the more gen-
eral case of a multi-Gaussian prior in Section 5.3.

3.6.4. Advantages and limitations

+ The estimation of the angular diffusion profile is carried out
without any prior biological assumptions about the signal.

+ The linear estimation algorithm of the iso-radius in the spheri-
cal harmonics basis is fast.

– As with the case of the high angular ADC, described in Section
3.4, QBI requires approximately 60 samples on the sampling
sphere.

– The precision of this method is limited by the mono-Gaussian
assumption of the decay of radial diffusion, an assumption that
does not always hold (Tanner and Stejskal, 1968; Callaghan
et al., 1991; Niendorf et al., 1996; Assaf and Cohen, 1998).

4. Radial reconstruction in diffusion MRI

4.1. Introduction

Radial diffusion analysis by nuclear magnetic resonance (NMR),
or q-space imaging (Callaghan, 1991; Cory and Garroway, 1990),
favours a dense q-space sampling at the expense of the k-space
sampling (see Section 1.3 for details on k-space). The dMRI data
can be acquired over a large volume, such as an entire human
brain. Diffusion NMR data, on the other hand, is acquired for a
much smaller volume, such as a specimen enclosed in a test tube.
The resulting image in diffusion NMR is composed of a single voxel.

Applications of diffusion NMR include the study of the micro-
scopic geometry of mineralogical environments (sedimentary rock,
ground, cement) and biological environments (proteins, lungs, the
interstitial space of the skin). In theory, since the average diffusion
length during typical measurement duration is close to a cell size,
the restricted diffusion in these confined environments can accu-
rately characterize properties of the underlying micro-architecture
such as its porosity and tortuosity. Traditionally, this characteriza-
tion is analyzed with a two-dimensional plot arising from sampling
along a line in q-space (Stejskal and Tanner, 1965; Callaghan,
1991). The mathematical methods to analyze this plot are divided
into three groups:

1. The methods of the first group take an analytical approach and
propose a exact expression of the diffusion signal in q-space
(i.e., the Bloch–Torrey equation with the q-space formalism).
Nonetheless, these methods only characterize diffusion in
simple models: infinite parallel planes, cylinders and spheres
(Robertson, 1966; Tanner and Stejskal, 1968; Tanner, 1978;
Brownstein and Tarr, 1979), or bi-compartment models (having
a bi-Gaussian distribution) (Niendorf et al., 1996; Clark and Le
Bihan, 2000; Le Bihan and van Zijl, 2002).

2. The methods of the second group extend to more complex dif-
fusion situations, which do not have a known analytical solu-
tions. The equations describing the behaviour of the diffusion
signal are solved using numerical schemes, namely either: (i)
resolution of the Bloch–Torrey equation with finite differences
schemes (Wayne and Cotts, 1966; Putz et al., 1992; Zielinski
and Sen, 2000) or (ii) by simulating a Brownian motion with
the Monte-Carlo method (Mendelson, 1990; Hyslop and Lauter-
bur, 1991; Coy and Callaghan, 1994; Mitra and Halperin, 1995;
Kuchel et al., 1997; Grebenkov et al., 2007).

3. Unlike the methods of the two previous groups which approx-
imate simulations of the diffusion signal with biological models,
the methods of the last group propose a functional analysis of
the in vivo diffusion signal, e.g., by using a discrete Fourier
transform (Callaghan et al., 1991; Cory and Garroway, 1990),
the Lévy distribution and Kohlrausch–Williams–Watts function
(Köpf et al., 1996; Köpf et al., 1998), or cumulant expansion
(Mitra and Sen, 1992; Stepisnik, 1981; Callaghan, 1991).

For a more detailed overview of these methods, we refer the
reader to (Grebenkov, 2007).

Diffusion NMR studies have revealed that the radial profile of
diffusion in brain structures is non-Gaussian (Tanner and Stejskal,
1968; Tanner, 1978; Cory and Garroway, 1990; Callaghan et al.,
1991; Niendorf et al., 1996; Assaf and Cohen, 1998). A limitations
of these studies, though, is that they typically assume the diffusion
signal to be isotropic in its angular profile. Numerous studies have
shown that this hypothesis is clearly not valid in the brain (cf. Sec-
tion 2 and 3). In the following we describe two radial reconstruc-
tion methods in the literature, the diffusion kurtosis imaging
(Jensen et al., 2005) and the simple harmonic oscillator (Özarslan
et al., 2008).

4.2. Diffusion kurtosis imaging

4.2.1. Local diffusion modeling
Jensen et al. (2005) proposed the diffusion kurtosis imaging

(DKI) method, which approximates the diffusion radial profile by
a series of cumulants

lnðEðqÞÞ ¼ �Dappð2pÞ2sq2 þ 1
6

D2
appKappð2pÞ4s2q4 þ Oðq5Þ ð67Þ

where the symbols Dapp and Kapp refer to the apparent diffusion
coefficient (ADC) and the Apparent Kurtosis Coefficient (AKC),
respectively. The diffusion time is denoted s = D � d/3. The expan-
sion of Eq. (67) is a special case of the Generalized DTI (GDTI) meth-
od restricted to a fourth-order isotropic expansion Eq. (88) (see
Section 5.4).

4.2.2. Model estimation from the data
Jensen et al. (2005) fit the diffusion signal on a voxel-by-voxel

basis to the model described in the following formula, using the
non-linear least square Levenberg–Marquardt method:

EðqÞ ¼ g2

Eð0Þ2
þ �Dappð2pÞ2sq2 þ 1

6
D2

appKappð2pÞ4s2q4
� �2

 !1=2

;

ð68Þ

where g is the background noise, which is estimated a priori as the
mean signal intensity in air.



Fig. 10. A plot of the radial diffusion in an environment composed of red blood cells. It is important to note that the radial decay is not Gaussian, but a ‘‘diffusion–diffraction’’
pattern occurs (Cory and Garroway, 1990; Callaghan et al., 1991; Kuchel et al., 1997; Regan and Kuchel, 2003) where the position of the minima are related to cell size and
extra-cellular average size. (a) A micrograph of red blood cells (adapted from Noguchi, Rodjers and Schechter, NIDDK, under free licence). (b) Signal intensity E as a function of
q. Adapted from (Regan and Kuchel, 2003).
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4.2.3. Processing and extraction of diffusion features
Scalar Features: In (Jensen et al., 2005), the authors compute an

image of the apparent diffusion coefficient Dapp and kurtosis Kapp.
The latter quantifies the degree to which the water diffusion is
non-Gaussian. It is hypothesized that the kurtosis Kapp can be al-
tered by the space between the barriers and their porosity (also
refereed to as ‘‘water exchange’’).

4.2.4. Advantages and limitations

+ The apparent diffusion kurtosis coefficient quantifies the degree
to which the water diffusion is non-Gaussian, and thus reveals
brain microstructure information hidden to DTI.

+ The number of samples in the q-space required for the estima-
tion of the apparent diffusion kurtosis coefficient is small (min-
imum of six samples) (Jensen et al., 2005).

– The diffusion kurtosis imaging (DKI) method does not consider
the angular profile of the diffusion signal, and essentially
assumes that it is isotropic in direction. This assumption is
clearly violated in the human brain (Moseley et al., 1990) and
may lead to erroneous interpretation of the results.

4.3. Simple harmonic oscillator

4.3.1. Local diffusion modeling
Özarslan et al. (2008) propose an approximation of the diffusion

radial profile in the basis of Un functions, which is made up of Her-
mite polynomials Hn:

EðqÞ ¼
XN�1

n¼0

anUnðq;aÞ; ð69Þ

with Unðq;aÞ ¼ inð2nn!Þ�1=2 expð�2p2q2a2ÞHnð2paqÞ: ð70Þ

where a 2 R stands for the scale factor of the basis Un functions.

