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Abstract

We survey the recent activities of the Odyssée Laboratory
in the area of the application of mathematics to the design of
models for studying brain anatomy and function. We start with
the problem of reconstructing sources in MEG and EEG and
discuss the variational approach we have developed for solv-
ing these inverse problems. This motivates the need for ge-
ometric models of the head. We present a method for auto-
matically and accurately extracting surface meshes of several
tissues of the head from anatomical MR images. Anatomical
connectivity can be extracted from Diffusion Tensor Magnetic
Resonance Images but, in the current state of the technology,
it must be preceded by a robust estimation and regularization
stage. We discuss our work based on variational principles and
show how the results can be used to track fibers in the white
matter as geodesics in some Riemannian space. We then go
to the statistical modeling of fMRI signals from the viewpoint
of their decomposition in a pseudo-deterministic and stochas-
tic part which we then use to perform clustering of voxels in a
way that is inspired by the theory of Support Vector Machines
and in a way that is grounded in information theory. Multi-
modal image matching is discussed next in the framework of
image statistics and Partial Differential Equations with an eye
on registering fMRI to the anatomy. The paper ends with a dis-
cussion of a new theory of random shapes that may prove useful
in building anatomical and functional atlases.
Keywords: MEG, EEG, fMRI, DT-MRI, Maxwell equations,
inverse problems, segmentation, level sets, Riemannian spaces,
Partial Differential Equations, Brownian motion, Diffusion ten-
sor, Lie groups, Eikonal equation, tractography, mutual infor-
mation, information theory, Kernel PCA, Information Bottle-
neck, retinotopy, Laplace-Beltrami operator, shape topologies,
Hausdorff distance, mean shape, covariance of shapes.

INTRODUCTION

The Odyssée laboratory is interested in developing a detailed
understanding of the neural computations underlying human vi-
sual perception. This interest arises from several motivations.
One is the desire to participate in the increase of basic knowl-
edge regarding one of the most sophisticated sensory modality
that supports action and reasoning, another one is the hope that
this quest will eventually lead to breakthroughs in the way we
interact with computers.

In order to model human visual perception it is necessary to
observe humans while they perform the act of seeing. This can
be achieved by using such imaging/measurement techniques as
MRI, MEG, EEG in order to make qualitative and quantitative
measurements of the changes in the state parameters of some
volunteers’ brains. These measurements can then be used to
support the design and the test of neural mathematical and com-
putational models of human visual perception. In this article we
focus only on the part of the problem that consists in process-
ing the data that are produced by some of the previous imaging
modalities.

The theory of Partial Differential Equations (PDE) is central
to the source reconstruction problem in MEG and EEG, and to
our work with Diffusion Tensor Magnetic Resonance Imaging
(DT-MRI); it is also the core of our curve and surface evolu-
tion work as applied to segmentation and warping. Differential
geometry plays an important role because we are dealing with
spaces with a natural Riemannian structure, e.g. the white mat-
ter through the diffusion tensor or the cortical surface. Many of
these PDEs derive from energy functionals through the calcu-
lus of variation as in our work on multimodal image matching.
Last but not least, statistics are crucial to correctly take into ac-
count the immense variability of the signals and the shapes that
arise when one attempts to ”look” at the brain.
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SOURCE RECONSTRUCTION IN MEEG

MEG and EEG (commonly called MEEG) record noninva-
sively the electromagnetic field resulting from electrical activ-
ity inside the brain. Their high time resolution (of the order of 1
ms) make these two modalities very valuable for the functional
analysis of the human brain. Their drawbacks are 1) a relatively
poor spatial resolution (compared to fMRI) and 2) the need for
solving a delicate inverse problem for localizing the electrical
activity inside the brain.

This inverse problem is driven by a forward model, which
computes the electromagnetic field outside the head from a
known electrical activity profile inside the brain. The quality
of the reconstruction greatly depends on the forward problem,
whose accuracy must be controlled with great care. This prob-
lems obeys the rules of electromagnetic propagation under the
quasi-static approximation (because at frequencies of interest
and at spatial scales smaller than the head, inductive and capaci-
tive effects can be ignored). In this case, the Maxwell equations
relate the potential V to the sources Jp for tissues of conductiv-
ity σ through

∇ · (σ∇V ) = ∇ · Jp , (1)

with a vanishing Neumann boundary condition on the scalp.
The magnetic field can be computed from the potential, e.g.
through the Biot-Savart equation.

