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Abstract—In this paper, we focus on techniques for vector-valued image regularization, based on variational methods and PDEs.

Starting from the study of PDE-based formalisms previously proposed in the literature for the regularization of scalar and vector-valued

data, we propose a unifying expression that gathers the majority of these previous frameworks into a single generic anisotropic

diffusion equation. On one hand, the resulting expression provides a simple interpretation of the regularization process in terms of local

filtering with spatially adaptive Gaussian kernels. On the other hand, it naturally disassembles any regularization scheme into the

smoothing process itself and the underlying geometry that drives the smoothing. Thus, we can easily specialize our generic expression

into different regularization PDEs that fulfill desired smoothing behaviors, depending on the considered application: image restoration,

inpainting, magnification, flow visualization, etc. Specific numerical schemes are also proposed, allowing us to implement our

regularization framework with accuracy by taking the local filtering properties of the proposed equations into account. Finally, we

illustrate the wide range of applications handled by our selected anisotropic diffusion equations with application results on color

images.

Index Terms—Diffusion PDEs, color image regularization, denoising, inpainting, vector-valued smoothing, anisotropic filtering, flow

visualization.

�

1 INTRODUCTION AND STATE OF THE ART

FOR several years, regularization algorithms have raised a
huge interest in the computer vision and image

processing community. It basically consists of simplifying
a signal or an image, in a way that only interesting features
are preserved while unimportant data (considered as
“noise”) are removed. By the way, such methods have
direct applications for image denoising, but their abilities to
create simplified representations of data are very interesting
as well, when dealing with features extraction (edges and
corners in images for instance). Actually, it is often one of
the key stage performed by high-level algorithms in
computer vision or image processing areas, such as object
recognition, tracking, etc. Regularization algorithms are
used as low-level steps in more complex processing
pipelines and their adequations to the considered problems
are crucial. For these reasons, a lot of regularization
frameworks have already been proposed in the literature.
Pioneering works in this area have been initiated, for
instance, in [1], [3], [18], [19], [21], [34].

In the late 1980s, the framework of nonlinear PDEs (partial
differential equations) led to strong improvements in the
formalization of regularization methods. First created to
describe physical laws and natural motions of mechanic
objects and fluids (strings, water, wind [52]), PDEs were

already widely studied. Interesting results coming from the
fields of physics and mathematics have been recently
extended and used to improve data regularization schemes.
Nonlinear PDEs succeed in smoothing data while preser-
ving large global features such as contours and corners
(discontinuities of the signal) and their use within varia-
tional frameworks has opened new ways to handle classical
image processing issues (restoration, segmentation, regis-
tration, etc.). Thus, many PDE-based schemes have been
presented so far in the literature, particularly for the
regularization of 2D scalar images I : � � IR2 ! IR (see, for
instance, [2], [4], [27], [30], [34], [37], [51], [53], [54] and
references therein).

Another interesting property of nonlinear regularization
PDEs such as @I

@t ¼ R is the notion of scale-space behind: The
data are gently regularized step-by-step and a continuous
sequence of smoother images IðtÞ is generated whereas the
evolution time t goes by. Obviously, such regularization
algorithms must let the less significant data features
disappear first, while the interesting ones are preserved as
long as they become unimportant themselves within the
image. Roughly speaking, regularization PDEs may be seen
as nonlinear filters that simplify the image little by little and
minimize then the image variations. Note, therefore, that
they generally do not converge toward a very interesting
solution. Most of the time, the image obtained at conver-
gence (t! 1) is constant, corresponding to an image
without any variations: This is actually the most simplified
imagewe can obtain. To avoid this effect, denoising algorithms
are usually based on a regularization termR coupled with a
data attachment term ðInoisy � IÞ, also called fidelity term. It
avoids the expected solution (regularized image) at conver-
gence to be too different from the original noisy image (not
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constant, by the way). Another classical restoration techni-
que is done by stopping the pure regularization flow @I

@t ¼ R
after a finite number of iterations. In this article, we are
mainly interested in the regularization term behavior rather
than the fidelity term. For an interesting mathematical study
about fidelity terms, please refer to [29], [31].

Extensions of these nonlinear regularization PDEs to
vector-valued images I : � ! IRn have been recently pro-
posed, leading to more elaborated expressions: A coupling
between image channels generally appears in the equations,
through the consideration of a local vector geometry, given
pointwise by the spectral elements �þ; �� (positive eigen-
values) and �þ; �� (orthogonal eigenvectors) of the
2� 2 symmetric and semi-positive-definite matrix, also
called structure tensor [45], [48], [51], [55]:

G ¼
X

n

j¼1

rIjrITj :

Each rIj corresponds to the spatial gradient of the jth
channel (i.e., vector component) of the vector-valued
image I. As demonstrated in [55], the structure tensor G

is particularly interesting since the eigenvalues ��, respec-
tively, define the local min/max vector-valued variations of I
in corresponding spatial directions �� (eigenvectors), i.e.,
the spectral elements of G define the local geometry of the
vector-valued image discontinuities. (Note that �þ ¼ krIk and
�þ ¼ rI=krIk for scalar images, when n ¼ 1).

Starting from this basis, we can classify diffusion PDE’s
schemes proposed in the literature into one of these three
following approaches, related to different interpretation
levels of the regularization process, described in Sections 1.1,
1.2, and 1.3 below.

1.1 Functional Minimization

Regularizing an image Imay be seen as the minimization of
a functional EðIÞ measuring a global image variation. The
idea is that minimizing this functional will flatten the image
variations, then gradually remove the noise:

min
I:�!IRn

EðIÞ ¼
Z

�

�ðN ðIÞÞ d�; ð1Þ

where NðIÞ is a norm related to local image variations and
� : IR ! IR is an increasing function. One often chooses
NðIÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�þ þ ��
p

for vector-valued images [7], [10], [33],
[41], [46], [47], but other norms are possible such as NðIÞ ¼

ffiffiffiffiffiffi

�þ
p

[9], [35], [36], or NðIÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�þ � ��
p

[38], [49], [50]. For
scalar images I : � ! IR, these norms naturally reduce to
the same expression NðIÞ ¼ krIk. Then, the minimization
of (1) is performed through a gradient descent (PDE),
coming from the Euler-Lagrange equations of EðIÞ.

