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Abstract

L We study multivalued diffusion PDE’s (Partial Dif-
ferential Equations) and their application to color im-
age processing. The analysis of classic scalar diffusion
PDE’s leads to a new multivalued regularization equa-
tion which is coherent with a local vector image geom-
etry. Then, we are interested in constrained reqular-
wzation problems, where vector norm constraints have
to be considered. A general extemsion for unit vector
reqularization is then proposed. Finally, experimental
results of color image restoration are presented.

Introduction

For many years, the restoration of noisy and blurred
digital data has been widely studied, and many al-
gorithms based on variational or stochastic formula-
tions have tried to solve this ill-posed problem. The
variational methods based on diffusion PDE’s (Partial
Differential Equations) have particularly proven their
efficiencies in order to regularize images while preserv-
ing important data discontinuities, that often contain
edge informations. Actually, one of the first steps was
initiated more than ten years ago, with the pionner-
ing work of Perona & Malik [34], who proposed an
anisotropic diffusion PDE reconstruction algorithm to
smooth grey-valued images while preserving the edges,
overcoming the restrictions imposed by linear filter-
ing techniques. Since then, many authors have pro-
posed and studied well-posedness PDE’s that tackle
the problem of scalar image regularization. We can
cite for instance papers from Alvarez [2, 1], Aubert
[10], Chambolle & Lions [7], Chan [5], Cohen [13],
Cottet & Germain [14], Hamza & Krim [18], Ko-
rnprobst & Deriche [22, 23, 24], Malladi & Sethian
[27], Mumford & Shah [29, 46], Morel [28], Nord-
strom [30], Osher & Rudin [39], Perona & Malik [34],
Polyak [35], Proesman [38], Sapiro [6, 43, 44, 45], We-
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ickert [58, 60, 61] and You [64]. More recently and
thanks to increased computer memory capacity, the
problem of regularizing images of vector-valued fea-
tures has become an active research area, because of
the large number of possible applications, including
various computer vision tasks : color image restora-
tion, [5, 20, 45, 48, 53, 58|, regularization of optical
flows and direction fields [8, 21, 33, 50, 49, 55], im-
age inpainting [4, 9], regularization of diffusion MRI,
[15, 12, 36, 54, 57], scale space analysis [1, 62]. Pro-
posed algorithms rely on various frameworks, such as
image variation minimization [3, 5, 46], local geometry-
based diffusion [45, 53], flow of manifolds embedded in
higher dimensional space minimizing Polyakov actions
[47] or diffusion of chemical concentrations [58].

In this paper, we are first interested in the geometric
properties that should satisfy an efficient image restora-
tion PDE, illustrated with the well known ¢-function
framework for scalar images. Then we focus on vector-
valued data (and particularly color images) and com-
pare different vector geometry definitions, based on the
Di Zenzo calculus [65]. It allows us to analyze refer-
ence works in the domain of vector image diffusion with
PDE’s [5, 45, 47, 58] using a local approach and a geo-
metric viewpoint. From this study a natural generaliza-
tion of the ¢-function based diffusion to multi-valued
images will emerge. Within the same idea, we propose
to enhance blurred multi-valued edges, thanks to a vec-
tor extension of the shock filter method [31]. Proposed
equations are then derived in order to process fields of
norm constrained vectors. Finally, we illustrate the dif-
ferent applications of our vector regularization PDE’s,
including restoration of color images, optical flows, di-
rection fields and chromaticity noise removal.

1 Anisotropic diffusion and local ge-
ometry of images

Few years ago, the ¢-function formulation enabled the
unification of many proposed anisotropic regularization



PDE’s acting on scalar images within a common vari-
ational framework [10, 23, 11]. Let 2 be a spatial 2D
domain (for instance, @ = [a,b]). We assume Neu-
mann boundary conditions on 9€2. A noisy scalar im-
age Iy : 2 — R can be regularized by minimizing the
following ¢-functional
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The fixed parameter a > 0 prevents the expected solu-
tion from being too different from the given noisy image
Iy, while ¢ : R — R is an increasing function, which
controls the regularization behaviour. The minimiza-
tion is often performed via the corresponding diffusion
PDE evolution, coming from the Euler-Lagrange equa-
tions of E(I) :
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A lot of proposed scalar regularization methods can
then be expressed by finding the corresponding ¢-
function : Minimal surfaces [10], Geman & Mec-
Clure [17], Perona & Malik [34], Total variation [40],
Tikhonov [51] among other examples.