4.3.2. Model estimation from the data
The coefficients an of the diffusion signal E in the basis of func-

tions Un are obtained with a dot product:

an ¼ hE;Uni ¼
Z 1

q¼0
EðqÞUnðq;aÞdq: ð71Þ

In practice, Özarslan et al. (2008) suggest that the coefficients an

should be estimated using least squares techniques.

4.3.3. Processing and extraction of diffusion features
Scalar features: The m-order moments of the ensemble average

propagator (EAP) P can be expressed as (Özarslan et al., 2008):
hpmi ¼ am
XN�1

k¼0;2;...

ðkþm� 1Þ!!
k!

XN�k�1

l¼0;2;...

ð�1Þl=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k�lðkþ lÞ!

q
ðl=2Þ! akþl ð72Þ

where k is even is m is even, otherwise k is odd.
Besides, the functions Un are eigenfunctions of the Fourier

transform, which allows the radial EAP to be directly expressed
as a function of the signal coefficients an:

PðpÞ ¼
XN�1

n¼0

ð�iÞnffiffiffiffiffiffiffi
2p
p

a
anUnðp; ð2paÞ�1Þ: ð73Þ
4.3.4. Advantages and limitations

+ The radial diffusion profile is estimated without prior
assumptions.

+ The diffusion EAP and its moments can be estimated using lin-
ear methods, which are very fast.

+ The Gauss–Hermite functions can approximate complex signals
with relatively few samples of the q-space (33 according to
(Özarslan et al., 2008)).

– This method does not consider the angular profile of the diffu-
sion signal, and essentially assumes that it is isotropic in direc-
tion. This assumption is clearly violated in the human brain
(Moseley et al., 1990).

5. Combining angular and radial reconstruction

5.1. Diffusion spectrum imaging (DSI)

5.1.1. Local diffusion modeling
Diffusion Spectrum Imaging (DSI) is based on the direct sam-

pling of the diffusion signal E, leading to the EAP P using the q-
space formalism (Wedeen et al., 2000; Wedeen et al., 2005; Lin
et al., 2003; Tuch, 2002; Wu and Alexander, 2007; Wu et al.,
2008; Assaf and Basser, 2005; Hagmann et al., 2004; Kuo et al.,
2008). Since the diffusion signal sampling is carried out using prac-
tically the entire q-space in three dimensions, DSI does not require
local diffusion modeling.

Nevertheless, in practice, the diffusion signal E samples are
multiplied by an observation window to ensure a smooth decay
of E at high values of the diffusion wave-vector norm q = kqk. In
(Wedeen et al., 2005), the authors use the Hann window, which
is expressed as (Blackman and Tukey, 1959):

f ðqÞ ¼ 1
2

1þ cos
pq
2a


 �
 �
; ð74Þ



Fig. 11. The DSI method for imaging in the coronal plane of a human brain. Note the non-Gaussian profile of the diffusion propagator P. Adapted from (Wedeen et al., 2005).

Fig. 12. Parameters of two acquisition sequences, resulting in a sparse sampling of the q-space. (a) CHARMED (Assaf and Basser, 2005); (b) HYDI (Wu and Alexander, 2007;
Wu et al., 2008).
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where the symbol a 2 R stands for the full width at half maximum
of the window (FWHM) f.

5.1.2. Model estimation from the data
As mentioned above, DSI does not require modeling of the local

diffusion so there is no model estimation step.

5.1.3. Processing and extraction of diffusion features
The diffusion propagator P is related to the diffusion signal E by

the three-dimensional Fourier transform F 3D (Stejskal, 1965):
PðpÞ ¼
Z

q2Xq

EðqÞ exp �i2pqTp
� �

dq: ð75Þ

In practice, (Wedeen et al., 2005) use the discrete three-dimen-
sional Fourier transform. Fig. 11 illustrates the DSI method for a
slice of size 64 � 64 � 1 taken from a human brain, acquired in
25 min with the parameters shown (see Fig. 12).

The majority of the features defined in previous sections can be
computed numerically using the DSI method, e.g., anisotropy indi-
ces, fiber bundle directions (Wedeen et al., 2008), apparent axon
diameter (Weng et al., 2007), etc. Notably, using DSI one can com-
pute the exact second-order ODF2 as opposed to the approximate
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ODF2 of the DOT method (Section 3.6) or the zero-order ODF0 of
QBI (cf. Section 3.5).

5.1.4. Advantages and limitations
Given that the origin of the diffusion process is still debated, DSI

offers the advantage that the diffusion propagator P is estimated
without a model or prior assumptions about the angular or radial
diffusion profiles.

Although DSI is one of the most accurate methods, two major
issues make it unfit for clinical use:

1. DSI requires a very long acquisition time for the entire q-space
to be sampled with sufficient density (Wedeen et al., 2008).

2. DSI requires very high magnetic gradients to explore the q-
space, e.g., b = 17,000 s/mm2 according to (Wedeen et al., 2005).

In the literature, these two limitations restrict the use of DSI to
animal ex vivo studies for which the acquisition time and the
strength of the gradients are not limited. Alternatively, it is possi-
ble to limit the total acquisition time by reducing the k-space sam-
pling, which is equivalent to scaling down the spatial resolution of
the image. Typically, Wedeen et al. (2005) suggests the use of a
voxel size equal to 3.6 � 3.6 � 3.6 mm3, versus 2 � 2 � 2 mm3 for
current HARDI acquisitions (Tournier et al., 2008), leading to a total
acquisition time of 25 min for an image size equal to 64 � 64 � 1.
We summarize the advantages and limitations of DSI below.

+ The radial and angular diffusion profiles are estimated without
prior assumptions.

+ All the features of the local diffusion propagator can be
computed.

– The hardware requirements to image the brain image lead to a
very long acquisition time (typically several hours), which is
incompatible with clinical applications.

– The use of the FFT algorithm imposes a rectangular sampling of
the q-space, which is typically not suited to MRI scanners.

The remaining methods we describe utilize sparse or hybrid
sampling of the q-space (Assaf and Basser, 2005; Wu and Alexan-
der, 2007), in contrast to the dense sampling of the DSI method.
In the literature, this sampling is traditionally carried out on sev-
eral spheres of different radii, discretized in q-space. This sparse
sampling enables both an angular and radial analysis of the diffu-
sion signal, as opposed to the methods of the previous sections
(Sections 2–4). Whereas we refer to ‘‘sparse sampling’’ in a broad
sense, to our knowledge there is no mention of sampling other
than multi-spherical sampling in the literature. We refer the reader
to (Assemlal et al., 2009b) for a multi-sphere sampling model
which unifies most of the existing sampling methods in the
literature.

5.2. Hybrid diffusion imaging

5.2.1. Local diffusion modeling
Hybrid diffusion imaging (Wu et al., 2008) uses the raw diffu-

sion data acquired in several spheres of the q-space, without any
modeling or interpolation of the local diffusion signal.

5.2.2. Model estimation from the data
Since this method does not use any local diffusion model, the

diffusion propagator is obtained with the Fast Fourier Transform
(FFT). Since the FFT requires the data to lie on a rectangular grid
Wu and Alexander (2007) and Wu et al. (2008) propose to adjust
the diffusion signal to a 9 � 9 � 9 Cartesian grid, using bilinear
interpolation. On the other hand, Assaf and Basser (2005) interpo-
late the signal with a bi-Gaussian parametric model (CHARMED),
as detailed in Section 3.1.

5.2.3. Processing and extraction of diffusion features
Wu et al. (2008) have also introduced an alternative approach,

which does not require any adjustment of the diffusion signal to
a Cartesian grid. The authors propose the computation of three fea-
tures of the data samples, two of which are scalar and one of which
is spherical.

