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ABSTRACT

The restoration of noisy and blurred scalar images has been
widely studied, and many algorithms based on variational
or stochastic formulations have tried to solve this ill-posed
problem [2, 4, 10, 7, 33, 20, 19, 18, 22, 1, 26, 24, 9, 28,
29, 6, 30, 35, 37]. However, only few methods exist for
multichannel/color images ([7, 29, 16, 36]). Here, we pro-
pose a newvector image restoration PDEwhich removes
the noise and enhances blurred vector contours, thanks to
a vector generalisation of scalar�-function diffusions and
shock filters. A local and geometric approach is proposed,
which uses pertinent vector informations. Finally, we ex-
tend this equation toconstrained norm evolutions, in order
to restore direction fields and chromaticity noise on color
images.

1. PRINCIPLE OF ANISOTROPIC DIFFUSION

We consider ascalar imageI(M) : 
! R (
 2 R2 ).
Scalar image restoration using�-functions classically con-
sists in minimising the following functional :minI Z
 �2 (I � I0)2 +�(krIk) d

where� : R ! R is a regularisation function that penalizes
high gradients, while preserving edges. The minimisation
can be performed via the correspondinganisotropic PDE
evolution, coming from the Euler-Lagrange equations :�I�t = �(I0 � I) + div

 �0(krIk)krIk rI!
which can be also written as :�I�t = �0(krIk)krIk I�� +�00(krIk) I�� + �(I0 � I)
whereI�� = �2I��2 = r(rI:�):� with � = rIkrIk and� = �?.

In [19], this expression was interpreted astwo directional
1D heat flowswith different diffusion intensities :�� = �00(krIk) and �� = �0(krIk)krIk
in the corresponding directions� and �. A diffusion �-
function must verify these natural properties :� WhenkrIk ' 0, the local geometry is flat and doesn’t

contain any edges, the diffusion must be isotropic :�� ' �� ' 1 =) �I�t ' I�� + I�� = �I� WhenkrIk � 0, the current point may be located on
an edge, the diffusion must be anisotropic (oriented
by the edge) :�� � �� =) �I�t ' �� I��

Many �-functions were proposed in the literature : Total
variation [27], Perona & Malik [24], Geman & McClure
[31], Green [13], Hebert-Leahy [14],: : :
In [19], the authors also proposed to fix directly the smooth-
ing intensities :�� = g� (krIk) (decreasing function) and�� = 1. It ensures a permanent noise removal, but tends to
smooth sharp corners.
Geometrically speaking, a PDE restoration process must
adapt its diffusion behaviour to thelocal geometry of the
image. For the scalar case, this geometry is given by an
edge indicatorN(I) = krIk, and the associated directions� and�, respectively orthogonal and parallel to the edges. A
vector image diffusion process needs to define such equiv-
alent vector attributes : avector gradient normN(I), and
the corresponding smoothing directions�; � for the whole
image components, taking the coupling into account. Using
a channel by channel approach is then useless : each chan-
nel of the image evolves with different smoothing directions



and intensities. The diffusion is not coherent with avector
geometryand edges tend to be smoothed (Fig.1).

a) noisy image b) decoupled PDEs c) coupled PDEs

Fig. 1. Channel by channel approach vs coupled PDEs, on a noisy
color image (in the RGB space).
This paper is organised as follow : We first show how to
define a local vector geometry, using the classic Di Zenzo
method [38], then we compare and interpret some recent
vector diffusion PDEs. This comparison yields a new geo-
metric and intuitive vector restoration PDE (eq.(7)) We fi-
nally extend this idea to norm constrained evolutions, and
propose some results.

2. DEFINING A VECTOR GEOMETRY

Now, we are interested invector imagesI(M) : R2 ! Rn .I i denotes theith image channel (1 � i � n). We want to
define a vector gradient normN(I) and variation directions� and�, corresponding to a local vector geometry.

2.1. First approach : scalar conversion

The first idea is to find a functionf : Rn ! R so that
the imagef(I) is representative of the human perception of
vector edges (for instance,f = L�, the luminance, for color
images). Then� can be chosen to be the direction ofrf(I),
andN(I) = krf(I)k.
The choice of such functions is not an easy task ! However,
there are mathematically no functions detecting all possible
vector variations. For the color example, it wouldn’t be able
to detect iso-luminance contours.

