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t1 We study multivalued di�usion PDE's (Partial Dif-ferential Equations) and their appli
ation to 
olor im-age pro
essing. The analysis of 
lassi
 s
alar di�usionPDE's leads to a new multivalued regularization equa-tion whi
h is 
oherent with a lo
al ve
tor image geom-etry. Then, we are interested in 
onstrained regular-ization problems, where ve
tor norm 
onstraints haveto be 
onsidered. A general extension for unit ve
torregularization is then proposed. Finally, experimentalresults of 
olor image restoration are presented.Introdu
tionFor many years, the restoration of noisy and blurreddigital data has been widely studied, and many al-gorithms based on variational or sto
hasti
 formula-tions have tried to solve this ill-posed problem. Thevariational methods based on di�usion PDE's (PartialDi�erential Equations) have parti
ularly proven theireÆ
ien
ies in order to regularize images while preserv-ing important data dis
ontinuities, that often 
ontainedge informations. A
tually, one of the �rst steps wasinitiated more than ten years ago, with the pionner-ing work of Perona & Malik [34℄, who proposed ananisotropi
 di�usion PDE re
onstru
tion algorithm tosmooth grey-valued images while preserving the edges,over
oming the restri
tions imposed by linear �lter-ing te
hniques. Sin
e then, many authors have pro-posed and studied well-posedness PDE's that ta
klethe problem of s
alar image regularization. We 
an
ite for instan
e papers from Alvarez [2, 1℄, Aubert[10℄, Chambolle & Lions [7℄, Chan [5℄, Cohen [13℄,Cottet & Germain [14℄, Hamza & Krim [18℄, Ko-rnprobst & Deri
he [22, 23, 24℄, Malladi & Sethian[27℄, Mumford & Shah [29, 46℄, Morel [28℄, Nord-str�om [30℄, Osher & Rudin [39℄, Perona & Malik [34℄,Polyak [35℄, Proesman [38℄, Sapiro [6, 43, 44, 45℄, We-1This arti
le was published in IEEE SPM (Signal Pro
essingMagazine) Spe
ial Issue, 2002

i
kert [58, 60, 61℄ and You [64℄. More re
ently andthanks to in
reased 
omputer memory 
apa
ity, theproblem of regularizing images of ve
tor-valued fea-tures has be
ome an a
tive resear
h area, be
ause ofthe large number of possible appli
ations, in
ludingvarious 
omputer vision tasks : 
olor image restora-tion, [5, 20, 45, 48, 53, 58℄, regularization of opti
al
ows and dire
tion �elds [8, 21, 33, 50, 49, 55℄, im-age inpainting [4, 9℄, regularization of di�usion MRI,[15, 12, 36, 54, 57℄, s
ale spa
e analysis [1, 62℄. Pro-posed algorithms rely on various frameworks, su
h asimage variation minimization [3, 5, 46℄, lo
al geometry-based di�usion [45, 53℄, 
ow of manifolds embedded inhigher dimensional spa
e minimizing Polyakov a
tions[47℄ or di�usion of 
hemi
al 
on
entrations [58℄.In this paper, we are �rst interested in the geometri
properties that should satisfy an eÆ
ient image restora-tion PDE, illustrated with the well known �-fun
tionframework for s
alar images. Then we fo
us on ve
tor-valued data (and parti
ularly 
olor images) and 
om-pare di�erent ve
tor geometry de�nitions, based on theDi Zenzo 
al
ulus [65℄. It allows us to analyze refer-en
e works in the domain of ve
tor image di�usion withPDE's [5, 45, 47, 58℄ using a lo
al approa
h and a geo-metri
 viewpoint. From this study a natural generaliza-tion of the �-fun
tion based di�usion to multi-valuedimages will emerge. Within the same idea, we proposeto enhan
e blurred multi-valued edges, thanks to a ve
-tor extension of the sho
k �lter method [31℄. Proposedequations are then derived in order to pro
ess �elds ofnorm 
onstrained ve
tors. Finally, we illustrate the dif-ferent appli
ations of our ve
tor regularization PDE's,in
luding restoration of 
olor images, opti
al 
ows, di-re
tion �elds and 
hromati
ity noise removal.1 Anisotropi
 di�usion and lo
al ge-ometry of imagesFew years ago, the �-fun
tion formulation enabled theuni�
ation of many proposed anisotropi
 regularization