Moreover, an interesting development of (1) has been
proposed in [23] :

or . ¢ (IVI])
o7 = o =D+ ¢ (IVII) Iy + VI

Iee (2)
where I, = nTHn and Iee = ¢THE are the second
spatial derivatives of I in the directions of the gradi-
ent n = VI/||VI|| and its orthogonal £ = nt (here H
denotes the hessian of I and I,,,, and I¢¢ are then di-
rectional 1D second derivatives). Note that if M € Q
is located on an image discontinuity (edge), {(ar) is a
vector tangent to this edge (since it is tangent to the
isophotes). Geometrically speaking, the PDE (2) per-
forms then two sequential and directional 1D diffusions
that smooth the image data in the isophote direction &
with a weight c¢ and in its orthogonal direction n with
a weight ¢, :

ol
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with

ce = o (IVIID/IIVI]] and ey =¢ ([[VI]]) (4)
Different choices of ¢ obviously lead to different lo-
cal diffusion behaviours. Anyway for image restoration
purposes, there are natural geometric properties that

should be verified by the coeflicients c¢ and ¢, :

- The functions c¢¢ and ¢, must be positive, in order to
avoid instable inverse diffusion along 7 or €.

- When the local geometry is flat and doesn’t contain
any edges (||VI|| — 0), the diffusion should be isotropic
i.e with no prefered diffusion directions since n and &
do not represent signifiant orientations in this case :

oI
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-On high gradient regions (||VI|| > 0), the current
point may be located on an edge, the diffusion should
be done only along the edge direction £, in order to
preserve it (anisotropic diffusion) :
ce >»c, and ¢, ~0 then % ~ ce Ige

For instance, the hypersurface function ¢(s) =
2v/1+ s2 — 2 defined in [10] satisfies these properties.
In [23], the authors proposed also to fix the smooth-
ing intensities ¢, = g¢-(||VI||) (decreasing function)
and c¢ = 1, which ensures a permanent noise removal,
but tends to smooth sharp corners, corresponding to
very high gradients points. Note that in this case, no
function ¢ can be found to have the same geometric
behaviour, and the corresponding PDE cannot be in-
terpreted as a gradient descent of an energy functional
anymore. Nevertheless, this means that one can choose
c¢ and ¢, to fit more precise geometric constraints that
those verified by the original ¢ function formulation.

The observation of scalar image diffusion equations
teaches us that a regularization equation should adapt
its diffusion behaviour to the local geometry of the
image, defined by edge indicators and edge orienta-
tions. For scalar images, such attributes are respec-
tively given by ||VI| and by the orientation basis
(n, ). Regularization processes acting on wvector-
valued images I need to be driven by equivalent geo-
metric attributes, taking the coupling between vector
channels I; into account (computing such a geometry
is the matter of section 2).

Using separate scalar PDE’s on each component I; of
a multi-valued image I is then useless : each channel
are diffusing with different local geometries ||VI;|| and
(1, & ). The resulting image is blended, and vector
edges are falsely smoothed, as illustrated on Figure 1.

2 Defining a vector geometry

We concentrate now our attention on wector images
I(M) : Q@ — R* (n = 3 for color images). We denote



a) Noisy image

¢) Vector approach

Figure 1: Channel by channel approach vs wector-based
PDE, applied on a noisy color image (considering the
(R, G, B) wvector space).

by I; the i** image channel (1 <i <n) :

VMeQ, IM)=(L(M), L(M), ..., I,(M))

The idea is to find a local vector geometry on each point
M € Q, defined by :

- A wvector gradient norm ./\/(M) that detect edges and
corners when its value becomes high. A should then
reduce to |VI]| for scalar images (n = 1).

- Two corresponding variation orientations 6, and
6, that are respectively orthogonal and tangent to
the vector edges, if there are any.

