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Abstract: This report addresses the problem of vector-valued image regularization
with variational methods and PDE's. From the study of existing global and local
formalisms, we propose a new framework that uni�es a large number of previous
methods within a generic local formulation. On one hand, resulting equations are
more adapted to analyze the local geometric behaviors of the di�usion processes.
On the other hand, it can be used to design a new regularization PDE that takes
important local smoothing properties into account. Speci�c numerical schemes are
also naturally emerging from this formulation. Finally, we illustrate the capability
of our approach to deal with classical image processing applications, such as color
image restoration, inpainting, magni�cation and �ow visualization.

Key-words: Di�usion PDE's, multivalued image regularization, local geometry of
images



Vector-Valued Image Regularization with PDE's :

A Common Framework for Di�erent Applications

Résumé : Ce rapport étudie le problème de la régularisation d'images vectorielles
par des méthodes variationnelles et EDP. A partir de l'étude des formalismes lo-
caux et globaux qui existent déjà pour traiter ce type de problème, nous proposons
une nouvelle vision uni�catrice des EDP de lissage, qui permet d'exprimer avec un
formalisme commun la plupart des équations de régularisation existantes. D'une
part, les équations résultantes sont mieux adaptées pour analyser le comportement
géométrique local des processus de di�usion. D'autre part, ce formalisme peut être
utilisé pour concevoir une nouvelle EDP de régularisation vectorielle, qui possède des
propriétés de lissage locales intéressantes. De plus, des schémas numériques spéci-
�ques émergent naturellement de ce nouveau formalisme. Finalement, nous illustrons
les di�érentes possibilités o�erte par notre nouvelle approche, pour l'application à
de nombreux problèmes de traitement d'images faisant intervenir des processus de
lissage, comme par exemple la restauration d'images couleurs, le 'Inpainting' (rem-
plissage de trous dans l'image), l'interpolation, et la visualisation de �ots.

Mots-clés : EDP de di�usion, regularization d'images multivaluées, géometrie
locale des images



Vector-Valued Image Regularization with PDE's 3

1 Introduction & Motivation

In the late 80's, anisotropic regularization PDE's have raised a strong interest in the
�eld of image processing. The ability to smooth data while preserving large global
features such as contours and corners (discontinuities of the signal), has opened new
ways to handle classical image processing issues (restoration, segmentation, registra-
tion, etc.). Thus, many regularization schemes have been presented so far in the lit-
erature, particularly for the case of 2D scalar images I : Ω ⊂ R

2 → R ([1, 18, 19, 28]
and references therein).
Extensions of these algorithms to vector-valued images I : Ω → R

n have been re-
cently proposed, leading to more elaborated di�usion PDE's : a coupling between

image channels appears in the equations, through the consideration of a local vector

geometry, given pointwise by the spectral elements λ+, λ− (positive eigenvalues) and
θ+, θ− (orthogonal eigenvectors) of the 2 × 2 symmetric and semi positive-de�nite
matrix

G =
n∑
j=1

∇Ij∇ITj

(also called structure tensor [26, 27, 28, 30]). The λ± respectively de�ne the local
min/max vector-valued variations of I in corresponding spatial directions θ±, i.e.
the local geometry of the image discontinuities. (note that λ+ = ‖∇I‖ and θ+ =
∇I/‖∇I‖ for scalar images, n = 1).
Proposed regularization schemes generally lie on one of these three following ap-
proaches, related to di�erent interpretation levels :

1. Functional minimization : Regularizing an image I may be seen as the
minimization of a functional E(I) measuring a global image variation. The
idea is that minimizing this variation will �atten the image, then remove the
noise gradually :

min
I:Ω→Rn

E(I) =
∫

Ω
φ(N (I)) dΩ (1)

where N (I) is a norm related to local image variations and φ : R → R is an
increasing function. One often choosesN (I) =

√
λ+ + λ− for vector-valued im-

ages. Then, the minimization is performed through a gradient descent (PDE),
coming from the Euler-Lagrange equations of E(I). Corresponding references
for vector-valued images can be found in [5, 12, 17, 19, 21, 23, 27],

2. Divergence expressions : A regularization process may be also designed
more locally, as the di�usion of pixel values, viewed as chemical concentrations

RR n° 4657



4 Tschumperlé & Deriche

[28, 11] and driven by a 2 × 2 di�usion tensor D (symmetric and de�nite-
positive matrix) :

∂Ii
∂t

= div (D∇Ii) (i = 1..n) (2)

It is generally assumed that the spectral elements of D give the two weights and
directions of the local smoothing performed by (2). D is then specially designed
from the spectral elements of the structure tensor G in order to anisotropically
smooth I, while taking its intrinsic local geometry into account, preserving its
global discontinuities. Anyway, we will show in this paper that the interpreta-
tion of the PDE (2) in terms of local smoothing is not so obvious.

3. Oriented Laplacians : 2D image regularization may be �nally seen as the
juxtaposition of two oriented 1D heat �ows, leading to 1D gaussian smoothing
processes along orthonormal directions u⊥v, with di�erent weights c1 and c2
[14, 20, 26, 27] :

∂I
∂t

= c1
∂2I
∂u2

+ c2
∂2I
∂v2

= c1 Iuu + c2 Ivv (3)

Like divergence expressions, the smoothing weights c1, c2 and directions u,v
are directly designed from the spectral elements λ± and θ± of G, in order to
perform edge-preserving smoothing, mainly along the direction θ− orthogonal
to the image discontinuities.