2.2. Differential geometry of surfaces

Di Zenzo [38] considers a vector imageI as a2D ! 3D
surface, and looks for the local variations ofkdIk2 :kdIk2 = � dx1dx2 �T � g11 g12g12 g22 � � dx1dx2 �
with gij = �I�xi : �I�xj
The two eigenvalues of(gij) are the extremum ofkdIk2
and the orthogonal eigenvectors�,� are the corresponding
variation directions :8><>: �+=� = g11+g22�p(g11�g22)2+4 g2122� = 12 artan 2 g12g11�g22� = � + �2 (1)

Then, severalvector gradient normsN(I) can be defined :� In [29], the authors uses a decreasing functionf(�+ � ��)
to weight their diffusion PDE. It can be seen as a func-
tion of a vector variation normN(I) = p�+ � ��.
Note that this norm fails to detect corners where�+ = ��
(see the checkboard intersections in Fig.2).� In [32] and [7], the normN(I) =p�+ + �� is pro-
posed for a global minimisation process, but can be
also used as a local norm definition. It is very easy to
compute, sinceN(I)2 = �+ + �� = nXk=1 krIkk2
Note that this norm gives more importance to certain
corners (but not all) (Fig.2).� We propose to useN(I) = p�+, as a direct exten-
sion of the gradient norm definition : the value of
maximum variation. It doesn’t give more or less im-
portance to corners.

Color image
p�+ � �� p�+ p�+ + ��

Fig. 2. Differences between vector variation norms

It is worth to mention the work of Kimmel-Malladi-etal
[16], which consider an-D vector image as a surface em-
bedded in an+2 dimension space. They introduce the in-
duced metric(g�i;j) in a Polyakov functional minimisation,
in order to construct a scale space of the vector images. This
metric is directly linked to the Di Zenzo approach :g�i;j = Æi;j + gi;j where Æi;j = � 0 if i 6= j1 if i = j
One may note that the corresponding eigenvalues and eigen-
vector directions are given by :� ��+ = �+��+ = 1 + �+ and

� ��� = ����� = 1 + ��
These expressions show the similarity between the two ap-
proaches.
The Di Zenzo equations define then a pertinent vector ge-
ometry with a variation normN(I) and corresponding di-
rections� and�, which can be used in the restoration pro-
cess to take the coupling between image channels into ac-
count. Color edge detection is a direct application of the
vector gradient norm definition : One just has to look for
the local maxima ofN(I) in the� direction (fig.3).



Original color image Color edges

Fig. 3. Color edge detector : Thresholded local maxima of
p�+

in the� direction

3. DIFFUSION EQUATIONS

We analyse now some proposed vector diffusion equations
([29, 7]), in order to introduce our approach and propose
an original and efficient vector diffusion PDE. Comparisons
results on synthetic images are shown in the end of this sec-
tion.

3.1. Sapiro-Ringach’s vector diffusion PDE

In [29], the authors propose this anisotropicvector diffusion
PDE : �I�t = g(�+ � ��) I�� (2)

whereg(:) is a positive decreasing function withlims!+1 g(s) = 0
andI�� = �2I��2 (� is found with the Di Zenzo calculus).

It was a first step in viewing the importance of coupling in
a diffusion process. The diffusion factorg(�+ � ��) and
the smoothing direction� contain informations of coupling
between vector components. A vector geometry is taken
into account : At a given point, all channels evolve in the
same direction and with the same intensity. Edges are then
not smoothed (but are not perfectly detected, as described
in section 2.2).
Anyway, few problems remain :� Along very high gradient edges (N(I)� 0), smooth-

ing may be weak and doesn’t remove the noise :�I�t ' ~0
(the choice of a functiong which doesn’t decrease too
fast is primordial here).� In homogenous regions (N(I) ' 0), the image pixels
diffuses only in the direction�, which is very sensitive
to the noise when the geometry is flat !: �I�t ' �� I�� .
Undesirable texture effects may appear in these re-
gions, because of the uni-directional diffusion.� No data attachment term : the PDE evolution must be
stopped before convergence for a good result.

3.2. Blomgren’sTVnm diffusion equation

As defined in [7], theTVn;m diffusion PDE with a compo-
nent by component writing style is :�I i�t = TVn;1(I i)TVn;m(I) div� rI ikrI ik�+ � (I i0 � I i) (3)

with TVn;m(I) =vuut mXk=1 �Z
 krIkk�2:
This PDE comes from a minimisation process, which use
coupling between vector components in the functional ex-
pression.
But, if we introduce the�i direction (�i?�i = rIikrIik ), then�I i�t = � (I i0 � I i) + AikrI ik I�i�i �Ai = TVn;1(I i)TVn;m(I)�
The only coupling terms in the final PDE isAi, which weight
the diffusion intensity in each image channel. The diffusion
is uni-directional and the smoothing direction is indepen-
dent for each channel, which leads to the problem of decou-
pled diffusion (Fig.1).

Despite the uni-directional diffusion, texture effects are less
visible in flat regions, because each channel diffuses in a
different direction�i. For color images, it corresponds to
a color blending effect. Anyway this advantage becomes
a drawback in contour regions : Alocal vector geometry
is not taken into account, and edges evolve individually in
different directions, component by component. Edges tend
to be smoothed.