PDE's a
ting on s
alar images within a 
ommon vari-ational framework [10, 23, 11℄. Let 
 be a spatial 2Ddomain (for instan
e, 
 = [a; b℄). We assume Neu-mann boundary 
onditions on �
. A noisy s
alar im-age I0 : 
 ! R 
an be regularized by minimizing thefollowing �-fun
tionalE(I) = Z
 h�2 (I � I0)2 + �(krIk)i d
The �xed parameter � > 0 prevents the expe
ted solu-tion from being too di�erent from the given noisy imageI0, while � : R ! R is an in
reasing fun
tion, whi
h
ontrols the regularization behaviour. The minimiza-tion is often performed via the 
orresponding di�usionPDE evolution, 
oming from the Euler-Lagrange equa-tions of E(I) :�I�t = �(I0 � I) + div �0(krIk)krIk rI! (1)A lot of proposed s
alar regularization methods 
anthen be expressed by �nding the 
orresponding �-fun
tion : Minimal surfa
es [10℄, Geman & M
-Clure [17℄, Perona & Malik [34℄, Total variation [40℄,Tikhonov [51℄ among other examples.Moreover, an interesting development of (1) has beenproposed in [23℄ :�I�t = �(I0 � I) + �00(krIk) I�� + �0(krIk)krIk I�� (2)where I�� = �TH� and I�� = �TH� are the se
ondspatial derivatives of I in the dire
tions of the gradi-ent � = rI=krIk and its orthogonal � = �? (here Hdenotes the hessian of I and I�� and I�� are then di-re
tional 1D se
ond derivatives). Note that if M 2 
is lo
ated on an image dis
ontinuity (edge), �(M) is ave
tor tangent to this edge (sin
e it is tangent to theisophotes). Geometri
ally speaking, the PDE (2) per-forms then two sequential and dire
tional 1D di�usionsthat smooth the image data in the isophote dire
tion �with a weight 
� and in its orthogonal dire
tion � witha weight 
� :�I�t = �(I0 � I) + 
� I�� + 
� I�� (3)with
� = �0(krIk)=krIk and 
� = �00(krIk) (4)Di�erent 
hoi
es of � obviously lead to di�erent lo-
al di�usion behaviours. Anyway for image restorationpurposes, there are natural geometri
 properties that

should be veri�ed by the 
oeÆ
ients 
� and 
� :- The fun
tions 
� and 
� must be positive, in order toavoid instable inverse di�usion along � or �.- When the lo
al geometry is 
at and doesn't 
ontainany edges (krIk ! 0), the di�usion should be isotropi
i.e with no prefered di�usion dire
tions sin
e � and �do not represent signi�ant orientations in this 
ase :
� ' 
� = � > 0 then �I�t ' � (I�� + I��) = � �I-On high gradient regions (krIk � 0), the 
urrentpoint may be lo
ated on an edge, the di�usion shouldbe done only along the edge dire
tion �, in order topreserve it (anisotropi
 di�usion) :
� � 
� and 
� ' 0 then �I�t ' 
� I��For instan
e, the hypersurfa
e fun
tion �(s) =2p1 + s2 � 2 de�ned in [10℄ satis�es these properties.In [23℄, the authors proposed also to �x the smooth-ing intensities 
� = g� (krIk) (de
reasing fun
tion)and 
� = 1, whi
h ensures a permanent noise removal,but tends to smooth sharp 
orners, 
orresponding tovery high gradients points. Note that in this 
ase, nofun
tion � 
an be found to have the same geometri
behaviour, and the 
orresponding PDE 
annot be in-terpreted as a gradient des
ent of an energy fun
tionalanymore. Nevertheless, this means that one 
an 
hoose
� and 
� to �t more pre
ise geometri
 
onstraints thatthose veri�ed by the original � fun
tion formulation.The observation of s
alar image di�usion equationstea
hes us that a regularization equation should adaptits di�usion behaviour to the lo
al geometry of theimage, de�ned by edge indi
ators and edge orienta-tions. For s
alar images, su
h attributes are respe
-tively given by krIk and by the orientation basis( � ; � ). Regularization pro
esses a
ting on ve
tor-valued images I need to be driven by equivalent geo-metri
 attributes, taking the 
oupling between ve
tor
hannels Ii into a

ount (
omputing su
h a geometryis the matter of se
tion 2).Using separate s
alar PDE's on ea
h 
omponent Ii ofa multi-valued image I is then useless : ea
h 
hannelare di�using with di�erent lo
al geometries krIik and( �i ; �i ). The resulting image is blended, and ve
toredges are falsely smoothed, as illustrated on Figure 1.2 De�ning a ve
tor geometryWe 
on
entrate now our attention on ve
tor imagesI(M) : 
 ! Rn (n = 3 for 
olor images). We denote