This technique has been widely used in the context of
scalar images [4], [15], [16], [24], [25], [54], for instance, by
minimizing the area of a surface representing the image
(Fig. 1). Corresponding references for vector-valued images
are: [10], [22], [33], [37], [39], [42], [44].

1.2 Divergence Expressions

A regularization process may be also more locally designed,
as a diffusion of pixel values, viewed as chemical
concentrations or temperatures [51], [20], and directed by
a 2� 2 diffusion tensor D (symmetric and definite-positive
matrix):

@Ii
@t

¼ div ðDrIiÞ ði ¼ 1::nÞ: ð2Þ

It is generally assumed that the spectral elements of D give
the two weights and directions of the local smoothing
performed by (2). D is then specially designed from the
spectral elements of the structure tensor G in order to
anisotropically smooth I, while taking its intrinsic local
geometry into account, preserving its global discontinuities.
Anyway, we will show throughout this paper that the
interpretation of the PDE (2) in terms of local smoothing is
not so obvious. Actually, the spectral shape of the tensors D
is not always representative of the effective smoothing
performed by (2). This can be easily understood as follows:
Let us consider a simple case of two different “divergence”
tensors D1 and D2 defined by

D1 ¼
Id

krIk and D2 ¼
1

krIk3
ðrIrIT Þ:

D1 is isotropic (since it is only a weighted identity matrix)
while D2 is purely anisotropic (only one eigenvalue is
nonzero). Nevertheless, it is easy to verify that

div ðD1rIÞ ¼ divðD2rIÞ ¼ div
rI
krIk

� �

;

which actually corresponds to the well-known TV mini-
mization of scalar images: Two tensors with very different
shapes lead to the same equation, accordingly to the same
regularization behavior.
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Fig. 1. Example of image restoration with surface area (functional) minimization. (a) Noisy image. (b) Corresponding surface. (c) Restored image.

(d) Corresponding surface.



1.3 Oriented Laplacians

2D image regularization may be finally seen as the
simultaneous juxtaposition of two oriented 1D heat flows,
leading to 1D Gaussian smoothing processes along ortho-
normal directions �?�, with different weights c1 and c2 [26],
[38], [45], [48] (Fig. 2):

@I

@t
¼ c1

@2I

@�2
þ c2

@I

@�2
¼ c1 I�� þ c2 I��: ð3Þ

Like divergence expressions, the smoothing weights c1; c2
and directions �; � are directly designed from the spectral
elements �� and �� of G, in order to perform edge-
preserving smoothing, mainly along the direction ��
orthogonal to the image discontinuities.

1.4 Link between the Three Formulations

The link between these three formulations is generally not
trivial, especially for vector-valued images. Actually, it is
well known for the classical case of �-functional regulariza-
tion of scalar images (n ¼ 1): One can start from a
regularizing functional minimization (A) and find the
corresponding divergence-based (B) and oriented-lapla-
cians (C) based formulations:

ðAÞ min
I:�!IR

Z

�

�ðkrIkÞ d�

) ðBÞ @I
@t

¼ div
�0ðkrIkÞ
krIk rI

� �

) ðCÞ @I
@t

¼ �0ðkrIkÞ
krIk I�� þ �00ðkrIkÞ I��;

ð4Þ

where � ¼ rI=krIk and �?�. Note that this regularization
generally leads to anisotropic smoothing (in the sense that it is
performed in privileged spatial directions with different
weights), despite the isotropic shape of the corresponding
divergence-based tensor D ¼ �0ðkrIkÞ

krIk Id.
In this paper, we propose a way to find such links for the

more general case of vector-valued regularization based on
PDEs. We tackle each of these three interpretation levels (1),
(2), and (3) in their more general forms, and derive the
corresponding equations. We particularly show that the
oriented-Laplacian formalism has an interesting interpreta-
tion in terms of local filtering, and represents the right
smoothing geometry performed by the PDEs. Thus, it
allows us to design a new and efficient vector-valued

regularization approach, respecting desired local smoothing

properties (Section 4), as well as propose new and adapted

numerical schemes (Section 6). Finally, we apply our

method to solve a wide range of image processing issues,

including color image restoration, inpainting, magnifica-

tion, and flow visualization (Section 7).

2 FROM VARIATIONAL TO DIVERGENCE FORMS

We first consider vector-valued image regularization as a

variational problem. We want to find the corresponding

divergence-based expression, i.e., the link ðAÞ ) ðBÞ.

2.1 A Generic Functional

Instead of regularizing a functional such as (1) depending

on a predefined variation norm NðIÞ, we would rather

propose to minimize this more generic  -functional:

min
I:�!IRn

EðIÞ ¼
Z

�

 ð�þ; ��Þ d�: ð5Þ

As vector-valued images possess two distinct variation

estimators �þ and �� (eigenvalues of the structure tensor

G ¼ Pn
j¼1 rIjrITj ), it seems natural to minimize a func-

tional defined by a function  : IR2 ! IR of two variables

instead of a single one. This is actually a generic extension

of the �-function formulation for vector-valued images (4).

2.2 Corresponding Euler-Lagrange Equations

The Euler-Lagrange equations of (5) can be derived and
reduced to a simple form of divergence-based expression (see
Appendix A which can be found on the Computer Society
Digital Library at http://computer.org/tkde/archives.htm
for details about this Euler-Lagrange derivation):

@Ii
@t

¼ div ðDrIiÞ ði ¼ 1::nÞ; ð6Þ

where the 2� 2 diffusion tensor D is defined as:

D ¼ @ 

@�þ
�þ�

T
þ þ @ 

@��
���

T
�:

It results then in a divergence-based equation such as (2),
where the diffusion tensor D is simply defined from the
partial derivatives of  , and the eigenvectors �þ; �� of G.
Note that the tensor D has the same orientation as the
structure tensor G (same eigenvectors).