The link between these three formulations is generally not trivial, especially for
vector-valued images. Actually, it is well known for the classical case of φ-functional
regularization of scalar images (n = 1). In this case, the three following approaches
are equivalent :

(1) min
I:Ω→R

∫
Ω
φ(‖∇I‖) dΩ (4)

⇒ (2)
∂I

∂t
= div

(
φ

′
(‖∇I‖)
‖∇I‖ ∇I

)

⇒ (3)
∂I

∂t
=
φ

′
(‖∇I‖)
‖∇I‖ Iξξ + φ

′′
(‖∇I‖) Iηη

where η = ∇I/‖∇I‖ and ξ⊥η. Note that this regularization leads to anisotropic

smoothing (in the sense that it is performed in privileged spatial directions with

INRIA



Vector-Valued Image Regularization with PDE's 5

di�erent weights), despite the isotropic shape of the corresponding divergence-based

tensor D = φ
′
(‖∇I‖)
‖∇I‖ Id.

In this paper, we propose a way to �nd such equivalences for the more general case
of vector-valued regularization. We tackle each of these three interpretation levels
(1),(2),(3) in its more general form, and derive the corresponding equations. We
particularly show that the oriented-Laplacian formalism has an interesting interpre-
tation in terms of local �ltering, and represents the right smoothing geometry per-
formed by the PDE's. Thus, it allow us to design a new and e�cient vector-valued
regularization approach, respecting desired local smoothing properties (section 4), as
well as propose new and adapted numerical schemes (section 5). Finally, we apply
our method to solve a wide range of image processing issues, including color image
restoration, inpainting, magni�cation, and �ow visualization (section 6).

2 From Variational to Divergence Forms

We �rst consider vector-valued image regularization as a variational problem. We
want to �nd the corresponding divergence-based expression, i.e. the link (1)⇒(2).

� A generic functional : Instead of regularizing a functional such as (1) de-
pending on a variation norm N (I), we rather propose to minimize this more
general ψ-functional :

min
I:Ω→Rn

E(I) =
∫

Ω
ψ(λ+, λ−) dΩ (5)

where the λ± are the eigenvalues of the structure tensor G =
∑n

j=1 ∇Ij∇ITj ,
and ψ : R

2 → R is an increasing function. This is a natural and generic
extension for vector-valued images, of the φ-function formulation (4).

� Gradient descent : The Euler-Lagrange equations of (5) can be derived, and
reduce to a simple form of divergence-based expression (see Appendix A) :

∂Ii
∂t

= div (D∇Ii) (i = 1..n) (6)

where the 2 × 2 di�usion tensor D is de�ned as :

D =
∂ψ

∂λ+
(λ+, λ−) θ+θT+ +

∂ψ

∂λ−
(λ+, λ−) θ−θT−

RR n° 4657



6 Tschumperlé & Deriche

It results then in a divergence-based equation such as (2), where the di�usion
tensor D is simply de�ned from the partial derivatives of ψ, and the eigenvec-
tors θ+, θ− of G.

� Link with other approaches : The choice of particular cases of functions ψ
leads to previous vector-valued regularization approaches de�ned as variational
methods, such as the whole range of Vector φ-functionals [17, 23] :

ψ(λ+, λ−) = φ(
√
λ+ + λ−)

or the Beltrami �ow framework [12] :

ψ(λ+, λ−) =
√

(1 + λ+)(1 + λ−)

More generally, our variational approach shows that the eigenvectors of a di-
vergence tensor D can be seen as the gradient of a potential function ψ, linked
to the functional (5).

Note that the problem of the local geometric interpretation of (6) in terms of smooth-
ing weights and directions also applies here. As illustrated by the φ-functional case
(4), D may not represent the right smoothing geometry of the regularization process.

3 From Divergences to Oriented Laplacians

We rather want to develop divergence forms as (6) into their corresponding oriented

Laplacian formulations, i.e. �nd the link (2)⇒(3). The motivation is that oriented
Laplacians are particularly well designed to understand geometrically the underlying
smoothing process performed by the PDE :

3.1 Geometric meaning of oriented Laplacians

Let us consider the oriented Laplacian-based equation (3). As u⊥v, this PDE can
be equivalently written as :

∂Ii
∂t

= trace (THi) (i = 1..n) (7)

where Hi is the Hessian matrix of the vector component Ii and T is the 2× 2 tensor
de�ned as : T = c1uuT + c2vvT , characterized by its two eigenvalues c1, c2 and its
two corresponding eigenvectors u,v. Suppose that T is a constant tensor over the

INRIA



Vector-Valued Image Regularization with PDE's 7

de�nition domain Ω. Then, it can be shown [25] that the formal solution of the PDE
(7) is :

Ii(t) = Ii(t=0)
∗ G(T,t) (i = 1..n) (8)

where ∗ stands for the convolution operator and G(T,t) is an oriented gaussian

kernel, de�ned by :