Of course, a good geometrical and physical model of the
head is crucial to solve properly this equation. Our group relies
on two different – mesh based – strategies: the boundary ele-
ment method (BEM) which describes the head as a set of nested
surfaces delimiting domains each with a uniform, isotropic con-
ductivity; the finite (volume) element method (FEM) which can
assign a different conductivity to each tessel. The meshes de-
scribing the head are naturally subject dependent and must be
computed beforehand from physiological data, via anatomic
MRI segmentation. As the head is a very complex object,
an accurate geometrical description signifies handling a huge
number of geometrical elements, on which the solution is dis-
cretized, and the resulting computations can only be solved via
iterative methods (rather than a direct matrix inversion) using
leading-edge numerical methods.

In our work, we use a distributed source model for the inverse
problem. This is notoriously ill-posed, due to the existence of
“silent sources”. Consequently, some constraints on the solu-
tion must be added (minimum norm or minimum gradient so-
lutions are often chosen). The inverse problem is thus solved
by minimizing an energy term which is the sum of a data term
and a regularizing term taking the constraints into account. The
sources are iteratively updated by computing the gradient of
the energy. The computationally efficient way to compute the
energy gradient is to use the adjoint problem (Faugeras et al.,
1999). Note that, since the relationship (1) between the source
term Jp and the potential V is linear, the matrix which repre-
sents the adjoint problem is simply the transpose of the matrix

representing the forward problem.
The BEM method takes advantage of the harmonicity of a

potential V satisfying (1) inside each compartment of homoge-
neous conductivity. It uses the representation theorem to refor-
mulate the problem in terms of single-layer and double-layer
potentials defined on the interfaces between conductivities. It
requires only surface meshes, which are much easier to obtain
than volume meshes. A drawback in terms of numerical com-
plexity is that in the BEM the matrix representing the forward
problem is dense and requires a lot of memory to be computed
and stored. To alleviate this problem, we have introduced the
Fast Multipole Method (FMM), an algorithm originally devel-
opped for N-body gravitational field computations (Clerc et al.,
2002). The FMM is a multi-resolution approach which approxi-
mates the electromagnetic interaction between surface elements
by performing multipole expansions at coarse resolutions. It
avoids matrix storage, and significantly reduces the computa-
tional burden of the matrix-vector products: a matrix-vector
product of dimension P is performed in O(P log P ) instead
of O(P 2). The computational savings allow finer discretiza-
tions to be used, leading to more accurate forward and inverse
problem solutions.

Accuracy of the forward problem is also a major concern in
BEM, because the electrical sources are close to the disconti-
nuities in conductivity, causing the potential to have very sharp
variations, which are difficult to discretize. All the BEM meth-
ods used so far in MEEG have used the same integral formu-
lation (Geselowitz, 1967). However, this integral formulation,
based on a double-layer potential approach, is by no means the
only one available. A thorough analysis of integral formula-
tions deriving from the representation theorem has enabled us
to propose a new formulation, combining single and double-
layer potentials (Kybic et al., 2003). This approach has three
main advantages compared to the previous BEM: it leads to
symmetric matrices, it only couples elements from adjacent sur-
faces, and its accuracy outperforms all other surface methods
(Adde et al., 2003), especially when the ratio of conductivities
between neighboring layers is high, as occurs inside the head.

For the BEM inverse problem, the electrical sources are con-
strained to be orthogonal to a known surface inside the cortex.
In this case, the problem is no longer ill-posed and the intensity
field of the sources can be recovered, up to a constant, from
boundary measurements (Amir, 1994). The field to be recon-
structed is then simply the signed intensity of the source.

Figure 1 shows the reconstruction of electrical sources, us-
ing the BEM model, from measurements of a somatosensory
evoked magnetic field (experimental protocol presented in (Me-
unier et al., 2001) and data also used in (David and Garnero,
2002)).

The FEM method represents all the head related quantities
(conductivities, potentials, sources) as piecewise linear func-
tions on the elements of the mesh describing the head. Obvi-
ously, this restrictive model has a strong impact on the accuracy
of the results compared to the BEM method (in which no re-
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Figure 1. BEM reconstruction of somatosensory sources from MEG
data (CTF Omega 151-channel, Hopital de la Salpetriere, Paris).

striction is made on the solution in the domains delimited by the
surfaces). This has, however, several advantages: anisotropy of
conductivities can easily be modeled for each volume element,
the accuracy seems somewhat less sensitive to the closeness of
the sources to the conductivity discontinuity interfaces, the ma-
trices generated by the method are quite sparse leading to com-
putation times that are much smaller than those of the BEM
method. It remains that constructing accurate 3D meshes to
model the head is somewhat difficult mainly because the cortex
is very thin and thus a lot of triangles are needed to represent it
correctly. The sources are restricted to belong to the volume of
the gray matter (instead of a surface for the BEM method), but
they can again be constrained in direction by forcing them to be
aligned with the (common) normal to the interfaces of the grey
matter.

