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(a) Video frame to inpaint. (b) Exemplar-based inpainted frame by frame and
close-up.

(c) Exemplar-based inpainted + our patch blending
result, and close-up.

Figure 1: Effect of our geometry-guided patch blending on a video completion result.

Abstract

We propose an exemplar-based video completion algorithm to-
gether with a geometry-guided space-time artifact reduction tech-
nique. The proposed completion algorithm is the video extension
of an inpainting algorithm proven to be effective on still images.
Then, the proposed space-time artifact reduction technique blends
multiple patches, guided by a tensor model in order to preserve lo-
cal structures and textures as much as possible. The two contribu-
tions we propose are complementary, and provide video completion
results of good quality without block-effect artifacts.
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1 Introduction and Context

Image and video inpainting allows to complete or restore images
and videos continaing corrupted/missing data. Among the vast lit-
terature on this topic [Guillemot and Le Meur 2014], the pattern-
based methods use the self-similarity principle, and copy/paste
known patches to the unknown area to restore the image/video.

A major difficulty of these methods is to avoid visible seams be-
tween reconstructed patches. While [Wexler et al. 2007; Newson
et al. 2014] propose a multiresolution scheme to inpaint images and
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videos, and to use multiple patches for the reconstruction. The ma-
jor flaw of such a methods is that it tends to blur the reconstructed
textures.

In this paper, we first go back to the seminal single-scale greedy
method of [Criminisi et al. 2004] and adapt it to the video inpainting
with the integration of many improvements proposed in [Buyssens
et al. 2015]. In a second time, we propose an anisotropic space-time
blending algorithm that considerably reduces typical block-effect
artifacts reminiscent of [Criminisi et al. 2004] while keeping sharp
structures and textures.

2 Exemplar-based Video Inpainting

We propose an adaptation of the exemplar-based image inpainting
algorithm [Criminisi et al. 2004] to video data.

First, we change the shape of the patch to use. As the temporal
dimension does not have the same meaning than the spatial one,
we do not use cubic patches (same dimensions in space and time),
but parallelepipoidic patches. The main reason is that space-time
patches capture the local instant motion in a video, and we do not
want to propagate this motion too much. This allows to avoid tem-
poral inconsistencies as much as possible.

For the reconstruction, we propose to adapt the search scheme de-
scribed in [Buyssens et al. 2015] for videos. For a patch to be
reconstructed at point pn, this method extracts all the best match
locations Φ = {p̂0, p̂1, . . . , p̂m} of reconstructed patch locations
{p1, p2, . . . , pm} inside a window W centered at pn and of a
user-defined size sW . The latter is generally provided as a fac-
tor of the patch size. The p̂i are then used for finding search
sites qi = p̂i + pn − pi to perform a window lookup for each
window wi ∈ {w1, w2, . . . , wm}. The size of these windows is
swi = αsW

√
|Φ|, where α is a parameter controlling the amount

of space to give to the small windows w.r.t. the initial window
search size. This allows to keep a similar complexity of the patch
lookup whatever the number of sites to be sought. The idea behind
this scheme is to reconstruct large portions of video with highly cor-
related patchs chunks. This method, parent of those in [Ashikhmin
2001; Barnes et al. 2009], enables an efficient lookup in term of
time and reconstruction quality.



Using these adaptations, the proposed video inpainting technique
provides good results in term of geometry and texture reconstruc-
tion. However, one can notice that it suffers from block-effect arti-
facts along the space and the time dimensions (see Fig. 1, middle).

3 Space-time Patch Blending

In this section we propose an algorithm that creates a smarter tran-
sition between reconstructed patches within space-time greedy in-
painting results I : p ∈ I 7→ I(p) ∈ R with I ⊂ N3+. We
define a geometric tensor model that allows keeping well the image
structures and textures while creating these transitions.

Our patch blending algorithm mixes the overlapping data of multi-
ple patches in greedy patch-based inpainting results (see Fig. 2) in
order to remove the seams between the reconstructed patch chunks.
This process mainly contains the following steps:
1) Computation of our blending tensor model: further described
in the Section 4, the tensor field B(p) is computed on the masked
video and reconstructed it from the inpainting correspondence map.
2) Model regularization: with the same idea of anisotropic image
smoothing [Tschumperle and Deriche 2005], the tensors extracted
from the image are regularized by an isotropic smoothing process.
3) Spatial blending of the inpainted video: we compute the final
video J , using B(p), by applying the following formula (see Fig. 2
for notation explanations):

J(p) =

∑
i∈{1,...,|Ψp|}

wB(p, pi) ψp̂i(p− pi)

ε+
∑

i∈{1,...,|Ψp|}
wB(p, pi)

(1)

where Ψp is the set of the centers of the reconstructed patches con-

Figure 2: Principle of our patch blending algorithm: one wants
to blend at p using source patches ψ1 and ψ2 with the blending
tensors B(p1) and B(p2). While an isotropic blending is applied
at p2, an anisotropic one is applied at p1.

taining p, wB(p, q) = e−X
TB(p)−1X is an anisotropic Gaussian

weight function with X = q − p and B(p) is our blending tensor
model. Before going to the details of the latter (Section 4), we do a
high-level description of their spatial and temporal behavior.