2.3 Link with Other Approaches

The choice of particular cases of  -functions leads to

previous vector-valued regularization approaches defined

as variational methods, such as the whole range of vector-

valued �-functionals [33], [42]:

 ð�þ; ��Þ ¼ �ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�þ þ ��
p

Þ
or the Beltrami flow framework [22]:

 ð�þ; ��Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ �þÞð1þ ��Þ
p

:

More generally, our variational approach (5) shows that the

eigenvalues of a divergence tensor D can be seen as the

gradient of a potential function  , linked to the functional (5).
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Fig. 2. Principle of regularization techniques based on oriented

Laplacians: Two 1D smoothing are done along orthogonal axes � and

� that are different for each image points.



If such a potential  exists, it is easy to find the energy (5)

corresponding to a given divergence-based expression (6).
Note that the problemof the local geometric interpretation

of (6) in terms of smoothing weights and directions also

applies here. As illustrated by the scalar-valued �-functional

case (4), D may not represent the right smoothing geometry

of the regularization process.

3 FROM DIVERGENCES TO ORIENTED LAPLACIANS

We rather want to develop divergence forms as (6) into

their corresponding oriented Laplacian formulations, i.e., find

the link ðBÞ ) ðCÞ. Actually, Oriented Laplacians are

particularly well designed to geometrically understand

the underlying smoothing process performed by the PDE.

3.1 Geometric Meaning of Oriented Laplacians

Let us consider the oriented Laplacian-based equation (3).

As �?�, this PDE can be equivalently written as:

@Ii
@t

¼ c1 Ii�� þ c2 Ii�� ¼ trace ðTHiÞ ði ¼ 1::nÞ; ð7Þ

where Hi is the Hessian matrix of the vector component Ii and

T is the 2� 2 tensor defined by: T ¼ c1��
T þ c2��

T ,

characterized by its two eigenvalues c1; c2 and its two

corresponding eigenvectors �; �. Let us suppose first that T

is a constant tensor over the definition domain �.
Then, the formal solution of the PDE (7) is:

IiðtÞ ¼ Iiðt¼0Þ � GðT;tÞ ði ¼ 1::nÞ; ð8Þ

where � stands for the convolution operator and GðT;tÞ is an

oriented Gaussian kernel, defined by:

GðT;tÞðxÞ ¼ 1

4�t
exp �xTT�1x

4t

� �

with x ¼ ðx yÞT :

ð9Þ

Proof. From the expression (9), we can compute the

temporal and spatial derivatives of GðT;tÞ:

@GðT;tÞ

@t
¼ � 1

4�t2
exp �xTT�1x

4t

� �

1� xTT�1x

4t

� �

and

rGðT;tÞ ¼ � 1
8�t2 exp � xTT�1x

4t

� �

T�1x

HGðT;tÞ ¼ � 1
8�t2 exp � xTT�1x

4t

� �

T�1 Id� xxTT�1

2t

� �

;

8

<

:

where rGðT;tÞ and HGðT;tÞ are, respectively, the gradient
and the Hessian of GðT;tÞ.

It means that

traceðT HGðT;tÞÞ ¼ � 1

8�t2
exp �xTT�1x

4t

� �

trace Id� xxTT�1

2t

� �

¼ � 1

8�t2
exp �xTT�1x

4t

� �

2� xTT�1x

2t

� �

¼ @GðT;tÞ

@t
:

And, as the convolution is a linear operation, we have

@ðIi0 �GðT;tÞÞ
@t

¼ Ii0 �
@GðT;tÞ

@t

¼ Ii0 � traceðT HGðT;tÞÞ
¼ traceðT HIi0�GðT;tÞÞ

as well as

lim
t!0

ðIiðtÞ �GðT;tÞÞ ¼ Ii0

which tells us that the initial condition at t ¼ 0 is
coherent both for the PDE and the convolution process,
since the Gaussian function GðT;tÞ is normalized. tu
It is a generalization of the Koenderink’s idea [23], who

proved this property in the field of computer vision for the
isotropic diffusion tensor T ¼ Id, resulting in the well-known
heat flow equation: @Ii@t ¼ �Ii.

Fig. 3 illustrates two Gaussian kernels GðT;tÞðx; yÞ,
respectively, obtained with isotropic and anisotropic ten-
sors T (up) and the corresponding evolutions of the
diffusion PDE (7) on a color image (down). It is worth to
notice that the Gaussian kernels GðT;tÞ give the classical
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Fig. 3. Trace-based PDEs (7) viewed as convolutions by oriented 2D Gaussians.



representations of the tensors Twith ellipsoids. Conversely,
it is clear that the tensors T represent the exact geometry of
the smoothing performed by the PDE (7).

When T is not constant (which is generally the case), i.e.,
represents a field � ! Pð2Þ of variable diffusion tensors, the
PDE (7) becomes nonlinear and can be viewed as the
application of temporally and spatially varying local masks
GðT;tÞðxÞ over the image I. Fig. 4 illustrates two examples of
spatially varying tensor fields T, represented with fields of
ellipsoids (up), and the corresponding evolutions of (7) on a
color image (down). As before, the shape of each tensor T gives
the exact geometry of the local smoothing process performed by
the trace-based PDE (7) point by point.

Note that this local filtering concept makes the link
between a generic form of vector-valued diffusion PDEs
expressed through a trace operator (7) and the Bilateral
filtering techniques, as described in [5], [43]. Another similar
approach based on non-Gaussian convolution kernels has
been also proposed for the specific case of Beltrami Flow in
[40].

With the PDE (7), we are naturally disassembling the
regularization itself and its underlying smoothing geome-
try, which is given by the spectral elements of a trace-tensor
T. Conversely to divergence equations, the choice of the
tensor is unique here: The shape of the trace tensor T is
really giving the correct smoothing geometry performed by
the PDE (7).