GEOMETRIC MODELING

Anatomical MRI segmentation

We have designed a method to automatically and accurately
extract surface meshes of several head tissues from anatomical
MRI images. The input of our algorithm is a T1-weighted MRI
image and the approximate intensities of the main head tissues:
air, skin, cerebrospinal fluid (CSF), gray matter (GM) and white
matter (WM). It robustly generates triangle meshes of the outer
skin interface, of the brain contour and of the inner and outer
interfaces of the cortex. In the future, we plan to extend it to the
skull and to some subcortical structures of interest.

Our method guarantees some topological properties of the
meshes, such as spherical topology, absence of self- or mutual
intersections. These properties are crucial in some applications
such as cortex unfolding or source reconstruction in MEG and
EEG with the BEM or the FEM.

Our method is a successful combination of hidden Markov
random field (HMRF) classification (Zhang et al., 2001) and of
active contour segmentation with the topology preserving level
set method (Han et al., 2003).

The former is a statistical approach to classify voxels into a
small number of tissue classes chosen a priori. The tissue distri-
bution is modeled by a Markov random field (MRF) encourag-
ing neighboring voxels to have the same class labels, while the
observed intensity of each tissue class is modeled by a Gaus-

sian distribution. The labels of the voxels are estimated with
a maximum a posteriori (MAP) criterion. The problem trans-
lates into the minimization of an energy function but an exact
minimization is computationnally unfeasible due to the huge
number of unknowns. As a consequence, a greedy strategy
yielding a suboptimal solution, such as the iterated conditional
modes (ICM) algorithm, is preferred. The parameters of the
model are the mean and the variance of each tissue class and a
bias field accounting for the inhomogeneties in the RF field. In
our method, this bias is taken as affine against intensities and
smooth and non-parametric over space. An initial estimate of
the tissue parameters is provided by the user. Iteratively, class
labels are estimated by MAP, then the tissue parameters and the
bias field are updated with the expectation-maximization (EM)
algorithm. The output is a classification of image voxels, the
mean/variance of each tissue class and a bias-corrected image.

The ability to automatically handle topology changes is a
long claimed advantage of the level set method over explicit
deformable models, but is often not desirable in biomedical
image segmentation, where the topology of the target shape
is prescribed by anatomical knowledge. A topology preserv-
ing variant of the level set method has been proposed in (Han
et al., 2003) to overcome this problem: the level set function
is evolved with a modified update procedure based on some
concepts from digital topology, then the final mesh is obtained
with a modified topology-consistent marching cubes algorithm.
This method ensures that the resulting mesh has the same topol-
ogy than the user-defined initial level set. We have extended
this method in order to evolve several nested level sets while
preventing mutual intersections. Contrarily to some methods
for explicit deformable models based on repulsion forces, our
method guarantees the absence of intersections and is compu-
tationnally cheaper than checking mesh-to-mesh intersection.

We apply successively the HMRF classification and active
contour segmentation with the topology preserving level set
method to benefit from the advantages of both methods while
discarding their respective drawbacks. We first run the HMRF
classification. This statistical approach is powerful as regards
automatic parameter estimation but it is not sub-voxel accurate
and disregards topology. Hence we feed the resulting output
into an active contour segmentation task. We first fit a set of
nested topology preserving level sets to the labeled image, in
order to alleviate the sensitivity of active contour segmentation
to the position of the initial contour. Then we drop the labels
and we evolve the level sets according to the intensities of the
bias-corrected image. Since the image inhomogeneities have
been removed, the interfaces between the different tissues can
be found easily and robustly by driving each level set with an
adequate intensity threshold. Moreover, the thresholds that best
separate the intensity distributions of the tissues can be com-
puted from the tissue parameter estimated during the HMRF
classification.

Our method is used routinely to obtain the surfaces that are
needed in the BEM or FEM source localization techniques from
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MEG and EEG. The cortical surface in Figure 1 was extracted
with this segmentation tool. As an illustration of the technique,
see Fig. 2.

Figure 2. The skin/air, CSF/GM and GM/WM interfaces of one
of the authors’ head.

Diffusion Tensor Estimation

The basic principles of Diffusion MRI and the formalism of
the Diffusion Tensor have been introduced in (LeBihan et al.,
1986; LeBihan and Breton, 1985; Basser et al., 1994). The key
concept is that the random motion of water molecules, referred
to as diffusion, reflects the structure of the underlying biologi-
cal tissues at a microscopic scale, well beyond the usual image
resolution. This opens the possibility of recovering a detailed
geometric description of the anatomical connectivity between
brain areas. We are attempting to get closer to this challenging
goal.