Scalar features: The return to zero probability P(0) is defined as
(Wu et al., 2008):

Pð0Þ ¼
Z

p2R3
PðpÞdðpÞdp ¼

Z
q2R3

EðqÞdq: ð76Þ

The root mean square (RMS) is defined as (Wu et al., 2008):

RMS ¼ hpTpi ¼
Z

p2R3
PðpÞkpk2dp ¼

Z 1

p¼0
PsðpÞp2dp

¼ VarðPmÞ; ð77Þ

with Pm(p) the mean probability of P on the sphere of radius p.
According to (Wu et al., 2008), the formulation of Eq. (77) in the
q-space depends on the geometric mean (GM) of the signal E on
the sphere of radius q:

rmRMS ¼ VarðF 1D½GMðEÞ�Þ

GMðEÞðqÞ ¼ exp
1
n

Xn

i¼1

lnðE½qui�Þ
 !

ð78Þ

where F 1D is the unidimensional Fourier transform and the family
{qui}16i6n constitutes the set of n sampling points of the sphere of
radius q.

Spherical features: The exact ODF2 is defined by Eq. (56).
Tridimensional features: Wu and Alexander (2007) and Assaf and

Basser (2005) also compute the diffusion propagator P with the
Fourier transform of E, first preprocessing the data with an interpo-
lation step, as described above.

5.2.4. Advantages and limitations
The Fourier transform applied to the raw signal is quite sensi-

tive to numerical inaccuracies since it is not based on a continuous
approximation of the diffusion signal and the set of available sam-
ples is small.

+ The sparse sampling proposed in the literature results in similar
acquisition times to HARDI (typically less than 30 min) and sim-
ilar numbers of samples in the q-space (approximately 130)
(Wu et al., 2008; Assaf and Basser, 2005).

+ Wu et al. (2008) have proposed the computation of three fea-
tures of the diffusion propagator, which characterize properties
of both the angular and the radial profiles of the signal.

– The numerical accuracy of the computations suffers from thead
hoc signal interpolation used to retrieve the diffusion propaga-
tor (Wu and Alexander, 2007; Assaf and Basser, 2005).

5.3. Generalized ODF

5.3.1. Local diffusion modeling
As mentioned in our discussion of the QBI and DOT methods in

Sections 3.5 and 3.6, the estimation of the exact ODFj of any
order j requires a full radial sampling. This is not the case for
HARDI sampling and therefore only an approximate ODFj can be
computed.

Aganj et al. (2009b) model the diffusion signal E with N Gauss-
ian functions ak weighted by the coefficients kk:



H.-E. Assemlal et al. / Medical Image Analysis 15 (2011) 369–396 385
EðqÞ ¼
XN

k¼1

kkðuÞakðuÞq
2

with akðuÞq
2
¼ expðq2 ln akðuÞÞ; ð79Þ

where N 6 (M � 1)/2, with M standing for the number of sampling
spheres in the q-space. This multi-Gaussian approximation of the
signal E allows one to analytically express the spherical Laplacian
r2

b of the restriction of E to the plane orthogonal to the vector k:Z
q?k

1
q
r2

bEðqÞdq ¼ �1
2

Z
u?k
r2

bIðuÞdu; ð80Þ

where the function I(u) is defined as a function of coefficients kk and
ak (Aganj et al., 2009b):

IðuÞ ¼
XN

k¼1

kkðuÞ lnð� ln akðuÞÞ: ð81Þ
5.3.2. Model estimation from the data
Aganj et al. (2009b) propose the numerical estimation of the

parameters kk and ak with the confidence region algorithm (Branch
et al., 2000) in the general case, i.e., for any number N of Gaussian
functions. They also propose an analytical formulation for the spe-
cial case of a mono or bi-Gaussian decay (N = {1,2}).

Once the parameters kk and ak are estimated, the function I de-
fined in Eq. (81) is approximated in the basis of the spherical har-
monics functions ym

l :

alm ¼ I; ym
l

� 

¼
Z

u2S2
IðuÞym

l ðuÞdu ð82Þ

In practice, (Aganj et al., 2009b) estimates Eq. (82) with the lin-
ear least squares method. Furthermore, the numerical computation
of the l function as defined in Eq. (81) can be instable, requiring the
introduction of some regularization (Aganj et al., 2009b).

5.3.3. Processing and extraction of diffusion features
Exact ODF: Aganj et al. (2009b) propose a second-order ODF2

estimation based on an multi-Gaussian interpolation:

ODF2ðkÞ ¼
Z 1

p¼0
PðpkÞp2dp ð83Þ

¼ � 1
8p2

Z
q?k
r2EðqÞdq

¼ � 1
8p2

Z
q?k

1
q
@2

@q2 ðqEÞ þ 1
q2r

2EðqÞdq: ð84Þ

The radial Laplacian is simplified under the assumptions that
the diffusion signal is equal to zero when q ?1, and that the sig-
nal derivative has a supremum. Combining Eq. (80) and (83) leads
to the following relationship:

ODF2ðkÞ ¼
1

4p
þ 1

16p2 FRT r2
bIðuÞ

h i
; ð85Þ

where the FRT acronym stands for the Funk-Radon transform oper-
ator defined in Eq. (58). Since the spherical harmonics are the eigen-
functions of the Laplace–Beltrami operatorr2

b (cf. Section A.3.2), the
combination of Eqs. (82) and (85) leads to the simplification of the
ODF expressions (Aganj et al., 2009b):

ODF2ðkÞ ¼
1

4p
þ 1

8p
XL

l

Xl

m¼�l

Plð0Þalm:ym
l ðkÞ ð86Þ

As with the case of the QBI method based on HARDI sampling (one
sphere in the q-space), the relationship described by Eq. (86) is
interesting because it linearly relates the generalized ODF to the
coefficients alm of the function I.
Fusion ODF: Khachaturian et al. (2007) propose an alternative
for the computation of the ODF0 for the special case of two sam-
pling spheres in the q-space. They estimate the ODF independently
in each sphere in the spherical Gabor wavelets domain (Freeden
et al., 1998), which results, respectively, in the set of coefficients
ai and bi. They then merge these coefficients using the non-linear
maxmod operator (Burt and Adelson, 1983; Li et al., 1995):

maxmodðai; biÞ ¼
ai if jaijP jbij
bi otherwise

�
ð87Þ
5.3.4. Advantages and limitations

+ Aganj et al. (2009b) propose a linear and fast computation of
the second-order ODF2 in the spherical harmonics basis for a
sparse sampling of the q-space.

+ The second-order ODF2 does not require any post-processing to
sharpen the ODF angular profile.

+ In contrast to the approximate ODF, for which the shape
depends on the radius of the HARDI sphere sampling, the gen-
eralized ODF is theoretically independent of the sparse sam-
pling, and this eases inter-subject comparison.

+ The number of q-space samples required for the ODF estimation
is moderate (Wu et al., 2008; Assaf and Basser, 2005).

– The multi-Gaussian prior on the radial profile of the diffusion
signal prevents the accurate approximation of a profile with a
‘‘diffusion–diffraction’’ pattern, as reported in (Callaghan et al.,
1991; Cory and Garroway, 1990).

– The proposed method can extract only one feature of the diffu-
sion propagator, namely the ODF.

– The fusion ODF is an ad hoc extension of the QBI method for
multi-sphere sampling.