One approach would be to compute first a scalar im-
age f(I), using a function f: R® — R that models the
human perception of vector edges. For instance, one
could choose the luminance function f = L* for color
images. Then we could define 0, = Vf(I)/|Vf(I)],
and V' = ||V f(I)||. However, there are mathematically
no functions f that can detect all possible vector vari-
ations : For instance, the luminance function wouldn’t
be able to detect iso-luminance contours.

Another solution has been proposed by Di Zenzo in
[65]. He considers a multi-valued image I as a 2D —
n-D vector field, and looks for the local variations of
the norm ||dI||?, mainly given by a variation matrix
G = (gi;)- If we denote by X = (z,y)”, we get :

L] = dX” G dX where G =Y VI, VI

=1
For color images I = (R, G, B) the symmetric and semi-
positive matrix G is then :

G R2 4+ G% + B2
~ \ R.R, +G,G, + B, B,

R.R, +G.G, + BB,
R + G2 + B
(5)

)

The positive eigenvalues A, ,_ of G are the maximum
and the minimum of ||dI||? and the orthogonal eigen-
vectors A4 and f_ are the corresponding variation ori-
entations :

2911+922i\/z

Ay/o 5 (6)

and

2 g12 >
g22 — g1 £VA
Note then that Ay >

Or/- 1 (

where A = (g11 — g22)* +4 g}, .
A_>0.

The local orientations of the vector edges are then
naturally defined by the orthogonal bases (8 , 6_).
Concerning the A, ,_, three geometric cases could be
considered (an example of color image illustrates these
cases, Figure 2a).

-If Ay ~ A ~ 0, there are very few vector variations
around the current point : the region is flat and doesn’t
contain any edges or corners (look at the inside of the
strips in Figure 2a).

- If Ay > A_, there are a lot of vector variations. The
current point may then be located on a vector edge (the
edges of the strips in Figure 2a).

-If Ap ~ A > 0, we are located on a saddle point of
the image, which can possibly be a vector corner (the
intersections of the strips in Figure 2a).

Three differents choices of vector gradient norms N can
then be made :

-N = \/I, as a natural extension of the scalar gra-
dient norm viewed as the value of maximum variations
[41, 42, 52, 53] (Figure 2b).

- N_ = /Ay — A_, also called coherence norm, have
been choosen in [45, 57, 58] to measure vector varia-
tions. Note that this norm fails to detect discontinu-
ities that are saddle points of the image (Figure 2c).

- Ny = /A + A, also denoted by ||VI]| is often
choosen [49, 3, 5, 32, 46, 55, 54] since it detects edges
and corners in a good way, and it is easy to compute :

Ny = /trace(G) = Z IV L:||?

Note that N, sometimes gives preferences to certain
corners (Figure 2d), which is very interesting for image
restoration purposes, since the smoothing will be atten-
uated on these corners (which is a desired behaviour).
Note also that for the scalar case (n = 1), Ny, N_ and
N naturally reduce to ||VI]|, as in this case A_ = 0
and Ay = ||[VI]%

Once a local vector geometry is defined, we can use it
as a measure in many computer vision processes acting
on vector images. For instance, color edge detection
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Figure 2: Vector variations norms and application to edge
detection : (a) Color image, (b)) N = /A4, (¢) No =

A+ = A2, (d) Ny =/ Ax + A, (e) Original color image,
(f) Edge detection with the N norm

can be performed by finding the local maxima of N in
the 6, direction (Figure 2e,f and [25]). This vector ge-
ometry computation has also been integrated for color
image segmentation purposes in [41, 42].

3 Vector diffusion PDE’s

We will now analyze the recent proposed diffusion
PDE’s acting on vector images with respect to their
local geometric behaviour. We will use the previous no-
tations &, i to refer to the scalar local geometry (section
1),and 64,6, No, N, N and the matrix G to refer
to the vector local geometry (section 2). This Section
concludes in a comparative figure Figure 3 that illus-
trates the behaviour of each proposed equation applied
on a higly noisy synthetic color image.