The estimation of a 3 × 3 symmetric positive definite tensor
at each voxel from diffusion weighted data uses the Stejskal-
Tanner equation (Stejskal and Tanner, 1965). Many approaches
have been derived to estimate the tensor. Minimal approaches,
(Westin et al., 2002), are very sensitive to noise and outliers.
Outlier-related artifacts can be combatted by using more mea-
surements and robust estimators as in (Mangin et al., 2002).
However the resulting tensors may not be positive definite. We
have proposed in (Tschumperlé and Deriche, 2003) to incorpo-
rate such priors as tensor positivity and spatial regularity into a
variational formulation of the estimation problem on the mani-
fold of positive definite tensors.

Diffusion Tensor Regularization

We have studied the regularization of noisy diffusion tensor
data. There exist two main classes of techniques. Non-spectral
methods are based on a direct anisotropic smoothing of the dif-
fusion weighted data (Vemuri et al., 2001) or consider each ten-
sor as 6 scalar coordinates. This method suffers from the fact
that the eigenvalues tend to diffuse faster than eigenvectors.
Spectral methods process the eigen-elements of the tensors.
Eigenvalue smoothing is typically performed by a vector-
valued anisotropic PDE ((Tschumperlé and Deriche, 2001) and
references therein) satisfying the maximum principle in order to
preserve positiveness. However, these approaches are plagued
by the fact that all vectors are defined up to a change of di-
rection, resulting in a computational explosion (Coulon et al.,
2001).

We recently proposed an alternative to the previous spec-

tral techniques, called the fast isospectral method (Chefd’hotel
et al., 2004). It builds flows acting on a given sub-manifold
of the linear space of matrix-valued functions and preserving
some constraints. The constraints (orthogonality, invariance of
eigenvalues. . . ) can be expressed in terms of Lie groups and
homogeneous spaces. Results of non-spectral smoothing and
isospectral flow on diffusion tensors estimated in the genu of
the corpus callosum are shown in Fig. 3.

Figure 3. Left to right: (a) Raw tensors in the genu of the corpus
callosum and regularized fields by (b) a non-spectral method, (c) our
isospectral flow. Data courtesy of CEA-SHFJ/Orsay. We thank J.F.
Mangin and J.B. Poline for providing us with the data.

Fiber Tractography

The main idea most classical algorithms for brain connectiv-
ity mapping rely on ((Mori et al., 1999; Moseley et al., 1999;
Pierpaoli et al., 1996) and references therein) is that water dif-
fusion in many regions of the white matter is highly anisotropic
and thus the orientation of the principal eigenvector is that of
the predominant axonal direction. All these line propagation
techniques however fail whenever they enter a region of low
anisotropy, the estimate of the curve tangent becoming highly
unreliable.

To overcome this problem we have introduced a physi-
cally motivated distance function in the white matter through
stochastic processes and differential geometry. In our approach,
the white matter is seen as a 3-manifold M and fibers become
geodesics (Lenglet et al., 2004) of this manifold. There is a
fascinating connection between the diffusion tensor, Brownian
motion and the Eikonal equation. If C is the concentration of
water molecules, it can be shown that it satisfies the equation

∂C

∂t
= ∇.(D∇C) = LC (2)

When D is the identity, L is the Laplace operator, the diffusion
is isotropic. A Brownian motion in Euclidean space (e.g. R

3)
is entirely defined by its initial distribution and the conditional
probability p of finding a molecule at x at time t given that it
was at x0 at time 0. For an unbounded anisotropic homoge-
neous medium, p is the minimal fundamental solution of (2).

These notions have their counterparts when moving from the
Euclidean space to a Riemannian space M . In particular an
isotropic diffusion on M is governed by a differential operator,
the Laplace-Beltrami operator, which defines the geometry of
M . In effect it is possible to consider an anisotropic diffusion
in the Euclidean space (governed by the diffusion tensor D) as
an isotropic diffusion in R

3 seen as a Riemannian space with
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metric tensor G = (gij) equal to D
−1. It is therefore natural to

consider the intrinsic distance d in the space of the brain white
matter to any voxel x0 as defined by this Riemannian metric. It
verifies the intrinsic Eikonal equation

|∇d|2 =
∂d

∂xi

∂d

∂xj

gij = 1, (3)

with (gij) = G
−1. In (Lenglet et al., 2004), we propose a

level-set formulation and the associated numerical scheme to
solve (3). Computing neural fibers as geodesics in the region of
the splenium of the corpus callosum yields the results presented
in Fig. 4. The main advantage of this method over line propa-
gation techniques is that it is not influenced by locally isotropic
areas.