5.4. Generalized DTI

5.4.1. Local diffusion modeling
Liu et al. (2004) propose to extend the second-order tensor

modeling of the diffusion signal by taking advantage of a sparse
sampling instead of HARDI. This approach, called generalized diffu-
sion tensor imaging (GDTI), differs from the HOT method pre-
sented in Section 3.4, for which the higher order tensors capture
only the angular profile while the radial profile is assumed to be
Gaussian. In the GDTI formalism, the coefficients of the fourth-or-
der tensor or higher capture the difference with a purely Gaussian
profile (captured by the second-order DTI). The diffusion signal E is
expressed as:

EðqÞ ¼ exp
XL

l¼2

ðiÞlð2pÞl D� l� 1
lþ 1

d

� �
Di1 ;...;il qi1 qi2 . . . qil

 !
: ð88Þ

As noted by Liu et al. (2004), the diffusion signal E can also be
interpreted as a characteristic function, i.e., the Fourier transform
of the water displacement PDF. Such a characteristic function is
usually expressed by a cumulant-generating function Qi1 ;...;il of or-
der l:

EðqÞ ¼ exp
XL

l¼1

ð�i2pÞl

l!
Q i1 ;...;il qi1

. . . qil

 !
; ð89Þ

where the cumulants Qi1 ;...;il of order l are the Taylor expansion coef-
ficients of the characteristic function logarithm. These cumulants
are proportional to the diffusion tensor of the same order Di1 ;...;il de-
fined in Eq. (88), so that

Qi1 ;...;il ¼ ð�1Þll!Di1 ;...;il D� l� 1
lþ 1

d

� �
: ð90Þ
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We point out that for the special case of second-order tensors L = 2,
as used in the DTI method (cf. Section 2), Eq. (90) simplifies to the
well known Einstein–Smoluchowski equation (Einstein, 1905;
Smoluchowski, 1916):

Q i1 ;i2 ¼ hppTi ¼ 2Di1 ;i2 ðD� d=3Þ: ð91Þ
5.4.2. Model estimation from the data
As for the higher order tensor used in HARDI sampling (cf. Sec-

tion 3.4), (Liu et al., 2004) estimates the tensors Di1 ;...;il of order l
with a matrix formulation of the nq system of equations Eq. (88),
where nq is the number of samples of the q-space. The basis matrix
M, for the nq samples set located at fqkg16k6nq

in the q-space is:

M ¼ ðiÞlð2pÞl D� l� 1
lþ 1

d

� �
qk

i1
qk

i2
. . . qk

il

� �
16k6nq ;16l6L

: ð92Þ

Liu et al. (2004) estimate the vector made of tensor components
Di1 ;...;il of order l with Singular Value Decomposition (SVD) (Stewart
and Stewart, 1973). The cumulants Q i1 ;...;in are then computed using
Eq. (90).

5.4.3. Processing and extraction of diffusion features
Diffusion propagator: The estimated cumulants Qi1 ;...;in are ana-

lytically related to the diffusion propagator by a Gram–Charlier A
series (Kendall and Stuart, 1977; McCullagh, 1987; Liu et al., 2004):

PðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pQ i1 ;i2

p exp � p � p
2Qi1 ;i2

� �
1þ

XL

l¼3

Q i1 ;...;il

l!
Hi1 ;...;il ðpÞ

 !
; ð93Þ

where Hi1 ;...;in ðpÞ stands for the Grad Hermite of order n defined as
(Grad, 1949):

Hi1 ;...;il ðpÞ ¼ ð�1Þl exp
p2

2

� �
@

@pi1

@

@pi2

� � � @
@pil

 !
exp

p2

2

� �
: ð94Þ

GDTI can also be interpreted as a multidimensional generaliza-
tion of the simple harmonic oscillators presented in Section 4.3,
which approximates the radial diffusion signal in one dimension
in the basis of Hermite functions. This technique enables one to re-
trieve the complete diffusion propagator P without any prior
assumptions on the diffusion signal E. From P, Liu et al. (2004)
compute the iso-radius P(p0k), k 2 S2 of radius p0, the skewness
and the kurtosis map.

5.4.4. Advantages and limitations

+ The diffusion signal is estimated without prior assumptions
about its radial or angular profile.

+ An analytical relationship exists between the diffusion signal
approximation in the tensor basis and the diffusion propagator.

+ The number of samples in the q-space required for the estima-
tion of the diffusion signal is moderate (Wu et al., 2008; Assaf
and Basser, 2005).

– The cumulant expansion of the diffusion signal is not guaran-
teed to converge for large values of the diffusion, and may in
fact diverge in practice (Cramér, 1957; Kendall and Stuart,
1977; Frøhlich et al., 2006).

5.5. Diffusion propagator imaging (DPI)

5.5.1. Local diffusion modeling
The spherical harmonics functions, which are often used by the

methods based on HARDI sampling, are the solution of the angular
part of the Laplace equation, expressed in spherical coordinates
(see Section A.3). The solution of the full Laplace equation (i.e., with
both angular and radial parts) results in the solid harmonics.
Descoteaux et al. (2009b) proposed diffusion propagator imag-
ing (DPI), which approximates the diffusion signal E in the solid
harmonics basis:

EðqÞ ¼
X1
l¼0

Xl

m¼�l

clm

qlþ1 þ dlmql:

� �
ym

l ðuÞ ð95Þ
5.5.2. Model estimation from the data
The signal approximation in the solid harmonics basis defined

in Eq. (95) requires the computation of the coefficients clm and dlm:

clm ¼
Z

q2R3
EðqÞ y

m
l ðuÞ
qlþ1 dq and dlm ¼

Z
q2R3

EðqÞqlym
l ðuÞdq: ð96Þ

For a set of nq samples in the q-space, the computation of the
coefficients clm and dlm leads to a system of nq linear equations,
which can be solved using linear weighted least squares methods
(Descoteaux et al., 2009b).
5.5.3. Processing and extraction of diffusion features
Diffusion propagator: Once the diffusion signal is estimated in

the solid harmonics basis, resulting in the coefficients clm and dlm,
it is possible to analytically compute, in the same basis, the diffu-
sion propagator P for any arbitrary value of water displacement p0

(iso-radius) (Descoteaux et al., 2009b):

PðpÞ ¼ 2
X1
l¼0

Xl

m¼�l

ð�1Þl=22pl�1pl�2

ð2l� 1Þ!! clmym
l ðpÞ: ð97Þ

As mentioned in (Descoteaux et al., 2009b), the expression of P
in Eq. (97) does not depend on the coefficients dlm, but these are
still required for the signal estimation in the solid harmonics basis.
Furthermore, the radial functions of Eq. (95) 1/ql+1 and ql, do not
seem to be well adapted to the multi-Gaussian decay empirical
observations of the signal.
5.5.4. Advantages and limitations

+ The diffusion signal is estimated without prior assumptions
about its radial or angular profile.

+ An analytical relationship exists between the diffusion signal
approximation in the solid harmonics basis and the diffusion
propagator.

+ The number of samples in the q-space required for the estima-
tion of the diffusion signal is moderate (Wu et al., 2008; Assaf
and Basser, 2005).

– It is unclear how the radial diffusion basis functions is adapted
to the multi-Gaussian decay of the signal reported by empirical
observations (Niendorf et al., 1996) or to the ‘‘diffusion–diffrac-
tion’’ pattern (Callaghan et al., 1991; Cory and Garroway, 1990).

5.6. Generalized DOT

5.6.1. Local diffusion modeling
Özarslan et al. (2006) propose an extension of the DOT method

for the case of multi-spherical sampling of the q-space, and gener-
alize the original method to the multi-Gaussian case. The modeling
of the diffusion signal E by n Gaussian functions is expressed as:

EðqÞ ¼
Xn

i¼1

fiðuÞ exp �4p2q2sDiðuÞ
� �

; ð98Þ

where fi stands for the weight of the ith Gaussian function while the
sum satisfies

Pn
i¼1fiðuÞ ¼ 1.
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5.6.2. Model estimation from the data
The generalized DOT requires an estimation of the parameters fi

and Di, but the authors of (Özarslan et al., 2006) do not provide de-
tails of the method they use. It seems conceivable to use the non-
linear least squares Levenberg–Marquardt technique (Marquardt,
1963).