3.3. A geometric diffusion PDE approach

Here is our approach, considered as an extension of our pre-
vious work [34, 20, 19, 18]. It is based on a geometric view-
point of the diffusion process.
The vector gradient normN(I) =p�+ is a local geometry
indicator :� N(I)(M) � 0 : The pointM is in a flat region.� N(I)(M) � 0 : The pointM is on an edge.

Following the behaviour of�-function diffusions, we want
an isotropic smoothing whenN(I) ' 0 and a tangent smooth-
ing along the vector edge elsewhere (in the� direction, com-
ing from the Di Zenzo equations). Then, a natural extension
of �-functions diffusion for the vector case is :�I�t = �0(�+)�+ I�� +�00(�+) I�� + � (I0 � I) (4)

where�() is one of the�-function used for the classic
scalar case. Note that this PDE doesn’t come from a varia-
tional formulation, and diffusion coefficients can be chosen



“by hand”, depending on the smoothing behaviour we de-
sire. For instance, the following equation always diffuses
the image, even on high gradients areas :�I�t = g� (p�+) I�� + I�� + � (I0 � I)
whereg� (:) : R ! R is a decreasing functiong� (s) = exp�� s22 �2�: (5)

In this case,� is a fixed parameter and represents the thresh-
old between anisotropic and isotropic smoothing.
The diffusion behaviour of these PDEs is :� In homogeneous areas (g � 1), the noise is removed

efficiently due to a vector anisotropic diffusion which
doesn’t favour any smoothing direction :�I�t ' I�� + I�� = �I = 0BB� �I1�I2: : :�In 1CCA� Along the edges (g ! 0), the diffusion is parallel to
thevector contour� :�I�t ' �� I�� = �� 0BB� I1��I2��: : :In�� 1CCA
There is noise eliminationandvector contour conser-
vation.) The coupling is strongly used in order to analyse a
local vector geometryof the image, and so perform a
coherent smoothing process.� Weighted data attachment term avoid the solution be-
ing too different from the initial image. The result at
convergence is not over-smoothed.

3.4. Comparisons on a synthetic color image :

We tested the described methods on a very noisy color syn-
thetic image (fig.4). It shows the different behaviours of the
diffusion equations.� Pure isotropic PDE clears the noise very well, but also

edges (fig.4c).� Sapiro-Ringach PDE eq.(2) introduces some texture
effects in flat regions (fig.4d)� TVnm equation eq.(3) suffers of color blending (par-
ticularly near the edges).� Our diffusion PDE eq.(4) clears the noise very well in
homogeneous areas, while preserving color edges.

a) Initial Image b) Noisy Image

c) Isotropic diffusion d) Sapiro-Ringach eq.2

e) Blomgren TVnm (eq.3) f) Our proposed PDE

Fig. 4. Comparison on a synthetic color image

4. REDUCING THE BLUR EFFECT

Reducing the blurred edges is a part of the image restoration
process. In this section, we propose to extend the scalar
shock filters method [23] to the vector case, using the ge-
ometric view of vector fields. Then, we couple shock fil-
ters and vector diffusion in a singlevector image restoration
equation.

4.1. Shock filters in vector case

Scalar shock filtersallow to enhance blurred edges with-
out any knowledge of the convolution mask. It consists in
raising the edges in the gradient directionrI : (Osher and
Rudin [23]) : �I�t = �sign(I��) krIk
which has the following effect on the image (Fig.5 repre-
sents a slice of the local image, in therI direction).

I(x,y)

Fig. 5. Principle of scalar shock filter



For vector images, we want to raise each vector component
of I in the same direction� of the vector geometry. We also
add a weighting term that adapts the intensity of the shock
filter process in order to enhance only edges and not flat
regions (We used the functiong� already defined in eq.(5)) :�I�t = ��1� g� (p�+)� U (6)

where U = 0BB� sign(I1��)kI1�k
sign(I2��)kI2�k: : :
sign(In��)kIn� k 1CCA

Here,� is a threshold that decides if the current point is on
an edge or in a homogeneous area.
Fig.6 shows the application of this vector shock filter on a
blurred color image.

a) Blurred image b) Enhanced image

Fig. 6. Color shock filter application

4.2. Coupling anisotropic diffusion and shock filters

We propose to combine the diffusion term eq.(4) with the
shock filter term eq.(6) in a singlevector image restoration
PDE : �I�t = �0 (�+)�+ I�� +�00(�+) I��+ �a (I� I0)� � (1� g� (p�+)) U (7)

Free parameters�a and� weight the importance of the
shock filters and the data attachment towards the diffusion
process.