Figure 4. Inferred geodesics in the splenium of the corpus callosum
(red: low anisotropy - blue: high anisotropy)

STATISTICAL MODELING

Superresolution in fMRI

In functional Magnetic Resonance Imaging (fMRI) a major
goal is to maximize the image spatial resolution. The decrease
in SNR induced by the decrease of voxel size can be obviated by
the use of higher magnetic fields implying much higher equip-
ment costs, an increased inhomogeneity and hence larger dis-
tortion artifacts in the images. To overcome these problems,
one possible solution is to use superresolution techniques which
allow us to generate a high resolution volume from a set of low
resolution ones. These techniques have already been used in
different image processing applications. For anatomical MR
images, superresolution can be used in 2D FT MR imaging in
the image space, i.e. in the slice direction, see (Greenspan et al.,
2002; Peled and Yeshurun, 2001) and (Roullot et al., 2000) who
proposed a superresolution approach for 3D volumes.

Our aim is to investigate how these techniques can be applied
to process long fMRI sequence and improve the activation maps
(Peeters et al., 2004; Kornprobst et al., 2003). The approach
is based on two steps. The first is the acquisition protocol.
Images are acquired at a low resolution using alternate shifts
of the image slice stack over half-a-slice thickness, generat-
ing two separate slice-shifted overlapping volumes. The second

is a variational superresolution reconstruction technique which
combines recent work on edge preserving PDEs (see (Aubert
and Kornprobst, 2002) for a review) and convergence rate stud-
ies (Nikolova and Ng, 2001). Experiments on synthetic and
real data (see Fig. 5) clearly establish the interest of using such
techniques in this context.

Figure 5. Comparisons between activated areas for different re-
constructions in a synthetic case (Left) and a real visual experiment
(Right). The latter shows the activated areas for the horizontal merid-
ian (red-yellow) and the vertical meridian (blue-green). Real data
were generated in the MR Research Center, Dept. of Radiology,
K.U.Leuven, Medical School, Leuven, Belgium.

fMRI modeling

fMRI is a rich source of data that is hard to analyze with-
out the help of models. This is because it is only an indirect
measure of brain activity based on brain oxygenation and many
confounders such as subject movements, respiratory and heart
artifacts, temperature drift, machine noise, are known to cor-
rupt the signal. The models can be weak as in the case of ex-
ploratory methods such as PCA, ICA or clustering, or strong
as in the case of the General Linear Model (GLM) where the
shape of the hemodynamic response is assumed to be known.

We have contributed to the latter by developing a class of
flexible models that attempt to extract coherent, i.e. task-
related or autocorrelated, patterns from each voxel time course
(Thirion and Faugeras, 2003a). This is achieved by decompos-
ing each voxel time course as the sum of a pseudo-deterministic
term which captures all the information in the signal that is re-
lated to its past values or to the experimental paradigm and a
stochastic part that is the non task-related part. The pseudo-
deterministic part is obtained by applying the Minimum De-
scription Length (MDL) method and can be very efficiently es-
timated. If we note Xn(t) the fMRI time course at voxel n, this
analysis results in the decomposition

Xn(t) = zn(t) + εn(t),

zn being the pseudo-deterministic part, εn the stochastic part.
This univariate analysis is followed by a multivariate one that
overcomes some of the difficulties encountered in PCA (resp.
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ICA) (the assumption that structures of interest in the data are
uncorrelated in the temporal and (resp. or) spatial domain,
the fact that the experimental paradigm is not taken into ac-
count). This is achieved by defining a generalized covariance
matrix κ whose eigenvectors represent the spatial modes of co-
herent dynamic activity in the data. κ is built from a kernel
Kσ that depends upon the scale parameter σ. Two voxels X i

and Xj are represented by the signals zi and zj . The cor-
relation cc(zi, cj) can be thought of in terms of shared infor-
mation between the time courses. σ penalizes the correlations
the values of cc which are far from 1. To that effect we mul-
tiply the usual covariance matrix K∞(zi, zj) by the function

exp(
cc(zi, zj) − 1

σ ). As described in (Thirion and Faugeras,
2003a), the number of eigenvectors kept in the final description
can be determined by a variant of the MDL criterion.