3.2 Trace-Based and Divergence-Based Tensors

Differences between divergence tensors D in (2) and trace
tensors T in (7) can be understood as follows: We can
develop the divergence equation (2) as:

div ðDrIiÞ ¼ trace ðDHiÞ þ rITi div
!

ðDÞ;
where div

!
ðÞ is defined as a divergence operator acting on

matrices and returning vectors:

if D ¼ ðdijÞ;div
!

ðDÞ ¼ divðd11 d12ÞT
divðd21 d22ÞT

� �

:

Then, an additional termrITi div
!

ðDÞ appears, connected
to the spatial variation of the tensor field D. It may perturb

the smoothing behavior given by the first part trace ðDHiÞ,
which actually corresponds to a local smoothing directed by

the spectral elements of D. As a result, the divergence-

based equation (2) may smooth the image I with weights

and directions that are different than the spectral elements of

D. This is actually the case for the scalar �-function

formulation (4), where the smoothing process does not

behave finally and, fortunately, as an isotropic one, despite

the isotropic form of the divergence tensor D ¼ �0ðkrIkÞ
krIk Id.

3.3 Developing the Divergence Form

Actually, if we consider that the divergence tensor D only
depends on the spectral elements of the structure tensor G:

D ¼ f1ð�þ; ��Þ�þ�Tþ þ f2ð�þ; ��Þ���T� ð10Þ

with f1; f2 : IR
2 ! IR, (which is the case for most of the

proposed equations in the literature), then we can develop

the corresponding divergence equation div ðDrIiÞ into

oriented Laplacians, i.e., this trace-based PDE (full demon-

stration can be found in Appendix B which can be found on

the Computer Society Digital Library at http://computer.

org/tkde/archives.htm):

div ðDrIiÞ ¼
X

n

j¼1

trace ð�ijDþQijÞHj

� �

; ð11Þ

where the Qij designates a family of n2 matrices (i; j ¼ 1::n),
defined as the symmetric parts of the following matrices Pij

(then, Qij ¼ ðPij þPijT Þ=2):

Pij ¼ � rITi rIjId

þ 2
@�

@�þ
�þ�

T
þ þ @�

@��
���

T
�

� �

rIjrITi G

þ 2 �þ @	

@�þ

� �

�þ�
T
þ þ �þ @	

@��

� �

���
T
�

� �

rIjrITi
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Fig. 4. Trace-based PDEs (7) with nonconstant diffusion tensor fields T. Interpretation in terms of nonlocal filtering.



with

� ¼ f1ð�þ; ��Þ � f2ð�þ; ��Þ
�þ � ��

and

	 ¼ �þf2ð�þ; ��Þ � ��f1ð�þ; ��Þ
�þ � ��

:

This development (11) expresses a whole range of

previously proposed vector-valued regularization algo-

rithms (variational and divergence based PDEs) into an

extended trace-based equation, composed of several channel-

diffusion contributions that have direct geometric interpreta-

tions in terms of local filtering. The interesting point is that

additional diffusion tensors Qij are appearing and contribute

to modify the smoothing behavior which is finally not given by

the initial divergence tensor D.

4 A UNIFIED EXPRESSION

From these previous developments, we can now define a

generic vector-valued regularization PDE:

@Ii
@t

¼
X

n

j¼1

trace ðAijHiÞ ði ¼ 1::nÞ; ð12Þ

where the Aij forms a family of 2� 2 symmetric matrices,

and the Hi designate the Hessian matrices of Ii. Actually,

this expression can be equivalently written with a slight

abuse of notations, in a super-matrix form:

@I

@t
¼ trace

!
ðAHÞ; ð13Þ

where A is the matrix of diffusion tensors Aij (and is itself

symmetric), and H is the vector of Hessian matrices Hj. The

matrix product AH in (13) is then seen submatrix by

submatrix, and the operator trace
!

ðÞ returns the vector in

IRn, corresponding to the trace of each submatrix in the

resulting vector of matrices.

4.1 Link with Previous Expressions

The PDE (12) is a unifying equation that can be used to
describe a wide range of vector-valued regularization:

. First, it develops both variational and divergence-
based approaches (that can be written as

@Ii
@t

¼ div ðDrIiÞ;

as developed in Section 2) into a very local
formulation. This particularly includes the works
done in [10], [20], [22], [33], [37], [39], [42], [48], [51]
among others. As described above, the 2� 2 tensors
Aij are then defined to be Aij ¼ �ijDþQij. Note
that the Qij (i 6¼ j) corresponds here to diffusion
contributions of other channels Ij in the current one
Ii. This kind of diffusion energy transfer can be
considered as a particular coupling of the corre-
sponding vector-valued diffusion PDE.

. Second, the PDE (12) also gathers the oriented-
Laplacian formulations @Ii

@t ¼ trace ðTHiÞ, by choos-
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Fig. 5. Numerical schemes.

Fig. 6. Comparisons of numerical schemes. (a) Noisy image, (b) scheme using Hessian discretization, and (c) scheme using local filtering

techniques.

Fig. 7. Using our vector-valued regularization PDE’s, to restore a color

image artificially degraded (added a mixture of Salt & Pepper and

Gaussian noises).



ing Aij ¼ �ijT. In this case, the supermatrix A is
diagonal and no diffusion energy transfer occurs
between image channels Ii. The vector coupling is
only done through the use of the structure tensor G
for the computation of the local smoothing geome-
try. This unifies the formulations proposed in [26],
[38], [45], [48].

5 A NEW REGULARIZATION PDE

We propose now to design a new vector-valued regulariza-

tion PDE that follows desired local geometric properties

(particularly for image denoising). These constraints will

naturally define a specific form of regularization PDE, from

the very generic form (12):

. We do not want to mix diffusion contributions
between image channels. The desired coupling
between vector components Ii should only appear
in the diffusion PDE through the computation of the
structure tensor G, in order to control the local
smoothing behavior of the regularization process.
This means we have to define only one diffusion
tensor A, then choose Aij ¼ �ijA. Undesired cou-
pling terms are then avoided.