5. NORM CONSTRAINED RESTORATION

Recently, some authors have proposed to smooth vector field
with a constrained norm [25, 8, 11, 5]. It consists of evolv-
ing a PDE on a field where each vector keeps its initial
norm. Here we propose a geometric viewpoint of the prob-
lem, allowing to extend norm constrained evolutions to all
kind of PDEs, in particular shock filters. Then we use our
equation (7), in order to build anorm constrained restora-
tion PDE for vector images.

5.1. A geometric formulation

The vector norm must be preserved during the PDE evolu-
tion : 8M 2 
;8t; kI(M)k2 = ste
Derivating this equation with respect tot gives an equivalent
expression :8M 2 
;8t; 2 I(M) : �I(M)�t = 0
It means that the PDEvelocity vector�I(M)�t must be orthogonal
to the vectorI(M), in order to preserve its norm. Suppose
then we have a vector PDE of the general form :�I�t = � where � 2 Rn
Adding the norm constraint can be naturally done bypro-
jecting the velocity� to the hyperplane, orthogonal toI,
which is : P?I (�) = � ��� : IkIk2� I
Then, the following equation ensures that the norm ofI is
preserved during the evolution :�I�t = � ��� : IkIk2� I (8)

The geometric explanation is simple (Fig.7).

βc(M)

ρ2

M

I(M)

β(Μ)

β(Μ) .I Ι( )

Fig. 7. Geometric view of the norm constraint

During the PDE evolution,I(M) does apure rotationand
preserves its norm. Then, for the particular case of vector
field restorations under constrained norm, we can choose�
to be the expression of eq.(7). It allows the use of shock
filters as well as accurate diffusion for norm constrained
vector fields, and extends naturally previous works on this
subject [25, 8, 11, 5].

5.2. Applications of constrained norm PDEs

We used this equation in order to restore noisy chromatic-
ity color images and normalised 2D optical flow directions.
The restoration of chromaticity have been studied in [8, 11].
It consists of denoising only chromaticity data of a color



image. Indeed, each vectorI(M) = (R;G;B) of a color
image can be decomposed as :u(M) = I(M)kI(M)k : the chromaticity vector

and l = kI(M)k : thebrightness.u is normalised and contains only color information of the
pixel. If we know that the noise is only present onu, we can
use the eq.(8) onI, in order to restoreu and let the intensityl of each pixel unchanged.

6. EXPERIMENTAL RESULTS

We used our vector restoration PDE (7) and our norm con-
strained equation (8) for different applications :� Restoration of normalised 2D vector fields, represent-

ing direction flows (R2 vectors) : Fig.9 shows the
importance of norm constraint on a synthetic image.
Note how the vector norms are smoothed with uncon-
strained PDE (Fig.9.c).� Restoration of color images in the(R;G;B) space
(dealing withR3 vectors) withRGB-noise and chro-
maticity noise. The knowledge of the chromaticity
noise model allows to restore very well the initial noisy
color image.

Simple explicit numerical schemes with finite differences
were used. As usual, shock filter process requires special
schemes, due to its hyperbolic nature : classicminmod schemes
work well (see [23, 17] for more details). Other color results
are visible in the author web pages :
http://www-sop.inria.fr/robotvis/personnel/David.Tschumperleand
http://www-sop.inria.fr/robotvis/personnel/der

7. CONCLUSION

We have proposed a new vector PDE that restores constrained
and unconstrained vector field of any dimension. Applica-
tions are multiple : color image restoration, optical flow reg-
ularisation, multiscale representation: : : The equation we
proposed doesn’t come from an energy minimisation, but
was built in order to follow a number of desired geometric
diffusion properties, which ensure a very efficient restora-
tion process. The main key is the use of alocal vector geom-
etry to adapt the behaviour of the diffusion and shock filters,
using the coupling between vector components as good as
possible. The general PDE for norm constrained evolution
(eq.8) can also be the start for other well know vector prob-
lems (optical flow computation, orientation analysis, color
image interpolation,: : :). We are working on these interest-
ing subjects.
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a) With R,G,B Gaussian noise. b) Our color restoration (eq.7).

Fig. 8. Unconstrained Color restoration

a) Synthetic direction field b) With angle noise (� = 30o)

c) With unconstrained PDE(eq.7) d) With constrained PDE (eq.8)

Fig. 9. Restoration of direction field



a) Normalized ”Sinus” flow b) With direction noise c) Restored flow (eq.8)

a) Noisy chromaticity image b) With unconstrained PDE (7) c)With constrained PDE (8)

a) Noisy color image (gaussian onRGB) b) Restoration with Eq.2

c) Restoration with TVnm Eq.3 d) Our color restoration (eq.7)