Spatial behavior: the patch-based blending model must be able to
cope with different spatial components:
• In case of flat areas for a frame I(t), the blending must be of high
amplitude in any directions to flatten small seams.
• In case of a textured area of frame I(t), the blending has to be
applied in any directions, with a moderate amplitude such that it
does not degrade too much the texture pattern.
• In case of a structure component, the blending has to follow the
structure direction with a high amplitude such that its sharpness is
preserved.

Temporal behavior: while dealing with the spatial components,
the blending model is able to cope with different temporal cases:

• In case of no or small instant motions, the inpainting result has
to be blended with a high amplitude along the time dimension to
flatten temporal seams reminiscent of the inpainting.
• In case of moderate to high amplitude motions, the blending along
the time dimension has to be small or null to avoid blending an
object at the frame t with another at the frame t+ 1.

4 Tensor Model for Space-time Blending

To handle all the spatial and temporal video configurations de-
scribed above, we define a unified blending model. This model
must be able to tackle flat areas with its isotropic properties, but
also to be aware of the video structures using anisotropy. Therefore,
we chose a tensor model that is the lightest model able to describe
both isotropy and anisotropy. The model we propose is defined as:

B =
∑

j∈{1,2,3}

λBjeBjeBj
T

=
∑

i∈{1,2}

λBieBieBi
T

︸ ︷︷ ︸
spatial term

+λBteBteBt
T︸ ︷︷ ︸

temporal term

(2)
where eigenvectors eBi represent the preferred orientations for the
blending, and eigenvalues λBi λBt represent the blending band-
widths in space and time respectively. In order to keep the control
of the overall anisotropy of B, we propose the following definition
inspired by partial differential equations for diffusion [Tschumperle
and Deriche 2005] for its eigenvalues:

λBi = σ

(1+
∑

j∈{1,2,3}
λ̂Bj)

γi and λBt = σt
(1+

∑
j∈{1,2,3}

λ̂Bj)
γt

(3)
where σ and σt are the user-defined spatial and temporal blending
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Figure 3: Illustration of the anisotropy control of the blending ten-
sors in a 2D image through the parameters γi.

bandwidth respectively. As more described further, γi, i ∈ {1, 2}
(resp. γt) control the anisotropy of B in the spatial (resp. temporal)
dimension. The λ̂Bj , j ∈ {1, 2, 3} are normalized eigenvalues that
depend on the local video geometry and are computed as follows:

λ̂Bi =
λSi

max
I

λSi
(4)

λSi, i ∈ {1, 2, 3} are the eigenvalues of the structure tensor S,
that gives a description of local geometry of color images. This
normalization step aims at making the λ̂Bi to be independent of
the image value range. This is not the case with structure tensors
[Di Zenzo 1986] defined as follows:

S =
∑

k∈{R,G,B}

−−→
∇Ik .

−−→
∇IkT (5)

Originally defined for 2-dimensional images, structure tensors can
be adapted to video data by adding the local temporal derivative

of the video such that
−−→
∇Ik =

(
∂Ik
∂x

∂Ik
∂y

∂Ik
∂t

)T
. There are

different possibilities to compute the temporal derivative ∂I
∂t

like



the optical flow for example. In our experiments, for a frame
I(t) of the video I , we compute the gradient of the pixel values:
∂I(t)

∂t
= I(t+1)−I(t−1)

2
.

As a large variety of images exists, it is good to have the control on
the way that one wants to locally apply the blending. Therefore, we
chose to introduce the parameters γi, i ∈ {1, 2} (γ1 < γ2) and γt,
that aim at changing the overall shape of the blending tensors. For
an image that has strong contours to preserve, we choose γ2 >>
γ1, e.g. γ2 = 15, γ1 = 0.5 (see Fig. 3(b)). On the other hand,
for a low-contrast image we choose γ2 ≈ γ1, e.g., γ2 = γ1 = 0.5
(see Fig. 3(d)) to blend in all directions. Fig. 3 shows different
configurations of γi for the spatial plane xy, and their effect on
the blending tensors. Note that by using γ1 = γ2, one is able
to apply isotropic spatial patch blending. The blending tensor

Figure 4: Space-time blending configuration depending on the lo-
cal video structure and motion.

model we have defined follows the local properties summarized in
Fig. 4. An example of blending tensors is given Fig. 5 and exhibits
the projections of the blending tensors along the xz plane ((a) and
(b)), xy plane ((c) and (d)). One can see that tensors are aligned
with the motion direction in (b), and with the objects contours in
(d). These properties allow the patch blending to be respectful of
the structures and the textures.

5 Results and Conclusions

In Fig. 6 we compare the results of our method to those without
blending, and those of [Newson et al. 2014]. At first, one can no-
tice that from exemplar-based inpainting results without blending
(second row) to our results (last row), the block-effect artifacts are
removed while the structures of the objects remain intact. Also,
our method provides results with a similar visual quality of those of
[Newson et al. 2014].

In this paper we presented an exemplar-based video inpainting and
a space-time patch blending technique that is able to reduce space-
time block-effect artifacts. Together, this contributions are able to

Figure 5: Space-time blending tensor fields projection on xy and
xt planes (right) computed on sample images (left). The women are
walking from the left to the right in the video.

produce good quality video inpainting result without altering the
input video content. In future works, we will use an optical flow
estimation to enhance the accuracy of our geometry model for video
patch blending.
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