. On homogeneous regions (corresponding to low
vector variations), we want to perform an isotropic
smoothing, i.e., a 2D heat flow that smoothes the
noise efficiently with no-preferred directions:
@Ii
@t ’ �Ii ¼ traceðHiÞ. The tensor A must then be
isotropic in these regions:

lim
ð�þþ��Þ!0

A ¼ �Id:

. On vector edges (corresponding to high vector
variations), we want to perform an anisotropic smooth-
ing along the vector edges ��, in order to preserve them
while removing the noise: @Ii

@t ¼ trace ð	����THiÞ,
where 	 is a function decreasing anyway for very
high variations, avoiding the oversmoothing of sharp
corners. The tensor A must be anisotropic in these
regions:

lim
ð�þþ��Þ!1

A ¼ 	���
T
�:

The following multivalued regularization PDE respects

all these local geometric properties:

@Ii
@t

¼ trace ðTHiÞ ði ¼ 1::nÞ; ð14Þ

where T is the tensor field defined pointwise as:

T ¼ f�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��þ þ ���
p

� �

����
�
�
T þ fþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��þ þ ���
p

� �

��þ�
�
þ
T :

��� and ��� are defined to be the spectral elements of
G
 ¼ G �G
, a Gaussian smoothed version of the structure
tensor G, allowing us to retrieve a more coherent vector-
geometry and giving a better approximation of the vector
discontinuities directions (see also [51]). For our experi-
ments in Section 7, we chose

fþðsÞ ¼
1

1þ s2
and f�ðsÞ ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p :

This is, of course, one possible “empiric” choice (inspired

from the hypersurface formulation of the scalar case [4]) that

verifies the above geometric properties, relying on practical

experience.
The point is that we can easily adapt the weighting

functions fþ and f� to obtain regularization behaviors for
specific problems, since we are sure of the local smoothing
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Fig. 8. Using our vector-valued regularization PDE (14), for color image
restoration. (a) Noisy color image and (b) restored color image.

Fig. 9. Using our vector-valued regularization PDE (14), for improvement
of lossy compressed images. (a) Lossy compressed JPEG image and
(b) Improved color image.



process performed by (14). This vector-valued regulariza-

tion equation smoothes the image in coherent spatial

directions and preserves then well the edges, by allowing

only the necessary geometric coupling between vector

channels Ii. Its form has steadily followed the local analysis

of classical multivalued regularization algorithms.
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Fig. 10. Using vector-valued regularization PDE’s for color image inpainting (2). (a) Image with undesired text. (b) Inpainted color image. (c) Zoom of

(a). (d) Zoom of (b). (e) Original color image. (f) Image + Inpainting mask. (g) Inpainted image.



6 NUMERICAL SCHEMES

The numerical implementation of the PDE (14) can be done

with classical numerical schemes, based on spatial dis-

cretizations with centered finite differences of the gradients

and the Hessians [28]. Here, we propose an alternative

approach based on the local filtering interpretation of trace-

based equations (7), proposed in Section 3. The idea is as

follows: The smoothing can be locally performed by

applying a spatially varying mask over the image. For each

point ðx; yÞ of the image I, we compute the oriented

Gaussian kernel GðT;tÞ corresponding to the tensor T,

defined by (14). Then, we apply it on each local neighbor-

hood Iiðx; yÞ, as shown in Fig. 5.
The main advantages of this numerical scheme are:

1. It numerically preserves the maximum principle since
the local filtering is done only with normalized kernels.

2. It is more precise, since the computed local kernel
corresponds exactly to the smoothing to perform. No
(imprecise) second derivatives have to be computed
(Fig. 6), and local filtering kernel is better oriented.

As for the shortcomings of this scheme, we have to

mention that it is more time-consuming, since we have to

compute a different Gaussian kernel (i.e., exponential

functions) at each image point and for each iteration. For

our experiments, we chose 5� 5 convolution kernels (Fig. 6).

Note how edge details are better preserved in Fig. 6c (look

at the glint inside the eye).

7 APPLICATIONS

We illustrate here the wide range of image processing

applications thatwecanhandlewithourpresentedapproach,

through our vector-valued regularization PDE (14).

7.1 Color Image Restoration

Despite the emergence of digital cameras, color image

restoration may be still needed. Fig. 8 represents a digital

photographwith real noise, due to the bad lighting conditions

during the snapshot. Our vector-valued regularization PDE

can successfully remove the noise, while preserving the

global features of the image (see also Fig. 7).

7.2 Improvement of Lossy Compressed Images

Digital images, due to their big memory size, are often
stored in a more compact form obtained with lossy
compression algorithms (JPEG being the most popular). It
often introduces visible image artefacts: For instance, bloc
effects are classical JPEG drawbacks. Using our flow (14)
significantly improves the quality of such degraded images
(Fig. 9). In this case, we chose a high parameter 
 (variance
of the structure tensor presmoothing), since a lot of
structures in this image are quite linear. It helps then to
retrieve linear structure, such as the gnome’s hair.

7.3 Color Image Inpainting

Recently, an interesting application of diffusion PDEs

named image inpainting, has been proposed in [8], [12],

[13], [14]. It consists of filling undesired holes (defined by
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Fig. 11. Using vector-valued regularization PDEs for image reconstruction. (a) Color image, (b) removing 50 percent of the pixels, and

(c) reconstructured image.

Fig. 12. Using vector-valued regularization PDE’ for image magnification

(�4). (a) Original color image (64� 64). (b) Bloc interpolation. (c) Linear

interpolation. (d) Interpolation with PDEs.



the user) in an image by interpolating the data located at the
neighborhood of the holes. It is possible to do that by
applying our PDE (14) only in the holes to fill: boundaries
pixels will be diffused until they completely fill the missing
regions, in a structure-preserving way. Important issues may
be solved with this kind of algorithms as, for instance:
removing text on images (Fig. 10), removing real objects in
photographs (Fig. 10) or reconstruct partially coded images
for image compression purposes (Fig. 11).