We have also explored the use of clustering in the analysis
of fMRI data. The problem of choosing the number of clusters
can be addressed by the Information Bottleneck (IB) approach
developed for vector quantization (Tishby et al., 1999) which
deals explicitely with a tradeoff between quantization and data
fidelity through an information theoretic formulation. Our ap-
proach assumes that Xn(t) has been projected in the space
spanned by R regressors gr:

Xn(T ) =
R∑

r=1

γn
r gr(t) + εn(t),

for example by the GLM. The vectors γ
n are modelled as Gaus-

sian random variables with known mean and covariance. The
IB method can be formulated as follows. Given the set of vox-
els X , the set of interest Γ (the set of possible values for γ)
and the normal densities p(Γ|X = x), find the fuzzy clusters
ξ that maximize compression while retaining most of the infor-
mation on p(Γ|X). This leads to the minimization with respect
to ξ of the function I(X, ξ) − βI(ξ,Γ), where I(X, ξ) is the
mutual information between the dataset X and its compressed
representation, I(ξ,Γ) is the mutual information between the
compressed representation and the variable of interest, and β
a positive scalar. The IB method finds its roots in statistical
physics and β plays the role of an inverse temperature: a high
value freezes the system into a hard clustering while a small
one heats the system and ultimately fuses all clusters into a sin-
gle one. The minimization can be done by an EM algorithm.
The results are sensitive to the choice of β but this choice can
be made in a principled manner as explained in (Thirion and
Faugeras, 2003b). We illustrate the method with a synthetic ex-
ample. We simulate one slice of fMRI data with N = 1963
voxels and 3 foci of 21 pixels. Independent Gaussian noise is
added to all voxels so that the SNR is 0.5 in the activated areas.
The simulated paradigm has two conditions, the simulated time
courses and the spatial maps are shown in Fig. 6(a), (b). By
keeping only the effects of interest, we obtain a 2-dimensional
feature-space. The estimated feature values at each voxel are
represented in Fig. 6(c). The IB method yields four clusters.

The corresponding pdfs p(γ|ξ) are shown in Fig. 6(d) For com-
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Figure 6. a): Simulated time courses for the three foci shown
in b). c): Feature values showing one big cluster and two big
ones. d) Pdfs produced by the IB method.

parison, we have applied a C-Means and a fuzzy-C-Means al-
gorithm with an initial number of clusters equal to 4 and never
obtained the results shown in Fig. 6(d). More statistical ap-
proaches for modeling fMRI data can be found in the thesis
(Thirion, 2003) which is written in English.

Cortical filtering and applications to retinotopy

Delineating the cortical visual areas is a ”calibration” ex-
periment for any study of the human cortical visual system.
Beyond estimating the areas borders, the retinotopic mapping
process provides information linking the actual visual field and
the cortical surface. Our method derives from previous work
(Sereno et al., 1995). It is fast -the whole retinotopic map be-
ing acquired in about 15 mn of functional images acquisition-,
semi-automatic and shows an excellent intra- and inter-subject,
reproducibility, as shown in (Wotawa et al., 2003). The stimuli
are a wedge, coding for polar angle maps and a ring, coding
for eccentricity maps. The functional analysis scheme is based
on a frequency analysis, which allows a continuous and accu-
rate response phase estimation. The only requirement on the
hemodynamic response is that it be linear with respect to the
stimulation. The main steps are the computation of a statistical
map to determine the voxels activated by our periodic stimuli,
followed by a phase estimation, including a voxel-based hemo-
dynamic delay estimation. The phase links the voxel activity
to its prefered stimulus position. The results, values of eccen-
tricity and polar angle at each suprathreshold voxel, are then
projected on the cortical surface model derived from a high res-
olution anatomical image. The model is finally inflated to fa-
cilitate the visualization, see Fig. 7. Part of the processing for
obtaining these results is spent on smoothing the fMRI data.
The way this is done is important. The classical approach, for
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Figure 7. Retinotopic polar angle and eccentricity maps pro-
jected on an inflated left hemisphere.

instance in SPM, is to smooth the whole volume of data by
convolving it with a 3D Gaussian kernel. This may have two
undesirable effects: mixing voxels from different anatomical
tissues, affecting the analysis sensitivity and blending signals
across sulci, reducing the spatial discrimination power. In or-
der to avoid this, we have used such interfaces as the one shown
in Fig. 2 and replaced the 3D filtering with a 2D filtering on the
surface of the cortex, another example of the Laplace-Beltrami
operator. The difference between the two methods is shown in
Fig. 8.

Figure 8. Left: original activation; Middle: 3mm 3D isotropic
smoothing, leading to false activation on the opposite bank of
the sulcus; Right: 3mm Laplace-Beltrami smoothing.

Multimodal image matching

One of the problems that is often encountered in the analysis
of fMRI data is that of registering it with the anatomy. This is
difficult because, as shown in Fig. 9, there are significant geo-
metric distorsions between the two volumes and the intensities
of corresponding areas rarely match (not visible in this figure).
We discuss these two points next. The geometric distorsion
cannot in general be described by a simple global transforma-
tion rigid, i.e. rotation plus translation, or non-rigid, i.e. affine
((Ayache, 2003) and references therein). In order to model the
distorsion one is therefore led to call upon some general de-
formation flow represented by a largely arbitrary vector field
h. The different intensities in corresponding areas preclude the
use of the usual sum of squared differences (SSD) as an er-
ror criterion to guide the search for the deformation flow. One
must revert to more sophisticated, i.e. statistical, ways of mea-
suring similarities in intensity distribution. Such measures as
the cross-correlation, the correlation ratio, or the mutual infor-

mation have been successfully used in the literature (Viola and
Wells III, 1997).