G(T,t)(x) =
1

4πt
exp

(
−xTT−1x

4t

)
with x = (x y)T

It is a generalization of the Koenderink's idea [13], who proved this property for the
isotropic di�usion tensor T = Id, resulting in the well-known heat �ow equation :
∂Ii
∂t = ∆Ii. Fig.1 illustrates two gaussian kernels G(T,t)(x, y) obtained respectively
with isotropic and anisotropic tensors T (left) and the corresponding evolutions
of the di�usion PDE (7) on a color image (right). It is worth to notice that the
gaussian kernels G(T,t) give exactly the classical representations of the tensors T with
ellipsoids. Conversely, it is clear that the tensors T represent the exact smoothing
performed by the PDE (7).
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Figure 1: Trace-based PDE's (7) viewed as convolutions by oriented Gaussians.

When T is not constant (which is generally the case), i.e. represents a �eld Ω → P(2)
of varying di�usion tensors, the PDE (7) becomes nonlinear and can be viewed as the
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8 Tschumperlé & Deriche

application of temporally and spatially varying local masks GT,t(x) over the image I.
Fig.2 illustrates two examples of spatially varying tensor �elds T, represented with
�elds of ellipsoids (left), and the corresponding evolutions of (7) on a color image
(right). It particularly shows that the shape of each tensor T is exactly related to the

local smoothing behavior performed pointwise by the trace-based PDE (7).

Note that this local �ltering concept makes the link between a generic form of vector-
valued di�usion PDE's (7) and Bilateral �ltering techniques, as described in [2, 24].
Another similar approach based on non-Gaussian convolution kernels has been also
proposed for the speci�c case of Beltrami Flow [22].

Figure 2: Trace-based PDE's (7) with non-constant di�usion tensor �elds T.

3.2 Trace-based and Divergence-based tensors

Di�erences between divergence tensors D in (2) and trace tensors T in (7) can be
understood as follows. We can develop the divergence equation (2) as :

div (D∇Ii) = trace (DHi) + ∇ITi ~div (D)

INRIA



Vector-Valued Image Regularization with PDE's 9

where ~div () is de�ned as a divergence operator acting on matrices and returning
vectors :

if D = (dij), ~div (D) =
(

div
(
(d11 d12)T

)
div
(
(d21 d22)T

) )

Then, an additional term ∇ITi ~div (D) appears, connected to the spatial variation

of the tensor �eld D. It may perturb the smoothing behavior given by the �rst
part trace (DHi), which actually corresponds to a local smoothing directed by the
spectral elements of D. As a result, the divergence-based equation (2) may smooth
the image I with weights and directions that are di�erent from the spectral elements
of D. This is actually the case for the scalar φ-function formulation (4), where
the smoothing process doesn't behave �nally (and fortunately) as an isotropic one,

despite the isotropic form of the divergence tensor D = φ
′
(‖∇I‖)
‖∇I‖ Id.

3.3 Developing the divergence form

Actually, if we consider that the divergence tensor D depends only on the spectral
elements of the structure tensor G, such as :

D = f1(λ+, λ−)θ+θT+ + f2(λ+, λ−)θ−θT− (9)

with f1, f2 : R
2 → R, (which is the case for proposed equations in the literature),

then we can develop the corresponding divergence equation div (D∇Ii) into oriented
Laplacians, i.e. this trace-based PDE (details in Appendix B) :

div (D∇Ii) =
n∑
j=1

trace
(
(δijD + Qij)Hj

)
(10)

where the Qij designate a family of n2 matrices (i, j = 1..n), de�ned as the sym-

metric parts of the following matrices Pij (then, Qij = (Pij + PijT
)/2 ) :

Pij = α ∇ITi ∇IjId
+ 2

(
∂α

∂λ+
θ+θ

T
+ +

∂α

∂λ−
θ−θT−

)
∇Ij∇ITi G

+ 2
(

(α+
∂β

∂λ+
)θ+θT+ + (α+

∂β

∂λ−
)θ−θT−

)
∇Ij∇ITi

with
α = f1(λ+,λ−)−f2(λ+,λ−)

λ+−λ− and β = λ+f2(λ+,λ−)−λ−f1(λ+,λ−)
λ+−λ−

RR n° 4657



10 Tschumperlé & Deriche

This development (10) expresses a whole range of previously proposed vector-valued
regularization algorithms (variational and divergence based PDE's) into an extended
trace-based equation, composed of several di�usion contributions that have a simple
geometric interpretation in term of local �ltering. The interesting point is that
additional di�usion tensors Qij are appearing and contribute tomodify the smoothing

behavior which is �nally not given by the initial divergence tensor D.

4 A Uni�ed Expression

From these previous developments, we can now de�ne a generic vector-valued regu-
larization PDE :

∂Ii
∂t

=
n∑
j=1

trace
(
AijHi

)
(i = 1..n) (11)

where the Aij forms a family of 2× 2 symmetric matrices, and the Hi designate the
Hessian matrices of Ii. Actually, this expression can be equivalently written with a
slight abuse of notations, in a super-matrix form :

∂I
∂t

= ~trace (AH) (12)

where A is the matrix of di�usion tensors Aij (and is itself considered as symmetric),
and H is the vector of Hessian matrices Hj . The matrix product AH in (12) is then
seen sub-matrix per sub-matrix, and the operator ~trace () returns the vector in R

n,
corresponding to the trace of each sub-matrix in the resulting vector of matrices.