7.4 Color Image Magnification

With the same techniques, one can easily perform image
magnification. Starting from a linear interpolation of a small
image, and applying our PDE (14) on the image (excepted
on the original known pixels), we can retrieve nonlinear
magnified images without jagging or bloc effects, inherent
to classical linear interpolation techniques (Fig. 12).

7.5 Flow Visualization

Considering a 2D vector field F : � ! IR2, we have several
ways to visualize it. We can first use vectorial graphics (Fig.
13a), but we have to subsample the field since this kind of
representation is not adapted to represent big flows. A
better solution is as follows: We smooth a completely noisy
(color) image I, with a regularizing flow equivalent to (14)
but where T is directed by the directions of F , instead of the
local geometry of I:

@Ii
@t

¼ trace
1

kFkFF T
� 	

Hi

� �

ði ¼ 1::nÞ: ð15Þ

Whereas the PDE evolution time t goes by, more global
structures of the flow F appear, i.e., a visualization scale-
space of F is constructed (Fig. 14). Here, our used
regularization equation (15) ensures that the smoothing of the
pixels is done exactly in the direction of the flow F . This is not
the case in [6], [11], [17], where the authors based their
equations on a divergence expression. Using similar
divergence-based techniques would raise a risk of smooth-
ing the image in false directions, as this has been pointed
out in Section 3.

8 CONCLUSION and PERSPECTIVES

In this paper, we proposed a new formalism allowing to
express a large set of previous vector-valued regularization
approaches within a common local expression. This

formulation is particularly adapted to understand the local

smoothing behavior of diffusion PDEs. Indeed, it explains

the link between the diffusion tensor shapes in divergence

or trace-based equations, and the actual smoothing per-

formed by these processes, in term of local filtering. From

this general study, we defined a new and particular

regularization equation, based on the respect of a coherent

anisotropic smoothing preserving the global features of

vector images. We proposed as well specific numerical

schemes adapted for accurate implementations. The appli-

cation to several problems related to color images and flow

visualization illustrated the efficiency of our method to deal

with concrete cases based on the use of vector-valued

regularization processes.

Note 1: Other applications results and color demos can be

found at the following URL: http://www-sop.inria.fr/

odyssee/research/tschumperle-deriche:02d/appliu/in

dex.html.
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Fig. 13. Using our vector-valued regularization PDE (15), for flow visualization (1). (a) Flow visualization with arrows. (b) Flow visualization with

diffusion PDEs (5 iter.). (c) Flow visualization with diffusion PDEs (15 iter.).

Fig. 14. Using our vector-valued regularization PDE (15), for flow

visualization (2).



Note 2: The implementation of the proposed equation, as

well as the code source is a part of the CImg Library, a

powerful and open-source C++ Image Processing Li-

brary, located at: http://cimg.sourceforge.net.
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I. A PPENDIX A

The Euler-Lagrange equations corresponding to the functional (5) are :

∂Ii
∂t

= div


∂ψ

∂Iix

∂ψ

∂Iiy

 (i = 1..n) (1)

Actually, the vector( ∂ψ
∂Iix

, ∂ψ
∂Iiy

)T can be written in a more comprehensive form.
From the chain-rule property of the derivation, we have :

∂ψ

∂Iix

∂ψ

∂Iiy

 =


∂λ+

∂Iix

∂λ−
∂Iix

∂λ+

∂Iiy

∂λ−
∂Iiy




∂ψ

∂λ+

∂ψ

∂λ−

 (2)

We know formally the expressions∂ψ
∂λ±

since the functionψ is directly defined from theλ±.

Finding the ∂λ±
∂Iix

and ∂λ±
∂Iiy

is more tricky. Here is a simple way to proceed :

As theλ± are the eigenvalues of the structure tensorG = (gkl), we may decompose its derivatives (with
respect toIix andIiy ), in terms of derivatives with respect to thegkl :

∂λ±
∂Iix

=
∑
k,l

∂λ±
∂gkl

∂gkl
∂Iix

and
∂λ±
∂Iiy

=
∑
k,l

∂λ±
∂gkl

∂gkl
∂Iiy

(3)

The expressions∂gkl
∂Iix

and ∂gkl
∂Iiy

are particularly simple :
∂g11

∂Iix
= 2Iix

∂g11

∂Iiy
= 0

and


∂g12

∂Iix
= Iiy

∂g12

∂Iiy
= Iix

and


∂g22

∂Iix
= 0

∂g22

∂Iiy
= 2Iiy

i.e (18) can be written as : 
∂λ±
∂Iix

∂λ±
∂Iiy

 =


2
∂λ±
∂g11

∂λ±
∂g12

∂λ±
∂g12

2
∂λ±
∂g22

 ∇Ii (4)

Thus, one last obstacle remains to be crossed, that is finding the formal expressions of∂λ±
∂gkl

.
Remind that theλ± andθ± are the eigenvalues and eigenvectors of the structure tensorG :

G = λ+ θ+θ
T
+ + λ− θ−θT−

The derivation of this tensor, with respect to one of its coefficientgkl is :
∂G

∂gkl
=

∂λ+

∂gkl
θ+θ

T
+ +

∂λ−
∂gkl

θ−θT− (5)

+ λ+
∂θ+

∂gkl
θT+ + λ−

∂θ−
∂gkl

θT−

+ λ+ θ+

∂θT+
∂gkl

+ λ− θ−
∂θT−
∂gkl
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Moreover, as theθ± are unitary and orthogonal eigenvectors, we have : θT+θ+ = θT−θ− = 1

θT+θ− = θT−θ+ = 0
and


∂θT+
∂gkl

θ+ = θT+
∂θ+

∂gkl
= 0

∂θT−
∂gkl

θ− = θT−
∂θ−
∂gkl

= 0

(6)

We first multiply the equation (5) byθT± at the left, byθ± at the right, then use the properties (6). It
allows high simplifications, and leads to these two relations :

∂λ+

∂gkl
= θT+

∂G

∂gkl
θ+ and

∂λ−
∂gkl

= θT−
∂G

∂gkl
θ− (7)

Equations (7) formally tell us how eigenvalues of a diffusion tensorG vary with respect to a particular
coefficient gkl of G. Actually, this interesting property can be proved for any symmetric matrix. For
instance, authors of [32] proposed a similar demonstration in a purely matrix form, leading to the same
result. They used it to deal with general covariance matrices.