Our contribution has been to clearly pose the problem of the
estimation of h as that of minimizing an energy functional I(h)
on a well-defined functional space F . The energy functional is
the sum of dissimilarity term J (h) and a regularization term
R(h). The first term is based upon the idea of modeling the two
images I1(x) and I2(x) as samples of two random processes
and of estimating the joint probability density function (pdf)
of the vector (I1(x), I2(h(x))). From this pdf one can then
compute any of the above statistical measures as functions of
the field h. The regularization criterion takes into account the
idea that this field cannot vary arbitrarily and therefore enforces
some regularity. This is done by choosing R(h) to be a function
of the first order derivative of h. The nest step is to precisely
define the functional space h belongs to. It turns out that the
form of the regularization term is determinant and implies that
we work in the Sobolev space F = H1

0 ∩ H2. After showing
that there exist minimizers of I(h) in F , we turn the problem
of finding them into one of solving a semilinear abstract initial
value problem that can be written as

dh

dt
− Ah(t) = F (h(t)), t > 0, h(0) = h0 ∈ H. (4)

In this equation, the time has been introduced to reflect the fact
that we start from an initial deformation flow h0 and look for
the corresponding stationary solution of (4). A is a spatial dif-
ferential operator arising from the Euler-Lagrange equation of
the regularization term R(h). The function F in the right-hand
side arises from the dissimilarity term J (h). Because J (h)
involves the pdf of the vector (I1(x), I2(h(x))) F is non local,
i.e. its value at x depends upon the values of the current defor-
mation flow h(t) at other points. This implies that (4) is not a
PDE but a functional equation, in effect an ordinary differential
equation (ODE) in the unknown h that lives in the functional
space F . This makes the analysis of the registration problem
significantly more difficult than in the case of the SSD criterion
where (4) is a PDE.

Within this general framework, we have a) shown that there
exist minimizers of I(h) in F , b) computed the function F
for the previous statistical criteria c) proved the existence and
uniqueness of a solution of the problem (4) using the theory of
analytical semigroups of operators and d) proved that the limit
when t → ∞ of the solution of (4) satisfies the Euler-Lagrange
equations of I(h). The implementation of the method has been
done in the context of a recent thesis (Hermosillo, 2002). The
theoretical results are in (Faugeras and Hermosillo, 2004), with
preliminary work reported in (Hermosillo et al., 2002). An ex-
ample of the kind of results that can be achieved is shown in
Fig. 9. The code is used routinely by Prof. Guy Orban’s group
in Leuven in their work on monkey fMRI (Fize et al., 2003).

Statistical shapes

The variability of anatomical structures from individual to
individual is quite large within the human species. It is even
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Figure 9. Left: The geometric distortion between anatomical
MR (purple) and functional MR data (green). Right: The geo-
metric distortion shown left has been mostly compensated for.

larger when one attempts to compare anatomy and function in
different but closely related species, e.g. human and non-human
primates. This variability hints at two main areas of mathe-
matics, topology for defining meaningful shape metrics, and
statistics for defining meaningful notions of shape variability,
e.g. with respect to an average shape. The Odyssée labora-
tory has been actively pursuing both objectives. In the area of
shape metrics we have been studying a set of shapes S which
are defined as subsets Ω of a set of R

n (in practice n = 2 or
3) with a regular (i.e. C2) boundary ∂Ω whose curvature is
upper-bounded by a positive number 1/h0. h0 is also a lower-
bound on the pinch distance of this boundary and is lower than
the distance between two pixels of the grid on which the shapes
are defined. The question of measuring the similarity between
two shapes in S builds upon the seminal work of (Delfour and
Zolésio, 2001) who have introduced new families of sets, com-
plete metric topologies and compactness theorems. We prove in
(Charpiat et al., 2004) that three of the most important metrics,
including the Hausdorff distance, are topologically equivalent
in S. We also propose to use them to define a way to con-
tinuously deform, i.e. warp, a shape onto another one. The
way to pose this problem is to define a ”dissimilarity” measure
E(Γ1,Γ2) between two shapes Γ1 and Γ2, to show that the gra-
dient ∇E(Γ1,Γ2) can be defined in a reasonable manner, and
to solve the following initial value problem

dΓ

dt
= −∇E(Γ,Γ2)n, Γ(0) = Γ1 ∈ S, (5)