Once the parameters fi and Di are estimated, the computation of
the original function Il of the mono-Gaussian case (cf. Eq. (65)) is
generalized to the multi-Gaussian case:

IlðuÞ ¼
Xn

i¼1

fiðuÞIli ðuÞ ¼
Xn

i¼1

fiðuÞ 4p
Z 1

q¼0
EiðqÞjlð2pqp0Þq2dq

� �
: ð99Þ

The function Il is then approximated in the spherical harmonics
basis, resulting in the set of coefficients {alm}06l6L, which is simi-
larly to the original DOT method (see Section 3.6 for further
details):

alm ¼ Il; ym
l

� 

¼
Z

u2S2
IlðuÞym

l ðuÞ:du ð100Þ
5.6.3. Processing and extraction of diffusion features
The iso-radius spherical feature is extracted directly from the

coefficients alm of Eq. (100), as in the case of the original DOT meth-
od presented in Section 3.6.

5.6.4. Advantages and limitations

+ The diffusion signal is estimated without prior assumptions
about its angular profile.

+ An analytical relationship exists between the diffusion signal
model and the diffusion propagator.

+ The number of samples in the q-space required for the estima-
tion of the diffusion signal is moderate (Wu et al., 2008; Assaf
and Basser, 2005).

– The multi-Gaussian prior on the radial diffusion prevents the
accurate approximation of the observed ‘‘diffusion–diffraction’’
pattern (Callaghan et al., 1991; Cory and Garroway, 1990).
Therefore it is not clear that this relatively constrained multi-
Gaussian model results in accurate diffusion features.

– The proposed method can extract analytically only spherical
features of the diffusion propagator, namely, the iso-radius
and the ODF.

– The non-linear pre-estimation of the parameters fi and Di may
causes stability and accuracy issues since they depend on the
initial values, which vary with data (Aubert and Kornprobst,
2006).

5.7. Tomographic reconstruction

5.7.1. Local diffusion modeling
Pickalov and Basser (2006) propose to consider the Fourier

transform which relates the diffusion signal E to its propagator P
by the projection-slice theorem:

EðqÞ ¼
Z

p2R3
PðpÞ exp �i2pqTp

� �
dp ð101Þ

¼
Z

pkq

Z
p0?q

Pðp0Þ exp �i2pqTp0
� �

dp0
� �

exp �i2pqTp
� �

dp: ð102Þ

One recognizes the Radon transform of the marginal density pq of
the propagator P (Radon, 1917):

EðpÞ ¼
Z

pkq
pqðpÞ exp �i2pqTp

� �
dp: ð103Þ
The sampling of the diffusion signal along radial lines of the q-space
enables one to compute the diffusion propagator P using the inverse
Radon transform of pq, which is explicitly expressed as:
pqðpÞ ¼
Z

qkp
EðqÞ exp i2pqTp

� �
dq: ð104Þ
5.7.2. Model estimation from the data
The inversion of the Radon transform as described in Eq. (104) is

not numerically usable due to instability issues. This is a problem
that is common to many fields beyond dMRI (Deans, 1983). There-
fore, numerous methods for a stable inversion of the Radon trans-
form have been devised and Pickalov and Basser (2006) propose to
use the iterative algorithm of Gerchberg and Papoulis (Defrise and
De Mol, 1983; Veretennikov et al., 1992).

To ensure the numerical stability of the reconstruction process,
the authors introduce regularity on the signal E and on the diffu-
sion propagator P, based on Tikhonov regularization.

5.7.3. Processing and extraction of diffusion features
The full diffusion propagator P is directly estimated by the in-

verse Fourier transform. Nonetheless, to our knowledge there is
no method based on this formalism for the extraction of features
of P.

5.7.4. Advantages and limitations

+ The diffusion signal is estimated without prior assumptions
about its radial or angular profile.

+ A large literature exists on the stable inversion of the Radon
transform.

– The number of q-space samples required to estimate the prop-
agator estimation is relatively high (496 according to (Pickalov
and Basser, 2006)).

– Tikhonov regularization of the diffusion signal might result in
overly smooth reconstruction.

5.8. Spherical polar Fourier expansion (SPF)

5.8.1. Local diffusion modeling
To take advantage of whatever the acquisition protocol may be

(generally one or several spheres in the q-space), Assemlal et al.
(2009a) define an orthonormal basis from a combination of angular
and radial elementary functions expressed in spherical coordi-
nates. The authors then expand the MR signal attenuation E as
the following series in the orthonormal basis Spherical Polar Fou-
rier (SPF):
EðqÞ ¼
X1
n¼0

X1
l¼0

Xl

m¼�l

WnlmðqÞ with WnlmðqÞ ¼ RnðqÞym
l ðuÞ; ð105Þ
so that n 2 N is the radial index, and l 2 N, m 2 Z;�l 6 m 6 l
are the angular indexes. The symbols an,l,m are the series coeffi-
cients, ym

l are the real spherical harmonics (SH), and Rn is an
orthonormal radial basis function made of Gaussian–Laguerre (GL)
functions.

The radial component of the MR signal is reconstructed by the
functions Rn. Since the number of radial samples is highly limited,
the radial signal is expected to be sparse in Rn in the basis, i.e., to
capture the radial attenuation of E with a few orders n. Assemlal
et al. (2009a) propose a general estimation method for the radial
part of the signal attenuation E using a normalized basis of general-
ized Gaussian–Laguerre polynomials Rn:



Fig. 13. The first few basis functions of the radial orthonormal basis Rn, with scaling
factor f = 100. Low order n functions exhibit Gaussian attenuation behaviour
whereas higher order n are helpful to capture oscillating components of the MR
signal.
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RnðqÞ ¼ jnðfÞ exp � q2

2f

� �
L1=2

n
q2

f

� �
; ð106Þ

jnðfÞ ¼
2

f3=2

n!

Cðnþ 3=2Þ

� �1=2

ð107Þ

LðaÞn ðxÞ ¼ ððaþ 1Þn=n!Þ1F1ð�n;aþ 1; xÞ; ð108Þ

where f denotes the scale factor and LðaÞn ðxÞ are the generalized La-
guerre polynomials which are the eigenfunctions of the Fourier–
Bessel transform (Abramowitz and Stegun, 1964). A low order N as-
sumes a radial Gaussian behaviour, as in (Özarslan et al., 2006; As-
saf and Basser, 2005). In contrast, a high order N leads to a model-
free estimation. Fig. 13 illustrates the actual adequacy of the first Rn

functions in an experimental MR signal from erythrocytes (cf.
Fig. 10). The scale factor f can be easily estimated from experimen-
tal values of decay on data samples.

5.8.2. Model estimation from the data
The signal approximation in the SPF basis defined in Eq. (105)

requires the computation of the coefficients clm and dlm:

anlm ¼
Z

q2R3
EðqÞWnlmðqÞdq: ð109Þ

For a set of nq samples in the q-space, the computation of the coef-
ficients alm leads to a system of nq linear equations, which can be
solved using linear weighted least squares. In the case where the
noise is prominent, Assemlal et al. (2009a) use a variational frame-
work to simultaneously estimate and regularize the diffusion
Table 1
Some features G of the diffusion propagator P which can be computed in the SPF framework

Features, G

Zero displacement probability

Funk-Radon Transform (FRT)

Zeroth-order orientation density function (ODF0)

Second-order orientation density function (ODF2)

Diffusion Propagator (PDF)
image. The estimation process is based on a maximum a posteriori
Rician probability (MAP), which takes into account the empirical
nature of the noise.

5.8.3. Processing and extraction of diffusion features
Additionally, Assemlal et al. (2009a) introduce a generic frame-

work for the extraction of various features of the diffusion, and a
fortiori of brain microstructure at a local voxel scale. Since we have
a continuous representation of E from the SPF coefficients, let
GðkÞ ¼

R
PðpÞhkðpÞdp be a characteristic G of the PDF at point k,

where hk denotes a projection function at point k. Table 1 repre-
sents several popular characteristics G which can be evaluated
using this computational scheme. As a result, any characteristic G
defined from Eq. (110) can be computed directly from the SPF coef-
ficients. Indeed, since the SPF are an orthonormal basis the follow-
ing relation holds:

GðkÞ ¼
Z

p2R3
PðpÞHkðpÞdp ¼

Z
q2R3

EðqÞhkðqÞdq

¼
X1
n;l;m

an;l;mbk
n;l;m: ð110Þ

where Hk is the inverse three-dimensional Fourier transform of hk

and anlm; b
k
nlm respectively denote the SPF expansion of E and Hk.