Moreover in our case, the matrices∂G
∂gkl

are very simple :

∂G

∂g11

=

(
1 0
0 0

)
,

∂G

∂g12

=

(
0 1
1 0

)
and

∂G

∂g22

=

(
0 0
0 1

)
With all these elements, we can express (4) as :

∂λ+

∂Iix

∂λ+

∂Iiy

 = 2 θ+θ
T
+∇Ii and


∂λ−
∂Iix

∂λ−
∂Iiy

 = 2 θ−θT−∇Ii (8)

Finally, replacing (8) in the Euler-Lagrange equations (2) and (1), gives the vector-valued gradient
descent of the functional (5) :

min
I:Ω→Rn

∫
Ω

ψ(λ+, λ−) dΩ =⇒ ∂Ii
∂t

= 2 div

([
∂ψ

∂λ+

θ+θ
T
+ +

∂ψ

∂λ−
θ−θT−

]
∇Ii
)

(9)

(for i = 1..n) �
Note that (9) is a divergence-based equation such that :

∂Ii
∂t

= div (D∇Ii) where D = 2
∂ψ

∂λ+

θ+θ
T
+ + 2

∂ψ

∂λ−
θ−θT−

D ∈ P(2) is then a2× 2 diffusion tensor, whose eigenvalues are :

λ1 = 2
∂ψ

∂λ+

and λ2 = 2
∂ψ

∂λ−
associated to these corresponding orthonormal eigenvectors :

u1 = θ+ and u2 = θ−
It is also worth to mention that computing this gradient descent is done exactly in the same way,

when dealing with image domainsΩ defined in higher dimensional spaces (Ω ⊂ Rp wherep > 2) More
particularly, the case of 3D volume regularization (p = 3) can be written as :

min
I:Ω→Rn

∫
Ω

ψ(λ1, λ2, λ3) dΩ =⇒ ∂Ii
∂t

= 2 div

([
∂ψ

∂λ1

θ1θ
T
1 +

∂ψ

∂λ2

θ2θ
T
2 +

∂ψ

∂λ3

θ3θ
T
3

]
∇Ii
)

In this case, theλ1,2,3 are the three eigenvalues of the3 × 3 structure tensorG, and θ1,2,3 are the
corresponding orthonormal eigenvectors.
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II. A PPENDIX B

Most divergence-based regularization PDE’s acting on multivalued images have the following form :

∂Ii
∂t

= div (D∇Ii) (i = 1..n) (10)

whereD is a diffusion tensor basedonly on first orderoperators. The fact is thatD is often computed
from the structure tensorG =

∑n
j=1∇Ij∇ITj and depends mainly on the spatial derivativesIix and Iiy .

Intuitively, as the divergencediv () = ∂
∂x

+ ∂
∂y

is itself a first order derivative operator, we should be
able to write (10) only with first and second spatial derivativesIix, Iiy , Iixx, Iixy andIiyy . Thus, it could
be expressed with oriented Laplacians in each image channelIi as well, i.e an expression based on the
trace operator∂Ii

∂t
= trace (DHi).

We want to make the link between the two different diffusion tensorsD andT in the divergence-based
and trace-based regularization PDE’s, in the case whenD is not constant:

∂Ii
∂t

= div (D∇Ii) and
∂Ii
∂t

= trace (THi)

As we noticed in the previous section, these two formulations are almost equivalent, up to an additional
term depending on thevariation of the tensor fieldD :

div (D∇Ii) = trace (DHIi) +∇ITi ~div (D) (11)

where ~div () is thematrix divergence.
A natural idea is then to decompose the additional term∇ITi ~div (D) into oriented Laplacians,

expressed with additional diffusion tensorsQ in the trace operator.

For this purpose, we will consider that the divergence tensorD is defined at each pointx ∈ Ω by

D = f1(λ+, λ−) θ+θ
T
+ + f2(λ+, λ−) θ−θT− with f1/2 : R2 → R (12)

It means thatD is only expressed from the eigenvaluesλ± and the eigenvectorsθ± of the structure tensor
G :

G = λ+ θ+θ
T
+ + λ− θ−θT−

This is indeed a very generic hypothesis that is verified by the majority of the proposed vector-valued
regularization methods, for instance the one proposed in Appendix A :

∂Ii
∂t

= div (D∇Ii) with (12) and


f1(λ+, λ−) = 2

∂ψ

∂λ+

f2(λ+, λ−) = 2
∂ψ

∂λ−

In order to develop the additional diffusion term∇ITi ~div (D) in the equation (11), we propose to write
D as a linear combination ofG andId :

D = α(λ+, λ−)G + β(λ+, λ−)Id (13)

i.e we separate theisotropic andanisotropicparts ofD, with

α =
f1(λ+, λ−)− f2(λ+, λ−)

λ+ − λ− and β =
λ+f2(λ+, λ−)− λ−f1(λ+, λ−)

λ+ − λ− (14)



4

Indeed, we have

αG + βId =
f1 − f2

λ+ − λ− (λ+ θ+θ
T
+ + λ− θ−θT−) +

λ+f2 − λ−f1

λ+ − λ− (θ+θ
T
+ + θ−θT−)

=
1

λ+ − λ−
[
θ+θ

T
+ (λ+f1 − λ−f1) + θ−θT− (λ+f2 − λ−f2)

]
= f1 θ+θ

T
+ + f2 θ−θT−

= D �

Here we assumed thatλ+ 6= λ− (i.e the structure tensorG is anisotropic). Anyway, ifG is isotropic, one
generally chooses anisotropicdiffusion tensorD too, in the divergence operator of (11), i.ef1(λ+, λ−) =
f2(λ+, λ−). In this case, we chooseα = 0 andβ = f1(λ+, λ−).