Note the similarity between (5) and (4). One difficulty with
this approach is that the metric appears in the definition of E.
Therefore the gradient ∇E is not well-defined because the met-
ric is not differentiable. We have therefore constructed classes
of smooth (i.e. whose gradient is well-defined) approxima-
tions of the metric based upon the idea of replacing the sup
and min operators that arise in the definition of the distance
function to a set and in the Hausdorff distance between two sets
by averages taken on the boundaries of the shapes. We prove
that these approximations can approximate the metric abitrarily
well and compute the gradient of the corresponding dissimilar-
ity measures. This defines a warping algorithm between two

shapes that can be seen as an infinitesimal gradient descent in
order to minimize E. We prove that there exist minimizers of
E(Γ,Γ2). This approach can be seen as the opposite of that
consisting in first building a Riemannian structure on the set
of shapes, i.e. going from an infinitesimal metric structure to
a global one. This is mostly dealt with in (Miller and Younes,
2001; Trouvé, 1998; Younes, 2003; Klassen et al., 2004). The
problem with these approaches, beside that of having to deal
with parametrizations of the shapes, a difficult problem that is
avoided in ours, is that there exist global metric structures on
the set of shapes (like those we have considered) which are use-
ful and relevant to the problem of the comparison of shapes but
that do not arise from an infinitesimal structure.

Equation (5) defines a generic ”shape warper” that can be
used to address the second objective above, i.e. the definition of
the empirical mean and covariance of a set of shape examples.
The empirical mean of N shapes Γ1,. . . ,ΓN is defined as any
shape Γ̂ that achieves a local minimum of the function µ : S →
R

+ defined by

Γ → µ(Γ,Γ1, · · · ,ΓN ) =
1

N

∑

i=1,··· ,N

E2(Γ, Γi),

and we prove that there exists at least one mean. An algorithm
for the effective computation of a mean is proposed in (Charpiat
et al., 2004) and an example of the mean of eight silhouettes of
corpus callosum is shown in Fig. 10 (left). The empirical co-

Figure 10. Left: The mean of eight silhouettes of corpus callo-
sum (middle, thick line). Right: From top to bottom, the first
three principal modes of variation for the eight sample shapes.
They are the solutions of equation (6) for k = 1, 2, 3.

variance of N shapes is slightly more difficult to define. From
a mean Γ̂ we compute the gradients ∇E(Γ̂,Γi), i = 1, · · · , N .
These are functions defined on Γ̂ which we use to define a pos-
itive symmetric N × N matrix which supports our notion of
empirical covariance. Its eigenvectors and eigenvalues are used
to define the analog of the principal modes vk, k = 1, · · · , N
of variation of the mean shape Γ̂. The variability of the mean
shape with respect to the kth mode is obtained by solving the
following initial value problem

dΓ

dt
= ±vkn, Γ(0) = Γ̂ ∈ S. (6)

As an example, the first mode of variation for the above eight
sample shapes is shown in Fig. 10(right).
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CONCLUSION

We have shown that some large pieces of fairly sophisticated
mathematics are very useful for modeling the types of signals
that are currently used for observing the brain ”in vivo”. We
are presently exploring two fascinating areas. One is the com-
bination of these modalities (MEEG, MRI) into a more robust
and more accurate meta-sensor. Another one is the introduction
of models of the activity of the assemblies of neurons that the
sensory modalities are trying to measure in the processing of
the signals they deliver.
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Tschumperlé, D. and Deriche, R. 2003. Variational frameworks
for DT-MRI estimation, regularization and visualization. In
Proceedings of the 9th International Conference on Com-
puter Vision, Nice, France. IEEE Computer Society, IEEE
Computer Society Press.

Vemuri, B., Chen, Y., Rao, M., McGraw, T., Mareci, T., and
Wang, Z. 2001. Fiber tract mapping from diffusion tensor
mri. In 1st IEEE Workshop on Variational and Level Set
Methods in Computer Vision (VLSM’01).

Viola, P. and Wells III, W. M. 1997. Alignement by maximiza-
tion of mutual information. The International Journal of
Computer Vision 24:137–154.

Westin, C., Maier, S., Mamata, H., Nabavi, A., Jolesz, F., and
Kikinis, R. 2002. Processing and visualization for diffusion
tensor MRI. In In proceedings of Medical Image Analysis,
volume 6(2), pp. 93–108.

Wotawa, N., Thirion, B., Castet, E., Anton, J.-L., and Faugeras,
O. 2003. Efficient human retinotopic mapping using fMRI.
In T. Paus, E. Bullmore, and J. D. Cohen (eds.), NeuroImage
(HBM’03), New York, USA. Academic Press.

Younes, L. 2003. Invariance, déformations et reconnaissance de
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