Therefore, the computation of a propagator feature GðkÞ from Eq.
(110) simply turns into a very fast dot product between two vectors
of SPF coefficients.

In addition, to the above framework, Cheng et al. (2010b),
Cheng et al. (2010a) have recently demonstrated analytical solu-
tions for the diffusion propagator (PDF) and the ODF (see Table 1).

5.8.4. Advantages and limitations

+ The diffusion signal is estimated without any prior assumptions
about its radial or angular profile.

+ The number of samples in the q-space required for the estima-
tion of the full diffusion signal is moderate (approximately 120
samples as reported in (Assemlal et al., 2009a)).

+ In addition to the fast linear estimation, the variational frame-
work enables a robust estimation which takes into account
the Rician distribution of the noise.

+ The SPF expansion method enables the linear extraction of var-
ious propagator features directly from the SPF coefficients. It
does not require the reconstruction of the full diffusion propa-
gator at first to extract one feature. in contrast to the DSI, GDTI,
DPI and Tomographic reconstruction methods, and thus avoid
unnecessary computations which may compromise the numer-
ical accuracy.

+ Albeit not required, the analytical formula of the diffusion prop-
agator features given in Table 1 improve the accuracy of the
results.
(Assemlal et al., 2009a; Assemlal, 2010), with their respective projection functions, Hk.
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Table 2
The main q-space sampling methods in dMRI, their respective hardware requirements
and the features which can be extracted using each.

Type of sampling Number of samples
standard acquisition

Gradient
maximum (s/
mm2)

Type of
features

Single 1 61000 Scalar
Low angular

resolution
(LARDI)

P7 61500 Scalar,
angular

High angular
resolution
(HARDI)

P25 63000 Scalar,
angular

Radial only
(RMN)

P20 610,000 Scalar,
radial

Sparse sampling P100 65000 Scalar,
radial,
angular

Full sampling
(DSI)

P200 68000 Scalar,
radial,
angular

H.-E. Assemlal et al. / Medical Image Analysis 15 (2011) 369–396 389
– The robust estimation is based on a slow iterative process,
approximately one hour for a 128 � 128 � 64 image with 65
samples in the q-space (Assemlal et al., 2009a).

– The diffusion is a positive process (Wedeen et al., 2005), how-
ever the linear estimation gives no guarantee that the approxi-
mated diffusion signal in the SPF basis remains positive.

6. Conclusion

Despite its many successes, diffusion MRI has one major weak-
ness – the acquisition time for a diffusion image sequence of a
brain at full resolution is approximately one hour. During this time
the patient must lie motionless, which is infeasible for clinical
applications. The methods described in this review of the literature
suggest a possible way to overcome this constraint, namely, by
sparse sampling of q-space combined with angular and radial
reconstruction. The existing methods in the literature can be clas-
sified into three groups, based on the nature of sampling used:

� Angular sampling only: These can be used for ODF reconstruc-
tion, for finding isoprobability surfaces, and for fiber tracking
in brain white matter.
� Radial sampling only: These can be used for measurement of the

apparent kurtosis coefficient and of the ‘‘diffusion–diffraction’’
phenomena, and
� Combined angular and radial sampling: These can be used for

improved ODF reconstruction and for inferring the full diffusion
propagator (PDF).

For each manner of q-space sampling, Table 2 summarizes the
hardware requirements and the main features that have been pro-
posed in the literature.

Due to the limited number of samples of the diffusion signal in
practice, a direct processing of the input data is typically not reli-
able. Therefore numerous reconstruction models have been pro-
posed in the literature, of which a large set have been described
in this review. These methods can be grouped into two categories:

1. Those for which the estimation of the signal with parametric
models is based on strong prior assumptions. Such models
can drastically reduce the number of required samples, pro-
vided their complexity remains manageable (i.e., only a few
parameters characterize the model). Nonetheless, a simple
model may not be adequate particularly in situations where
the cause and nature of the diffusion process is under investiga-
tion; and
2. Those for which the reconstruction of the diffusion signal is car-
ried out without prior assumptions, by factorizing using a infi-
nite number of basis functions. Mathematically, such methods
ensure a perfect reconstruction of the signal. In practice, how-
ever, the low number of samples of the diffusion signal leads
to the constraint that the infinite summation must be trun-
cated. As a consequence, these methods impose a weak, implicit
prior which depends on the particular choice of basis functions
used.

Looking at the issue of clinical feasibility, the DTI method is the
most popular since it has several advantages. It is fast and easy to
implement and leads to an acceptable and reproducible approxi-
mation when the underlying microstructure is relatively coherent,
i.e., oriented in one single direction.

Although the error of the DTI method in modeling the diffusion
signal at a voxel scale is modest, it can be amplified by iterative fi-
ber tracking algorithms, resulting in non-reproducible neural path-
ways. In addition, DTI cannot detect subtle modifications in the
diffusion pattern induced by various neuronal diseases. Therefore
it is already apparent that there is a strong need to move from
DTI to HARDI acquisitions. Yet, which modeling method to choose
among those that are presently clinically feasible is non-trivial and
the answer depends on several constraints including the actual
application, the scan time and the scanner performance. The Q-Ball
Imaging technique (Section 3.5) was the first method to take
advantage of HARDI acquisition and as such is still widely success-
ful, since it exhibits relatively little variation in the results when
compared with other HARDI modeling methods.

At first sight, it might seem that the development of highly pre-
cise modeling methods of the diffusion signal is inappropriate in
contrast to DTI given the constant reduction of voxel size in the last
two decades. Indeed, one might envision voxel size converging to
the dimension of an axon in the future, thus eliminating the need
for higher order models altogether. In reality, such voxel size
reduction will not be feasible in the current state since it would
dramatically decrease the SNR as fewer and fewer water molecules
would generate the diffusion signal. Introducing higher magnetic
field strength in MRI scanners while keeping within the limits that
can be tolerated by human subjects, might compensate for this loss
in SNR.

Appendix A

In this section, we review the mathematical notation and the
tools required for understanding the estimation methods used in
DMRI analysis and reconstruction.

A.1. Spherical coordinates

Recall that q = (2p)cdg, this suggests that the spherical nature of
q-space sampling arises from the gradient hardware limitations of
MRI scanners. Whereas there are virtually no limit to the number
of orientations q/kqk of the q-space one can acquire, the radial
sampling using different diffusion wave-vector norm kqk pushes
the gradient hardware of MRI scanners to its limits. This leads nat-
urally to the processing of the acquired data in a spherical coordi-
nates system.

We define the radius as q 2 [0,1[, the colatitude angle h 2 [0,p]
and the longitudinal angle / 2 [0,2p[ in accordance with the con-
ventions of physics. Fig. 14 illustrates the definition of spherical
coordinates for a point q 2 R3 (see Fig. 15):
q ¼ q � u;with q ¼ kqkand u ¼ q
kqk 2 S2: ð111Þ



Fig. 14. An illustration of spherical coordinates. The point q 2 ½0;1Þ is defined by
its radius q, and its two angles h, /.

Fig. 15. Tensors components of increasing order. Left to right: a scalar, a vector, a
matrix and a tensor of order 3.

Fig. 16. The second-order diffusion tensor represented by an ellipsoid whose
components are defined by a 3 � 3 symmetric positive-definite matrix. When the
diffusion tensor is expressed in the basis of eigenvectors ei and eigenvalues ki, the
matrix components DK are diagonal.