4.1 Link with previous expressions

The PDE (11) is a unifying equation that can be used to describe a wide range of
vector-valued regularization :

� First, it develops both variational and divergence-based approaches (that can
be written as ∂Ii

∂t = div (D∇Ii), as developed in section 2) into a very local
formulation. This particularly includes the works done in [5, 11, 12, 17, 19, 21,
23, 27, 28] among others. As described above, the 2 × 2 tensors Aij are then
de�ned to be Aij = δijD+Qij. Note that the Qij (i 6= j) corresponds here to
di�usion contributions of other channels Ij in the current one Ii. This di�usion
energy transfer can be considered as a particular coupling of the corresponding
vector-valued di�usion PDE.

INRIA



Vector-Valued Image Regularization with PDE's 11

� Second, the PDE (11) also gathers the oriented-Laplacian formulations ∂Ii
∂t =

trace (THi), by choosing Aij = δijT. In this case, the matrix A is diagonal
and no di�usion energy transfer occurs between image channels Ii. The vector
coupling is only done through the use of the structure tensor G for the compu-
tation of the local smoothing geometry. This uni�es the formulations proposed
in [14, 20, 26, 27].

4.2 A new regularization PDE

We propose now to design a new vector-valued regularization PDE that follows de-
sired local geometric properties. These properties will naturally de�ne a speci�c form
of regularization PDE, from the very generic form (11) :

� We don't want to mix di�usion contributions between image channels. The
desired coupling between vector components Ii should only appear in the dif-
fusion PDE through the computation of the structure tensor G, in order to
control the local smoothing behavior of the regularization process. This means
that we have to de�ne only one di�usion tensor A, then choose Aij = δijA.
Undesired coupling terms are then avoided.

� On homogeneous regions (corresponding to low vector variations), we want to
perform an isotropic smoothing therein, i.e. a 2D heat �ow that smooth the
noise e�ciently with no-preferred directions : ∂Ii

∂t ' ∆Ii = trace (Hi). It means
that the tensor A must be isotropic in these regions :

lim
(λ++λ−)→0

A = αId

� On vector edges (corresponding to high vector variations), we want to per-
form an anisotropic smoothing along the vector edges θ−, in order to preserve
them while removing the noise : ∂Ii

∂t = trace
(
βθ−θ−THi

)
, where β is a func-

tion decreasing anyway for very high variations, avoiding sharp corners over-
smoothing. This means that the tensor A must be anisotropic in these regions :

lim
(λ++λ−)→0

A = βθ−θT−

The following multivalued regularization PDE respects all these local geometric prop-
erties :

∂Ii
∂t

= trace (THi) (i = 1..n) (13)

RR n° 4657



12 Tschumperlé & Deriche

where T is the tensor �eld de�ned pointwise as :

T = f+

(√
λ∗+ + λ∗−

)
θ∗−θ

∗
−
T + f−

(√
λ∗+ + λ∗−

)
θ∗+θ

∗
+
T

λ∗± and θ∗± are de�ned to be the spectral elements of Gσ = G ∗Gσ, a gaussian

smoothed version of the structure tensor G, allowing to retrieve a more coherent
vector-geometry that gives a better approximation of the vector discontinuities di-
rections (see also [28]). For our experiments in section 6, we chose

f+(s) =
1

1 + s2
and f−(s) =

1√
1 + s2

This is of course one possible choice (inspired from the hyper-surface formulation of
the scalar case [1]) that veri�es the above geometric properties, relying on practical
experience. The point is that we can easily adapt the weighting functions f+ and f−
to obtain regularization behaviors for speci�c problems, since we are sure of the local
smoothing process performed by (13). This vector-valued regularization equation
smoothes the image in coherent spatial directions and preserves then well the edges,
by allowing only the necessary geometric coupling between vector channels Ii. Its
form has steadily followed the local analysis of classical multivalued regularization
algorithms.

5 Numerical schemes

The numerical implementation of the PDE (13) can be done with classical numerical
schemes, based on spatial discretizations with centered �nite di�erences of the gra-
dients and the Hessians [15]. Here we propose an alternative approach based on the
local �ltering interpretation of trace-based equations (7), proposed in section 3. The
idea is as follows : the smoothing can be locally performed by applying a spatially
varying mask over the image. For each point (x, y) of the image I, we compute the
oriented gaussian mask G(T,t) corresponding to the tensor T, de�ned by (13). Then,
we apply it on each local neighborhood Ii(x, y) :

i(x,y−1) i(x+1,y)

i(x−1,y) i(x,y) i(x+1,y)

i(x−1,y+1) i(x,y+1) i(x+1,y+1)

*
i(x−1,y−1) G(−1,−1) G(0,−1) G(1,−1)

G(−1,0) G(0,0) G(1,0)

G(1,1)G(0,1)G(−1,1)

(0,0)[Trace(TH) ](x,y) = 

INRIA



Vector-Valued Image Regularization with PDE's 13

Main advantages of this numerical scheme are :

1. It preserves the maximum principle, since the local �ltering is done only with
normalized kernels.

2. It is more precise, since the computed local kernel corresponds exactly to the
smoothing to perform. No (imprecise) second derivatives have to be computed
(Fig.3).