3.1 Color Total Variation

In order to regularize vector-valued images, Blomgren
and Chan in [5] proposed to minimize a measure of a
color total variation T'V,, (which reduces to the scalar
TV whenn =1) :

n 2
min TV, (1) = E:L/HVthQ}_
i=1 Q

Minimizing the T'V,, leads to the following vector dif-
fusion PDE (written in a component by component
style) :

oL _ JyIVI ( Vi ) (7)

ot TV,(I) IV L]

Note that introducing the orthogonal gradient direc-
tion & = (VI;/||VIi||)*, defined in section 1, this PDE

writes :

oL _ , Iue

L (o IV 1) d9)
ot VL

TV, (I)

where A, =

The diffusion is then a channel by channel TV,
weighted by a coupling term A; which is constant for
a whole channel I;. No local vector interactions are
used : Noisy vector edges that not clearly appear in
each channel of the image, may be smoothed by this
method (look at the bottom of the central grey object
in Figure 3). Otherwise, this method is well adapted
for removing uncorrelated noise. Minimizing a vector
coupled functional do not necessary lead to a PDE that
implicitly considers a local vector geometry.

3.2 Coherence Enhancing Diffusion

In [58, 59, 61], Weickert viewed the image regulariza-
tion process as the diffusion of chemical concentrations
and propose to apply this diffusion PDE, inspired from
the field of fluid physics :

ol;
ot

—div(D VI ) (8)

(Note that this PDE may not come from a variational
principle)

D = Muu” + Xy vvT s the diffusion tensor (i.e a
symmetric and positive definite matrix) that possesses
A1,A2 as positive eigenvalues and u,v as corresponding
orthonormal eigenvectors and that drive the regulariza-
tion process : the amount of diffusion in the directions
u and v will be weighted by Ay and .

For the particular problem of vector-valued image
diffusion [58], D is explicitely constructed from a
smoothed version G* of the Di Zenzo variation ma-
trix G (5), in order to possesses the following spectral
elements :

AL =p
A2:ﬁ+(1—ﬁ)exp(ﬁ)

u = 0+
v==0_
where 6, and A, ,_ are smoothed versions of the

eigen elements of the matrix G*. This equation geo-
metrically reads as :

and
(B,C >0)

- On flat regions, according to the coherence norm N_
(i.e Ay ~ A_), the smoothing is isotropic with a weight
B €10,1], since \y = Ay = 3.

- Near the edges (V= > 0 ie A; > \_), the diffusion



is mainly made along the vector edge orientation 6_ but
also along its orthogonal orientation 64, with a weight
B (note that edges may be blurred for high values of 3,
Figure 3d).

To avoid orthogonal smoothing in the edge regions, one
can choose 5 — 0, but it also suppresses the interesting
isotropic smoothing behaviour in flat regions (Figure
3e).

3.3 The Beltrami Flow

With a completely different approach, Sochen and
Kimmel [47, 20] found a particular case of the co-
herence enhancing diffusion (8). Considering a vec-
tor/color image as a 2D surface embedded in a (n+2)D
space (this idea was also used in [63]) and minimizing a
Polyakov action, they end up in the following diffusion
PDE called Beltrami Flow, that can be expressed with
the Di Zenzo matrix G (5), by :

OL _ 1 gy (\/det(A) A~! w-) (9)
ot \/det(A) '
where A = Id + G and Id is the 2 x 2 identity matrix.
This equation is then a weighted version of eq.(8), with

the following diffusion tensor :

D =y/det(Id+ G) (Id+ G)*

In this case, the spectral elements of D that geometri-
cally drives the diffusion can also be written using the
eigenvalues and eigenvectors of G :

[1+2_ 1+,
A = Ay = 42
! 1+, @ 77 1+ A
d

u = 0+

{ v=20_
Here, the diffusion behaviour depends mainly in how
A4 compares to A_, i.e implicitely depends of the co-
herence variation norm N_ :
- On flat regions (A ~ A_ i.e N_ — 0), the diffusion
is isotropic : Ay ~ Ay ~ 1.
- Near edges, (A > A_ i.e N_ > 0), the diffusion is
mainly done along the vector edge direction #_, as in
this case \; ~ 0.
Note also that the weighting term of the eq.(9)

1 B 1
VAT HA)

Vdet(Id + G)
quickly decreases the amount of diffusion near high gra-
dients, and vector edges may be preserved for a long
time during the flow (and unfortunately noisy edges
too, as illustrated in Figure 3f).