Fig. 17. Examples of second-order diffusion tensors and their corresponding
matrices. From left to right: isotropic diffusion, diffusion that is dominant in the
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The Cartesian coordinates are expressed as:

x ¼ q cosð/Þ sinðhÞ q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
ð112Þ

y ¼ q sinð/Þ sinðhÞ h ¼ arccosðz=qÞ ð113Þ
z ¼ q cosðhÞ / ¼ arctanðz=qÞ ð114Þ

The infinitesimal differential elements of surface area du and vol-
ume dq are defined as:

du ¼ sinðhÞ dhd/; ð115Þ
dq ¼ q2 sinðhÞ dqdhd/: ð116Þ

In the following, we review two mathematical tools that are widely
used in DMRI, since they ease the modeling of the diffusion image
from experimental observations: tensors and spherical harmonics.

A.2. Tensors

A.2.1. Definition
A tensor is a mathematical object which generalizes the notion

of scalars (order 0 tensors), vectors (order 1 tensors) and matrices
(order 2 tensors). A tensor does not depend on a reference system,
indeed the tensor object T should not confused with its compo-
nents Ti1 ...ip

j1 ...jq
which do depend on the choice of a specific coordinate

system. The tensor object itself T, however, remains invariant un-
der changes in the coordinate system.

Let V be a finite-dimensional vector space. A tensor T of type
(m,n) and of order m + n is defined by a multilinear application
Tðm;nÞðVÞ ! R (Borisenko and Tarpov, 1980; Abraham et al., 1988):

Tðm;nÞðVÞ ¼ V � . . .� V|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
m

�V� � . . .� V�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n

ð117Þ

where � stands for the tensor product and V* is the symbol for the
dual of V, defined as the vector space of the linear functional on V.
Let {e1, . . . ,em} 2 V and {e1, . . . , en} 2 V⁄ be the respective basis in V
and V⁄. The components of the tensor T 2 T(m,n)(V) are then ex-
pressed as:

T ¼ Ti1 ...ip
j1 ...jn

ei1 � . . .� eim � ej1 � . . . ejn
� �

: ð118Þ
The notation for tensor components Ti1 ...im
j1 ...jn

is quite similar to that for
matrices (T = (Tij)). A matrix is a tensor of type (1,1) so that T 2 T(1,1)

and is written as T ¼ Tj
iðei � ejÞ in tensor notation. However, unlike

a matrix which has two indexes, a tensor has m + n indices. We refer
the reader to (Borisenko and Tarpov, 1980; Abraham et al., 1988),
for a more precise definition of tensors and their properties.

A.2.2. The second-order tensor
In DMRI, the diffusion tensor refers to the generalization of the

apparent diffusion coefficient D to a second-order tensor D, which
is symmetric and with positive entries, i.e., 8x 2 R3;xTDx P 0. Un-
der this assumption, the components DXYZ of the tensor in an XYZ
frame of reference are expressed as a 3 � 3 symmetric and posi-
tive-definite matrix:

DXYZ ¼
Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

0
B@

1
CA: ð119Þ

The orientation of this tensor is often expressed by using a basis
consisting of eigenvectors e = (e1,e2,e3), so that the tensor compo-
nents form a diagonal matrix Dk whose elements ki are the eigen-
values. In this setting, the tensor D is often visualized as an
ellipsoid with its major axis directions and lengths given by the
eigenvectors and eigenvalues (see Fig. 16). As illustrated in
Fig. 17, the expression of D in its own basis allows for the extraction
of diffusion features: orientation of the diffusion by the principal
eigenvector, and anisotropy using computations based on
eigenvalues.

A.2.3. A tensor field
A tensor field is a tensor valued function defined on a topolog-

ical space. In other words, each point of the field is associated with
a tensor T. In the same fashion that a tensor object can be repre-
sented in several ways (using an ellipsoid, a parallelepiped, etc.),
there are several graphical representations of tensor fields, as
shown in Fig. 18. Fig. 19 gives examples of first-order and sec-
ond-order tensor fields. We refer the reader to (Tschumperlé and
Deriche, 2005; Weickert and Hagen, 2006) for an introduction to
tensor fields and their applications.
direction of the X axis; and diffusion in an oblique direction.



Fig. 18. Some possible representations of a first-order tensor field: (a) Representation by a set of icons (arrows). (b) An image whose intensity varies with the strength and
direction of smoothing of a random image using line integral convolution (LIC) (Cabral and Leedom, 1993; Stalling and Hege, 1995; Tschumperlé and Deriche, 2005).

Fig. 19. The concept of a tensor field (b) generalizes the notion of a vector field (a). The topological space used here is the two-dimensional Euclidean space, where each tensor
is represented by (a) an arrow for a first-order tensor of Tðð1;0ÞÞðR3Þ and (b) an ellipsoid for a second-order tensor of Tðð1;1ÞÞðR3Þ.
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The modeling of the diffusion image by a tensor field was pro-
posed in the classical method of diffusion tensor imaging (DTI)
(Basser et al., 1994), where diffusion in the q-space is modeled
by a tensor of order two. We now discuss another model that is
adapted to a spherical sampling of q-space, namely, spherical
harmonics.
A.3. The spherical harmonics

There are many functions to approximate a function on the
sphere. Among these possibilities spherical harmonics (SH) are
particularly suited to the processing of diffusion images, because
they have the following advantages:

1. This basis is adapted to a spherical sampling of the q-space
commonly called high angular resolution imaging (HARDI)
(Tuch et al., 1999).

2. The spherical harmonic (SH) representation can express most
signals in spherical media that are sufficiently compact and
smooth, with a small number of coefficients.

3. The SH are the eigenfunctions of the Laplace–Beltrami operator,
which allows one to sharpen or smooth the spherical shape by
exploiting a simple linear relationship.

4. The rotation of the SH is expressed by a simple formula, which
offers particular advantages in the SPF framework (as discussed
in Section 5.8).

We refer the reader to (Arfken et al., 1985; Healy et al., 1998) for a
comprehensive overview of the properties of spherical harmonics.
In the following we present the definition of complex spherical
harmonics, followed by a discussion of the subset of real symmet-
ric spherical harmonics, with properties that are suitable for diffu-
sion images.

A.3.1. Definitions
A function f is called harmonic when it satisfies the Laplace

equation, whose expression in Cartesian coordinates (x,y,z) is gi-
ven by:

r2f ¼ @2

@x2 þ
@2

@y2 þ
@2

@z2

" #
f ¼ 0: ð120Þ

Eq. (120) is rewritten in spherical coordinates (q,h,/) as:

1
q2

@

@q
q2 @

@r

� �
þ 1

sin h
@

@h
sin h

@

@h

� �
þ 1

sin2 h

@2

@/2

" #
f ¼ 0 ð121Þ

The method of separation of variables q, h and / is used to solve the
spherical Laplace Eq. (121), so we assume that f is written as (Cou-
rant and Hilbert, 1962):

f ðq; h;/Þ ¼ qlHðhÞUð/Þ: ð122Þ

We are interested in solutions to the angular part of the Laplace Eq.
(121). The combination of Eq. (121) and (122) gives:

1
sin h

@

@h
sin h

@

@h

� �
þ 1

sin2 h

@2

@/
þ lðlþ 1Þ

" #
f ¼ 0: ð123Þ

Finally, the solutions of Eq. (123) are called spherical harmonics
and are written for l 2 N and m 2 Z;m 2 ½�l; l� (Arfken et al., 1985)
as:



Fig. 20. The real and symmetric spherical harmonics (SH) for orders l = 0, 2, 4, 6. Blue indicates a negative value and red a positive value. The SH are normalized to lie in the
range [�1,1]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Ym
l ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p
ðl�mÞ!
ðlþmÞ!

s
Pm

l ðcos hÞeim/; ð124Þ

with Pm
l the generalized Legendre polynomials defined on the inter-

val [�1,1]:

Pm
l ðxÞ ¼

1
2l l!

d
dlxl
ðx2 � 1Þl si m ¼ 0

ð�1Þmð1� x2Þm=2 dm

dxm PlðxÞ si m > 0

ð�1Þjmj ðl�jmjÞ!ðlþjmjÞ! P
jmj
l ðxÞ si m < 0

8>><
>>: ð125Þ

The complex spherical harmonics Ym
l from Eq. (124) form a basis of

orthonormal functions:Z p

h¼0

Z 2p

/¼0
Ym

l ðh;/ÞY
m
l ðh;/Þ sinðhÞdhd/ ¼ dll0dmm0 ð126Þ

with ðzÞ the complex conjugate and djj0 the Kronecker symbol, which
is equal to one if j = j0 and is zero otherwise.