As for shortcomings of this scheme, we have to mention that it is more time-
consuming, since we have to compute a di�erent gaussian kernel (i.e. exponential
functions) at each image point, and for each iteration. For our experiments, we chose
5 × 5 convolution kernels.

(a) Noisy image () (b) Scheme using Hessian dis-
cretizations

(c) Scheme using local �ltering
techniques

Figure 3: Comparisons of numerical schemes.

6 Applications

We illustrate here the wide range of image processing related applications that can be
handled by our presented approach, through our vector-valued regularization PDE
(13) :

� Color image restoration : Despite the apparition of digital cameras, color
image restoration may be still needed. Fig.4 represents a digital photograph
with real noise, due to the bad lightning conditions during the snapshot. Our
vector-valued regularization PDE can successfully remove the noise, while pre-
serving the global features of the image.

� Improvement of lossy compressed images : Digital images, due to their
big memory size, are often stored in a more compact form obtained with lossy

RR n° 4657



14 Tschumperlé & Deriche

compression algorithms (JPEG being the most popular). It often introduces
visible image artefacts : for instance, bloc e�ects are classical JPEG drawbacks.
Using our �ow (13) signi�cantly improves the quality of such degraded images
(Fig.5).

� Color image inpainting : Recently, an interesting application of di�usion
PDE's named image inpainting, has been proposed in [4, 7, 8, 9]. It consists in
�lling undesired holes (de�ned by the user) in an image by interpolating the data
located at the neighborhood of the holes. It is possible to do that by applying
our PDE (13) only in the holes to �ll : boundaries pixels will be di�used
until they completely �ll the missing regions, in a structure-preserving way.
Important issues may be solved with this kind of algorithms, as for instance :
removing text on images (Fig.6), removing real objects in photographs (Fig.7)
or reconstruct partially coded images for image compression purposes (Fig.8).

� Color image magni�cation : With the same techniques, one can easily
perform image magni�cation. Starting from a linear interpolation of a small
image, and applying our PDE (13) on the image (excepted on the original
known pixels), we can retrieve non-linear magni�ed images without jagging or
bloc e�ects, inherent to classical linear interpolation techniques (Fig.9).

� Flow visualization : Considering a 2D vector �eld F : Ω → R
2, we have

several ways to visualize it. We can �rst use vectorial graphics (Fig.10a), but
we have to subsample the �eld since this kind of representation is not adapted
to represent big �ows. A better solution is as follows. We smooth a completely
noisy (color) image I, with a regularizing �ow equivalent to (13) but where T
is directed by the directions of F , instead of the local geometry of I :

∂Ii
∂t

= trace
([

1
‖F‖FFT

]
Hi

)
(i = 1..n) (14)

Whereas the PDE evolution time t goes by, more global structures of the �ow
F appear, i.e. a visualization scale-space of F is constructed (Fig.11). Here,
our used regularization equation (14) ensures that the smoothing of the pixels

is done exactly in the direction of the �ow F . This is not the case in [3, 6, 10],
where the authors based their equations on a divergence expression. Using
similar divergence-based techniques would raise a risk of smoothing the image
in false directions, as this has been pointed out in section 3.

INRIA



Vector-Valued Image Regularization with PDE's 15

Conclusion & Perspectives

In this paper, we proposed a new formalism allowing to express a large set of previous
vector-valued regularization approaches within a common local expression. This
formulation is particularly adapted to understand the local smoothing behavior of
di�usion PDE's. Indeed, it explains the link between the di�usion tensor shapes in
divergence or trace-based equations, and the actual smoothing performed by these
processes, in term of local �ltering. From this general study, we de�ned a new and
particular regularization equation, based on the respect of a coherent anisotropic
smoothing preserving the global features of vector images. We proposed as well
speci�c numerical schemes adapted for accurate implementations. The application
to several problems related to color images and �ow visualization illustrated the
e�ciency of our method to deal with concrete cases based on the use of vector-valued
regularization processes.

7 Appendix A

The Euler-Lagrange equations corresponding to the functional (5) are :

∂Ii
∂t

= div




∂ψ

∂Iix

∂ψ

∂Iiy


 (i = 1..n) (15)

Actually, the vector ( ∂ψ
∂Iix

, ∂ψ
∂Iiy

)T can be written in a more comprehensive form.