an

3.4 Vector I Diffusion

In [45], Ringach and Sapiro proposed an extension of
the weighted mean curvature equation I; = 8 I for
the vector case. They naturally used the Di Zenzo
vector geometry to design this regularization PDE :

ol
5= gA+ = A=) Tp_g_ (10)

where g : R — R is a positive decreasing function,
avoiding the smoothing of regions containing large gra-
dients. It was one of the first attempts to construct a
vector diffusion PDE directly from a local geometry
viewpoint. At a given point, all channels I; evolve in
the direction of vector edges and with a mutual inten-
sity. Anyway, some drawbacks subsist :

- The coherence norm N = /A, — A_ may not detect
some vector corners (Figure 2d).

- In flat regions (V_ — 0), the diffusion is made along
a direction 6_, which is mainly directed by the noise.
Texture effects may result from this uni-directionnal
smoothing in homogeneous areas (look at the yellow
circle in Figure 3g).

3.5 A new geometric designed diffusion PDE

Our approach is based on some regularization heuris-
tics that would be used if one had to restore a vector-
valued image (especially a color image). We use the
vector gradient norm Ay = /Ay + A_ to detect the
local configuration of the image (flat region or edges),
for reasons explained in section 2.

- On almost constant color (or vector) regions, a nat-
ural idea would be to smooth isotropically the region,
in order to remove the noise. The diffusion equation
must then be close to :

o1

i AI  when Ny —0

- On edges and corners, we want to smooth the image
with less intensity and in the direction of the wvector
edge, which means that :

= o =BNL) Ty_g_

N+>>O ot

(8 is a decreasing function).

As described in Section 1, these geometric proper-
ties are naturally verified by diffusion equations of the
form :

ol

E = Co_ (N+) 10_9_ +69+(N-|—) IG+9++a (IO_I) (]']‘)



where cy. : R — R and ¢p, : R — R are decreasing
functions, like those proposed in the scalar case.

Note that with this geometric approach, we can obtain
the original diffusion behaviours of the ¢-functions, if
we choose ¢y_ and ¢y, to be defined by (4). This equa-
tion is designed to fully adapt its smoothing behaviour
to the local vector geometry of the image and so per-
forms a coherent restoration process (Figure 3h).

3.6 Comparisons of the PDE’s on a synthetic
color image

We tested the described methods
eq.(7),(8),(9),(10),(11) on a very noisy color syn-
thetic image (Figure 3).

Figure 3: Comparison of vector diffusion PDE’s on a
synthetic color image : (a) Color image, (b) Noisy im-
age, (c) Color TV eq.(7), (d) Coherence Enhancing eq.(8)
(3 =0.05), (e) Coherence Enhancing eq.(8) (8 =0.01), (f)
Beltrami flow eq.(9), (g) Vector I¢e eq.(10), (h) Geometric
Vector PDE eq.(11)

A data attachment term a(Ip — I) (with a = 0.01)
has been added to all equations, and the PDE flows
have been applied on the (R, G, B) color space. Figure
3 shows the results at convergence. The added noise
is highly correlated between the image channels and
has been obtained in noisying the (H, S, V') color space
of the original synthetic image with uniform noise. It
avoid to favour PDE’s working separatly on the vector
components (noise in real vector images are seldom un-

correlated) This figure allows to experimentally analyze
the expected local diffusion behaviour of each vector
diffusion PDE’s, on flat regions and around the edges
and corners.

4 Reducing the blur effect

Reducing the blurred edges can also be a part of an im-
age restoration process. The scalar shock filter method
proposed in [31] enhances blurred edges in grey-valued
images without any knowledge of the convolution mask.
It operates by raising the signal in the gradient direc-
tion 7 (Figure 4) :

ol .
S = —siga(l,,) V1|
1(x.y)

n

Figure 4: Principle of shock filters

For vector images, we naturally would like to raise each
vector component I; of I in the same direction 6, of the
vector discontinuities. We also add a weighting term
that adapts the intensity of the shock filter process in
order to enhance only edges and not flat regions :

A 1_gWV) U (with Ny = /A T A0 )
(12)

ot
where g : R — [0, 1] is a decreasing function and U is
the shock filter vector whose components are :

U o (1) |25
Pt Be2 ) || o0,

Some results of applications can be found in the re-
sult Section 6. We also propose to add this vector
shock filter term to our geometric ¢-function diffusion
PDE eq.(11), to obtain a single wvector image restora-
tion PDE, allowing to clear local noise and enhance
blurred edges :

% =co_Tg g +co, Ip,o, +a(lo—I)—pBNL) U

(13)
where § : R — R is an increasing function. The posi-
tive parameters o and  weight the importance of the
shock filters and the data attachment towards the dif-
fusion process. An example of color image restoration
using eq.(13) is illustrated in Figure 6f.