This decomposition is useful to rewrite the matrix divergence~div (D) into :

~div (D) = α ~div (G) + G∇α +∇β (15)

and the additional term of the equation (11) would be computed as :

∇IT ~div (D) = trace
(
~div (D)∇ITi

)
= αtrace

(
~div (G)∇ITi

)
(16)

+ trace
(
G∇α∇ITi

)
(17)

+ trace
(∇β∇ITi ) (18)

In the following, we propose to find formal expressions of (16), (17) and (18).

• First, remember that the structure tensorG is defined as :

G =
n∑
j=1

∇Ij∇IjT

We have then :

~div (G) =
n∑
j=1

~div

(
I2
jx IjxIjy

IjxIjy I2
jy

)

=
n∑
j=1

(
2 IjxIjxx + IjxIjyy + IjyIjxy
IjxIjxy + IjyIjxx + 2 IjyIjyy

)

=
n∑
j=1

(
Ijx(Ijxx + Ijyy)
Ijy(Ijxx + Ijyy)

)
+

(
IjxIjxx + IjyIjxy
IjxIjxy + IjyIjyy

)

=
n∑
j=1

∆Ij∇Ij + Hj∇Ij

where∆Ij andHj are respectively the Laplacian and the Hessian of the image componentIj.
Then, we can write the expression 16 as :

αtrace
(
~div (G)∇IiT

)
=

n∑
j=1

αtrace
(
Hj

[∇IiT∇IjId +∇Ij∇IiT
])

(19)

�



5

• We finally have to compute∇α and∇β, in the expression (17) and (18). This can be done by the
decomposition :

∇α =
∂α

∂λ+

∇λ+ +
∂α

∂λ−
∇λ− and ∇β =

∂β

∂λ+

∇λ+ +
∂β

∂λ−
∇λ− (20)

and as theλ±, eigenvalues of the structure tensorG, depends on theIjx andIjy :

∇λ± =

(
λ±x
λ±y

)
=

n∑
j=1

(
∂λ±
∂Ijx

Ijxx + ∂λ±
∂Ijy

Ijxy
∂λ±
∂Ijx

Ijxy + ∂λ±
∂Ijy

Ijyy

)

=
n∑
j=1

HIj

( ∂λ±
∂Ixj
∂λ±
∂Iyj

)
In Appendix A, we derivated eigenvalues of a structure tensorG, with respect to the spatial image
derivatives. We ended up with the following relation :( ∂λ±

∂Ixj
∂λ±
∂Iyj

)
= 2θ±θT±∇Ij

Then,

∇λ± =
n∑
j=1

2Hjθ±θT±∇Ij (21)

We can replace (21) into the expressions of (20), in order to find the spatial gradients ofα andβ :

∇α =
n∑
j=1

2Hj

(
∂α

∂λ+

θ+θ
T
+ +

∂α

∂λ−
θ+θ

T
+

)
∇Ij

∇β =
n∑
j=1

2Hj

(
∂β

∂λ+

θ+θ
T
+ +

∂β

∂λ−
θ+θ

T
+

)
∇Ij

(22)

Using (22), we finally compute the two missing parts (17) and (18) of the additional term∇ITi ~div (D) :

trace
(
G∇α∇ITi

)
=

n∑
j=1

trace

(
2 GHj

(
∂α

∂λ+

θ+θ
T
+ +

∂α

∂λ−
θ−θT−

)
∇Ij∇ITi

)

trace
(∇β∇ITi ) =

n∑
j=1

trace

(
2 Hj

(
∂β

∂λ+

θ+θ
T
+ +

∂β

∂λ−
θ−θT−

)
∇Ij∇ITi

) (23)

�
• The final step consists in putting together the equations (19) and (23), in order to express the

additional term∇ITi ~div (D) in the PDE (11).

∇ITi ~div (D) =
n∑
j=1

trace
(
HjP

ij
)

(24)
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where thePij are the following2× 2 matrices :

Pij = α ∇ITi ∇IjId
+ 2

(
∂α

∂λ+

θ+θ
T
+ +

∂α

∂λ−
θ−θT−

)
∇Ij∇ITi G

+ 2

(
(α +

∂β

∂λ+

)θ+θ
T
+ + (α +

∂β

∂λ−
)θ−θT−

)
∇Ij∇ITi (25)

Note that the indicesi, j in the notationPij do not designatethe coefficients of a matrixP, but the
parameters of the family consisting ofn2 matricesPij (each of them is a2× 2 matrix).

The matricesPii are symmetric, but generally not thePij (wherei 6= j), since the gradients∇Ii and
∇Ij are not aligned in the general case.

Yet, we want to express the equation (24) only with symmetric matrices, in order to interpret it as a
sum of local smoothing processes oriented bydiffusion tensors. Fortunately, the trace operator has this
simple property :

trace (AH) = trace

(
A + AT

2
H

)
where(A + AT )/2 is a 2× 2 symmetricmatrix (the symmetric part ofA).

Thus, we define the symmetric matricesQij, corresponding to the symmetric parts of thePij :

Qij =
Pij + PijT

2
(26)

and we have :

∇ITi ~div (D) =
n∑
j=1

trace
(
HjQ

ij
)

Finally, the divergence-based PDE (11) can be written as :

div (D∇Ii) =
n∑
j=1

trace
(
(δijD + Qij)Hj

)
(27)

whereδij is the Kronecker’s symbol :

δij =

{
0 if i 6= j
1 if i = j

�
The regularization PDE (27) is equivalent to the divergence-based equation∂Ii

∂t
= div (D∇Ii), but with

a trace-based formulation.