From the chain-rule property of the derivation, we have :


∂ψ

∂Iix

∂ψ

∂Iiy


 =




∂λ+

∂Iix

∂λ−
∂Iix

∂λ+

∂Iiy

∂λ−
∂Iiy







∂ψ

∂λ+

∂ψ

∂λ−


 (16)

We know formally the expressions ∂ψ
∂λ± since the function ψ is directly de�ned from

the λ±.
Finding the ∂λ±

∂Iix
and ∂λ±

∂Iiy
is more tricky. Here is a simple way to proceed :

As the λ± are the eigenvalues of the structure tensor G = (gkl), we may decompose
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16 Tschumperlé & Deriche

its derivatives (with respect to Iix and Iiy), in terms of derivatives with respect to
the gkl :

∂λ±
∂Iix

=
∑
k,l

∂λ±
∂gkl

∂gkl
∂Iix

and
∂λ±
∂Iiy

=
∑
k,l

∂λ±
∂gkl

∂gkl
∂Iiy

(17)

The expressions ∂gkl
∂Iix

and ∂gkl
∂Iiy

are particularly simple :


∂g11
∂Iix

= 2Iix

∂g11
∂Iiy

= 0

and




∂g12
∂Iix

= Iiy

∂g12
∂Iiy

= Iix

and




∂g22
∂Iix

= 0

∂g22
∂Iiy

= 2Iiy

i.e (17) can be written as :


∂λ±
∂Iix

∂λ±
∂Iiy


 =




2
∂λ±
∂g11

∂λ±
∂g12

∂λ±
∂g12

2
∂λ±
∂g22


 ∇Ii (18)

Thus, one last obstacle remains to be crossed, that is �nding the formal expressions
of ∂λ±∂gkl

.
Remind that the λ± and θ± are the eigenvalues and eigenvectors of the structure
tensor G :

G = λ+ θ+θ
T
+ + λ− θ−θT−

The derivation of this tensor, with respect to one of its coe�cient gkl is :

∂G
∂gkl

=
∂λ+

∂gkl
θ+θ

T
+ +

∂λ−
∂gkl

θ−θT− (19)

+ λ+
∂θ+
∂gkl

θT+ + λ−
∂θ−
∂gkl

θT−

+ λ+ θ+
∂θT+
∂gkl

+ λ− θ−
∂θT−
∂gkl

Moreover, as the θ± are unitary and orthogonal eigenvectors, we have :




θT+θ+ = θT−θ− = 1

θT+θ− = θT−θ+ = 0
and




∂θT+
∂gkl

θ+ = θT+
∂θ+
∂gkl

= 0

∂θT−
∂gkl

θ− = θT−
∂θ−
∂gkl

= 0

(20)

INRIA



Vector-Valued Image Regularization with PDE's 17

We �rst multiply the equation (19) by θT± at the left, by θ± at the right, then use
the properties (20). It allows high simpli�cations, and leads to these two relations :

∂λ+

∂gkl
= θT+

∂G
∂gkl

θ+ and
∂λ−
∂gkl

= θT−
∂G
∂gkl

θ− (21)

Equations (21) formally tell us how eigenvalues of a di�usion tensor G vary with
respect to a particular coe�cient gkl of G. Actually, this interesting property can be
proved for any symmetric matrix. For instance, authors of [16] proposed a similar
demonstration in a purely matrix form, leading to the same result. They used it to
deal with general covariance matrices.

Moreover in our case, the matrices ∂G
∂gkl

are very simple :

∂G
∂g11

=
(

1 0
0 0

)
,

∂G
∂g12

=
(

0 1
1 0

)
and

∂G
∂g22

=
(

0 0
0 1

)

With all these elements, we can express (18) as :


∂λ+

∂Iix

∂λ+

∂Iiy


 = 2 θ+θT+∇Ii and




∂λ−
∂Iix

∂λ−
∂Iiy


 = 2 θ−θT−∇Ii (22)

Finally, replacing (22) in the Euler-Lagrange equations (16) and (15), gives the
vector-valued gradient descent of the functional (5) :

min
I:Ω→Rn

∫
Ω
ψ(λ+, λ−) dΩ =⇒ ∂Ii

∂t
= 2 div

([
∂ψ

∂λ+
θ+θ

T
+ +

∂ψ

∂λ−
θ−θT−

]
∇Ii

)
(23)

(for i = 1..n) �
Note that (23) is a divergence-based equation such that :

∂Ii
∂t

= div (D∇Ii) where D = 2
∂ψ

∂λ+
θ+θ

T
+ + 2

∂ψ

∂λ−
θ−θT−

D ∈ P(2) is then a 2 × 2 di�usion tensor, whose eigenvalues are :

λ1 = 2
∂ψ

∂λ+
and λ2 = 2

∂ψ

∂λ−
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18 Tschumperlé & Deriche

associated to these corresponding orthonormal eigenvectors :

u1 = θ+ and u2 = θ−

It is also worth to mention that computing this gradient descent is done exactly
in the same way, when dealing with image domains Ω de�ned in higher dimensional
spaces (Ω ⊂ R

p where p > 2) More particularly, the case of 3D volume regularization
(p = 3) can be written as :

min
I:Ω→Rn

∫
Ω
ψ(λ1, λ2, λ3) dΩ =⇒ ∂Ii

∂t
= 2 div

([
∂ψ

∂λ1
θ1θ

T
1 +

∂ψ

∂λ2
θ2θ

T
2 +

∂ψ

∂λ3
θ3θ

T
3

]
∇Ii

)

In this case, the λ1,2,3 are the three eigenvalues of the 3× 3 structure tensor G, and
θ1,2,3 are the corresponding orthonormal eigenvectors.