5 Norm constrained restoration

Recently, some authors have proposed smoothing vec-
tor fields with equations that preserve the vector norm
[33, 49, 8, 3]. The obtained PDE’s are constrained ver-
sions of classic vector diffusion equations. Here is a
geometric viewpoint of this problem. Indeed, the norm
constraint is equivalent to :

ol(x,y)

IT(x,9)||* = constant <= 2 I(M) . —5r " 0

This implies that the PDE wvelocity vector mgtw) must

be orthogonal to the vector I(AM), in order to pre-
serve its norm. Note this is a pointwise constraint that
doesn’t depend on spatial relations between vector pix-
els. Consider then the following vector PDE of the
general form :

ol

5% = B where 3 € R”

Adding the norm constraint can be naturally done by
finding the component of the unconstrained velocity 3
that is orthogonal to the vector I (Figure 5) :

p.=rtE) =5~ (Tiz) 1

IR~ (0!

> B(M)

Figure 5: Geometric view of the norm constraint

Then, the following PDE ensures the preservation of
the vector norm ||IJ] at each point M € Q :

o B.1
a“*‘(W)‘ (14)

For the particular case of vector field restorations under
constrained norm, we can choose 3 to be the expression
of eq.(13). It allows the use of shock filters as well as
accurate diffusion for norm constrained vector fields.
Interesting applications of this equation are :

- Chromaticity restoration of noisy color image : It con-
sists of splitting the color vectors I = (R, G, B) into the
unit chromaticity vector I/||I]| and the brightness val-
ues ||I||, and apply a norm constrained PDE like eq.(14)

on the obtained chromaticity vector image. If the noise
is known to be chromatic, the obtained restoration will
be more better since an adapted equation will be used.
- Direction regularization : This equation (14) is also
able to restore 2D vector fields, coming for instance
from optical flow calculation.

6 Applications

We present some results on vector image restoration
(maiunly color images, n = 3), using the proposed equa-
tions (7),(8),(9),(10), (11),(13),(14) in order to restore
the following type of images :

- Color images with coupled mnoise (Figure
6a,b,c,d,e,f,g;h). The PDE’s were applied on the
(R,G,B) color basis. Note how the use of vector
shock filters in our equation (13) (Figure 6fh) allows
to preserve the edges for a long time, durng the PDE
flow.

- Color images with chromaticity noise : Figure 6i,j,k
illustrates that norm preserving PDE’s are better
adapted to remove this kind of noise, and allows to
preserve the little structures (look at the center of the
flower for instance).

- Direction fields (Figure 6l,m) : The resulting di-
rections are combed by the diffusion equation, while
important discontinuities are preserved.

- Blurred color images (Figure 6n,0) : Our extension
of the shock filter formulation can be used to enhance
blurred images, without any knowledge of the cause of
the degradation (instead of deconvolution methods).

Note also that the authors web page http://www-
sop.inria.fr/robotvis/personnel includes further results
and PDE evolution movies.

Conclusion

In this paper, we proposed a local and geometric point
of view of vector image filtering, using diffusion PDE’s.
It allowed us to analyze recent proposed methods of
vector data regularization, as well as propose a new
vector PDE, well adapted for image restoration. This
equation, whose key feature is the use of a local vector
geometry, combines the advantages of diffusion PDE’s
for noise removing, but also uses vector shock filters in
order to enhance blurred edges. The extension to norm
constrained vector fields can be the start for other well
known constrained problems, as optical flow compu-
tation, orientation analysis, tensor image restoration.
Promising results have been already obtained in recent
papers [12, 55, 54, 56].
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