To simplify the notation, we introduce the following equiva-
lence relation:

Ym
l ðuÞ ¼ Ym

l ðh;/Þ: ð127Þ
A.3.2. The Laplacian operator on the sphere
The Laplace–Beltrami operator is denoted by Db and generalizes

the Laplace operator for functions defined on surfaces and in par-
ticular on spheres. This operator is defined by:

Db ¼
1

sin h
@

@h
sin h

@

@h

� �
þ 1

sin2 h

@2

@/2 : ð128Þ

Since the Laplace-Beltrami operator is involved in the angular La-
place equation given by Eq. (123), the spherical harmonics satisfy
the relation:

DbYm
l ¼ �lðlþ 1ÞYm

l : ð129Þ

This relationship is used in several approaches to the regularization
and enhancement of spherical functions (Descoteaux et al., 2007;
Assemlal et al., 2009a).

A.3.3. A real and symmetric subset
The number of samples of the observed signal determines the

number of coefficients in the reconstruction by a sum of basis func-
tions, here the SH. For a fixed number of coefficients, one should
not ‘‘waste’’ these coefficients for the estimation of impossible or
uninteresting shapes, but rather should use them wisely to gain
accuracy. For this, two prior assumptions are commonly used in
DMRI, which restrict the definition domain of spherical harmonics
to the ideal diffusion signal (Alexander et al., 2002; Frank, 2002):
(i) The signal is antipodally symmetric on the unit sphere, and
(ii) it is real and positive.
Many approaches in the literature assume that the diffusion at a
voxel-scale is symmetric on the sphere. For this, the SH has an
interesting property when subjected to a transformation T:

T : ðh;/Þ ! ðp� h;pþ /Þ

Ym
l ðTðh;/ÞÞ ¼

Ym
l ðh;/Þ if l 2 2N

�Ym
l ðh;/Þ if l R 2N

(
ð130Þ

Eq. (130) implies that when the l is even, the spherical function is
symmetric on the unit sphere. Also, a symmetric function on the
sphere can be expressed as a series of SH with even order l.

In addition, although in theory the diffusion MRI signal E is cap-
tured in the complex domain C, in practice the use of the real part
of E allows one to overcome the sensitivity due to phase artifacts,
which can be generally regarded as noise (Tuch, 2002; LeBihan
et al., 2006).

Using these two prior assumptions we can define a new basis of
real and symmetric SH (Frank, 2002; Anderson, 2005; Hess et al.,
2006; Descoteaux et al., 2007):

ym
l ¼

ffiffiffi
2
p

RðYm
l Þ if 0 < m 6 l

Y0
l ; if m ¼ 0ffiffiffi
2
p

IðY jmjl Þ if �l 6 m < 0

8>><
>>: avecl 2 2N ð131Þ

Fig. 20 illustrates the SH ym
l for the first few orders of l, which cap-

ture the low frequencies on the unit sphere. In the following, we
introduce the equivalent notation to facilitate the presentation:

jðl;mÞ ¼ lðlþ 1Þ
2

þm avecl 2 2N ð132Þ

yjðh;/Þ ¼ ym
l ðh;/Þ: ð133Þ

The real and symmetric spherical harmonics form an orthonormal
basis on the unit sphere (Blanco et al., 1997):Z

u2S2
yjðuÞyj0 ðuÞdu ¼ djj0 : ð134Þ

We have seen that the basis of spherical harmonics {yj} breaks
down most spherical continuous functions into a Fourier series
expansion on the sphere.

A.3.4. Rotation of spherical harmonics
We now review the mathematical tools that are necessary for

understanding the rotation of real spherical harmonics, namely
the Euler angles and the Wigner rotation matrix.

Euler angles: The Euler angles have been developed to describe
the rotation of a rigid object in three-dimensional Euclidean space
R3. The specific orientation of an object is obtained by a sequence
of three successive rotations given by the Euler angles, as illus-
trated in Fig. 21:



Fig. 21. Rotation with Euler angles (a,b,c)in the zyz configuration. From left to
right: rotation around the axis z, y0 and z0 . The axes after rotation are shown in
dotted lines.
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1. the rotation by angle a around the axis z which transforms the
frame of reference from xyz to x0y0z;

2. the rotation by angle b around the axis y0 which transforms the
frame of reference from x0y0z to x00y0z0;

3. the rotation by angle c around the axis z0 which transforms the
frame of reference x00y0z0 to x000y00z0.

Remark. There are twelve variants of the rotation scheme of Euler
angles, which differ in the axis of rotation chosen from each of the
three previous steps. In this paper, we adopt, without loss of gen-
erality, the configuration zyz (Blanco et al., 1997).

Wigner rotation matrix: When subject to a rotation expressed in
terms of Euler angles (a,b,c), complex spherical harmonics Ym

l of
order l can be expressed as a linear combination of spherical har-
monics of even order Y ðl m

0Þ:

Rota;b;c Ym
l ðh;/Þ

� �
¼
Xl

m0¼�l

Ym0

l ðh;/Þ e�im0adðlÞm0mðbÞe�imc
h i

ð135Þ

with the d-small Wigner matrix defined as (Su and Coppens, 1994):

dðlÞm0mðbÞ ¼
ðlþm0Þ!ðl�m0Þ!
ðlþmÞ!ðl�mÞ!

� �1=2

Xminðl�m0 ;lþmÞ

k¼maxð0;m�m0 Þ
ð�1Þkþm0�m lþm

k

� �
l�m

l�m0 � k

� ��

ðcos b=2Þ2lþm�m0�2kðsin b=2Þ2kþm0�m
i
:

ð136Þ

We are interested in the real Wigner rotation matrix D(M0M)((l))
such that

Rota;b;c½ym
l ðh;/Þ� ¼

Xl

m0¼�l

ym0
l ðh;/ÞD

ðlÞ
m0mða; b; cÞ: ð137Þ

We saw in Eq. (131) that real spherical harmonics are defined by a
linear combination of complex spherical harmonics. Then the d-
small Wigner matrix of Eq. (136), for real spherical harmonics is ex-
pressed as (Ritchie, 1998) Appendix B.4:

DðlÞm0m ¼

dðlÞm0mðbÞ cosðFÞ þ ð�1Þm
0
dðlÞ�m0mðbÞ cosðGÞ m0 P 0;m P 0

ð�1Þm
0þ1dðlÞm0mðbÞ sinðFÞ þ dðlÞ�m0mðbÞ sinðGÞ m0 < 0;m P 0

ð�1ÞmdðlÞm0mðbÞ sinðFÞ þ ð�1Þmþm0dðlÞ�m0mðbÞ sinðGÞ m0 P 0;m < 0

ð�1Þmþm0dðlÞm0mðbÞ cosðFÞ þ ð�1Þmþ1dðlÞ�m0mðbÞ cosðGÞ m0 < 0;m < 0

8>>>>><
>>>>>:

ð138Þ

with F = mc + m0aand G = mc �m0a.
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