8 Appendix B

Most divergence-based regularization PDE's acting on multivalued images have the
following form :

∂Ii
∂t

= div (D∇Ii) (i = 1..n) (24)

where D is a di�usion tensor based only on �rst order operators. The fact is that D
is often computed from the structure tensor G =

∑n
j=1 ∇Ij∇ITj and depends mainly

on the spatial derivatives Iix and Iiy . Intuitively, as the divergence div () = ∂
∂x + ∂

∂y
is itself a �rst order derivative operator, we should be able to write (24) only with �rst
and second spatial derivatives Iix , Iiy , Iixx , Iixy and Iiyy . Thus, it could be expressed
with oriented Laplacians in each image channel Ii as well, i.e an expression based on
the trace operator ∂Ii

∂t = trace (DHi).

We want to make the link between the two di�erent di�usion tensors D and T in
the divergence-based and trace-based regularization PDE's, in the case when D is
not constant :

∂Ii
∂t

= div (D∇Ii) and
∂Ii
∂t

= trace (THi)

As we noticed in the previous section, these two formulations are almost equivalent,
up to an additional term depending on the variation of the tensor �eld D :

div (D∇Ii) = trace (DHIi) + ∇ITi ~div (D) (25)

INRIA



Vector-Valued Image Regularization with PDE's 19

where ~div () is the matrix divergence.
A natural idea is then to decompose the additional term ∇ITi ~div (D) into oriented

Laplacians, expressed with additional di�usion tensors Q in the trace operator.

For this purpose, we will consider that the divergence tensor D is de�ned at each
point x ∈ Ω by

D = f1(λ+, λ−) θ+θT+ + f2(λ+, λ−) θ−θT− with f1/2 : R
2 → R (26)

It means that D is only expressed from the eigenvalues λ± and the eigenvectors θ±
of the structure tensor G :

G = λ+ θ+θ
T
+ + λ− θ−θT−

This is indeed a very generic hypothesis that is veri�ed by the majority of the pro-
posed vector-valued regularization methods, for instance the one proposed in Ap-
pendix A :

∂Ii
∂t

= div (D∇Ii) with (26) and




f1(λ+, λ−) = 2
∂ψ

∂λ+

f2(λ+, λ−) = 2
∂ψ

∂λ−

In order to develop the additional di�usion term ∇ITi ~div (D) in the equation (25),
we propose to write D as a linear combination of G and Id :

D = α(λ+, λ−)G + β(λ+, λ−)Id (27)

i.e we separate the isotropic and anisotropic parts of D, with

α =
f1(λ+, λ−) − f2(λ+, λ−)

λ+ − λ−
and β =

λ+f2(λ+, λ−) − λ−f1(λ+, λ−)
λ+ − λ−

(28)

Indeed, we have

αG + βId =
f1 − f2

λ+ − λ−
(λ+ θ+θ

T
+ + λ− θ−θT−) +

λ+f2 − λ−f1

λ+ − λ−
(θ+θT+ + θ−θT−)

=
1

λ+ − λ−

[
θ+θ

T
+ (λ+f1 − λ−f1) + θ−θT− (λ+f2 − λ−f2)

]
= f1 θ+θ

T
+ + f2 θ−θT−

= D �
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20 Tschumperlé & Deriche

Here we assumed that λ+ 6= λ− (i.e the structure tensor G is anisotropic). Anyway,
if G is isotropic, one generally chooses an isotropic di�usion tensor D too, in the
divergence operator of (25), i.e f1(λ+, λ−) = f2(λ+, λ−). In this case, we choose
α = 0 and β = f1(λ+, λ−).

This decomposition is useful to rewrite the matrix divergence ~div (D) into :

~div (D) = α ~div (G) + G∇α+ ∇β (29)

and the additional term of the equation (25) would be computed as :

∇IT ~div (D) = trace
(
~div (D)∇ITi

)
= αtrace

(
~div (G)∇ITi

)
(30)

+ trace
(
G∇α∇ITi

)
(31)

+ trace
(∇β∇ITi ) (32)

In the following, we propose to �nd formal expressions of (30), (31) and (32).

• First, remember that the structure tensor G is de�ned as :

G =
n∑
j=1

∇Ij∇IjT

We have then :

~div (G) =
n∑
j=1

~div
(

I2
jx IjxIjy

IjxIjy I2
jy

)

=
n∑
j=1

(
2 IjxIjxx + IjxIjyy + IjyIjxy

IjxIjxy + IjyIjxx + 2 IjyIjyy

)

=
n∑
j=1

(
Ijx(Ijxx + Ijyy)
Ijy(Ijxx + Ijyy)

)
+
(
IjxIjxx + IjyIjxy

IjxIjxy + IjyIjyy

)

=
n∑
j=1

∆Ij∇Ij + Hj∇Ij

where ∆Ij and Hj are respectively the Laplacian and the Hessian of the image
component Ij.
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Vector-Valued Image Regularization with PDE's 21

Then, we can write the expression 30 as :

αtrace
(
~div (G)∇IiT

)
=

n∑
j=1

αtrace
(
Hj

[∇IiT∇IjId + ∇Ij∇IiT
])

(33)

�

• We �nally have to compute ∇α and ∇β, in the expression (31) and (32). This
can be done by the decomposition :

∇α =
∂α

∂λ+
∇λ+ +

∂α

∂λ−
∇λ− and ∇β =

∂β

∂λ+
∇λ+ +

∂β

∂λ−
∇λ− (34)

and as the λ±, eigenvalues of the structure tensor G, depends on the Ijx and Ijy :

∇λ± =
(
λ±x

λ±y

)

=
n∑
j=1

( ∂λ±
∂Ijx

Ijxx + ∂λ±
∂Ijy

Ijxy

∂λ±
∂Ijx

Ijxy + ∂λ±
∂Ijy

Ijyy

)

=
n∑
j=1

HIj


 ∂λ±

∂Ixj
∂λ±
∂Iyj




In Appendix A, we derivated eigenvalues of a structure tensor G, with respect to the
spatial image derivatives. We ended up with the following relation :

 ∂λ±
∂Ixj
∂λ±
∂Iyj


 = 2θ±θT±∇Ij

Then,

∇λ± =
n∑
j=1

2Hjθ±θT±∇Ij (35)

We can replace (35) into the expressions of (34), in order to �nd the spatial gradients
of α and β : 



∇α =
n∑
j=1

2Hj

(
∂α

∂λ+
θ+θ

T
+ +

∂α

∂λ−
θ+θ

T
+

)
∇Ij

∇β =
n∑
j=1

2Hj

(
∂β

∂λ+
θ+θ

T
+ +

∂β

∂λ−
θ+θ

T
+

)
∇Ij

(36)
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22 Tschumperlé & Deriche

Using (36), we �nally compute the two missing parts (31) and (32) of the additional
term ∇ITi ~div (D) :




trace
(
G∇α∇ITi

)
=

n∑
j=1

trace
(

2 GHj

(
∂α

∂λ+
θ+θ

T
+ +

∂α

∂λ−
θ−θT−

)
∇Ij∇ITi

)

trace
(∇β∇ITi ) =

n∑
j=1

trace
(

2 Hj

(
∂β

∂λ+
θ+θ

T
+ +

∂β

∂λ−
θ−θT−

)
∇Ij∇ITi

)
(37)

�

• The �nal step consists in putting together the equations (33) and (37), in order
to express the additional term ∇ITi ~div (D) in the PDE (25).

∇ITi ~div (D) =
n∑
j=1

trace
(
HjPij

)
(38)

where the Pij are the following 2 × 2 matrices :

Pij = α ∇ITi ∇IjId
+ 2

(
∂α

∂λ+
θ+θ

T
+ +

∂α

∂λ−
θ−θT−

)
∇Ij∇ITi G

+ 2
(

(α+
∂β

∂λ+
)θ+θT+ + (α+

∂β

∂λ−
)θ−θT−

)
∇Ij∇ITi (39)

Note that the indices i, j in the notation Pij do not designate the coe�cients of a
matrix P, but the parameters of the family consisting of n2 matrices Pij (each of
them is a 2 × 2 matrix).
The matrices Pii are symmetric, but generally not the Pij (where i 6= j), since the
gradients ∇Ii and ∇Ij are not aligned in the general case.
Yet, we want to express the equation (38) only with symmetric matrices, in order
to interpret it as a sum of local smoothing processes oriented by di�usion tensors.
Fortunately, the trace operator has this simple property :

trace (AH) = trace
(

A + AT

2
H
)
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where (A + AT )/2 is a 2 × 2 symmetric matrix (the symmetric part of A).

Thus, we de�ne the symmetric matrices Qij, corresponding to the symmetric parts
of the Pij :

Qij =
Pij + PijT

2
(40)

and we have :

∇ITi ~div (D) =
n∑
j=1

trace
(
HjQij

)
Finally, the divergence-based PDE (25) can be written as :

div (D∇Ii) =
n∑
j=1

trace
(
(δijD + Qij)Hj

)
(41)

where δij is the Kronecker's symbol :

δij =
{

0 if i 6= j
1 if i = j

�

The regularization PDE (41) is equivalent to the divergence-based equation ∂Ii
∂t =

div (D∇Ii), but with a trace-based formulation.
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(a) Noisy color image (b) Restored color image

Figure 4: Using vector-valued regularization PDE's, for color image restoration.
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(c) Lossy compressed JPEG image (d) Improved color image

Figure 5: Using vector-valued regularization PDE's, for improvement of lossy com-
pressed images.
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(a) Image with undesired text (b) Inpainted color image

(c) Zoom of (a) (d) Zoom of (b)

Figure 6: Using vector-valued regularization PDE's for color image inpainting (1).
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(e) Original color image (f) Image + Inpainting mask (g) Inpainted image

Figure 7: Using vector-valued regularization PDE's for color image inpainting (2).

(a) Color image (b) Removing 50% of the pixels (c) Reconstructed image

Figure 8: Using vector-valued regularization PDE's for image reconstruction.
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(a) Original color image (64 × 64) (b) Bloc interpolation

(c) Linear interpolation (d) Interpolation with PDE's

Figure 9: Using vector-valued regularization PDE's for image magni�cation (×4).
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(a) Flow visualization with arrows

(b) Flow visualization with di�usion PDE's (5 iter.)

(c) Flow visualization with di�usion PDE's (15 iter.)

Figure 10: Using vector-valued regularization PDE's, for �ow visualization (1).
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Figure 11: Using vector-valued regularization PDE's, for �ow visualization (2).
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