a) Noisy image b) Channel by 
hannel

) Ve
tor approa
hFigure 1: Channel by 
hannel approa
h vs ve
tor-basedPDE, applied on a noisy 
olor image (
onsidering the(R;G;B) ve
tor spa
e).by Ii the ith image 
hannel (1 � i � n) :8M 2 
; I(M) = ( I1(M) ; I2(M) ; : : : ; In(M) )The idea is to �nd a lo
al ve
tor geometry on ea
h pointM 2 
, de�ned by :- A ve
tor gradient norm N(M) that dete
t edges and
orners when its value be
omes high. N should thenredu
e to krIk for s
alar images (n = 1).- Two 
orresponding variation orientations �+(M) and��(M) that are respe
tively orthogonal and tangent tothe ve
tor edges, if there are any.One approa
h would be to 
ompute �rst a s
alar im-age f(I), using a fun
tion f : Rn ! R that models thehuman per
eption of ve
tor edges. For instan
e, one
ould 
hoose the luminan
e fun
tion f = L� for 
olorimages. Then we 
ould de�ne �+ = rf(I)=krf(I)k,and N = krf(I)k. However, there are mathemati
allyno fun
tions f that 
an dete
t all possible ve
tor vari-ations : For instan
e, the luminan
e fun
tion wouldn'tbe able to dete
t iso-luminan
e 
ontours.Another solution has been proposed by Di Zenzo in[65℄. He 
onsiders a multi-valued image I as a 2D !n-D ve
tor �eld, and looks for the lo
al variations ofthe norm kdIk2, mainly given by a variation matrixG = (gi;j). If we denote by X = (x; y)T , we get :kdIk2 = dXT G dX where G = nXi=1 rIi rITiFor 
olor images I = (R;G;B) the symmetri
 and semi-positive matrix G is then :G = � R2x +G2x +B2x RxRy +GxGy + BxByRxRy +GxGy +BxBy R2y +G2y +B2y �(5)

The positive eigenvalues �+=� of G are the maximumand the minimum of kdIk2 and the orthogonal eigen-ve
tors �+ and �� are the 
orresponding variation ori-entations : �+=� = g11 + g22 �p�2 (6)and �+=� == � 2 g12g22 � g11 �p� �where � = (g11 � g22)2 + 4 g212 . Note then that �+ ��� � 0.The lo
al orientations of the ve
tor edges are thennaturally de�ned by the orthogonal bases (�+ ; ��).Con
erning the �+=�, three geometri
 
ases 
ould be
onsidered (an example of 
olor image illustrates these
ases, Figure 2a).- If �+ ' �� ' 0, there are very few ve
tor variationsaround the 
urrent point : the region is 
at and doesn't
ontain any edges or 
orners (look at the inside of thestrips in Figure 2a).- If �+ � ��, there are a lot of ve
tor variations. The
urrent point may then be lo
ated on a ve
tor edge (theedges of the strips in Figure 2a).- If �+ ' �� � 0, we are lo
ated on a saddle point ofthe image, whi
h 
an possibly be a ve
tor 
orner (theinterse
tions of the strips in Figure 2a).Three di�erents 
hoi
es of ve
tor gradient normsN 
anthen be made :- N = p�+, as a natural extension of the s
alar gra-dient norm viewed as the value of maximum variations[41, 42, 52, 53℄ (Figure 2b).- N� = p�+ � ��, also 
alled 
oheren
e norm, havebeen 
hoosen in [45, 57, 58℄ to measure ve
tor varia-tions. Note that this norm fails to dete
t dis
ontinu-ities that are saddle points of the image (Figure 2
).- N+ = p�+ + ��, also denoted by krIk is often
hoosen [49, 3, 5, 32, 46, 55, 54℄ sin
e it dete
ts edgesand 
orners in a good way, and it is easy to 
ompute :N+ =ptra
e(G) =sXi krIik2Note that N+ sometimes gives preferen
es to 
ertain
orners (Figure 2d), whi
h is very interesting for imagerestoration purposes, sin
e the smoothing will be atten-uated on these 
orners (whi
h is a desired behaviour).Note also that for the s
alar 
ase (n = 1), N+, N� andN naturally redu
e to krIk, as in this 
ase �� = 0and �+ = krIk2.On
e a lo
al ve
tor geometry is de�ned, we 
an use itas a measure in many 
omputer vision pro
esses a
tingon ve
tor images. For instan
e, 
olor edge dete
tion



(a) (b) (
) (d)
(e) (f)Figure 2: Ve
tor variations norms and appli
ation to edgedete
tion : (a) Color image, (b) N = p�+, (
) N� =p�+ � ��, (d) N+ = p�+ + ��, (e) Original 
olor image,(f) Edge dete
tion with the N norm
an be performed by �nding the lo
al maxima of N inthe �+ dire
tion (Figure 2e,f and [25℄). This ve
tor ge-ometry 
omputation has also been integrated for 
olorimage segmentation purposes in [41, 42℄.3 Ve
tor di�usion PDE'sWe will now analyze the re
ent proposed di�usionPDE's a
ting on ve
tor images with respe
t to theirlo
al geometri
 behaviour. We will use the previous no-tations �, � to refer to the s
alar lo
al geometry (se
tion1), and �+, ��, N+, N�, N and the matrix G to referto the ve
tor lo
al geometry (se
tion 2). This Se
tion
on
ludes in a 
omparative �gure Figure 3 that illus-trates the behaviour of ea
h proposed equation appliedon a higly noisy syntheti
 
olor image.3.1 Color Total VariationIn order to regularize ve
tor-valued images, Blomgrenand Chan in [5℄ proposed to minimize a measure of a
olor total variation TVn (whi
h redu
es to the s
alarTV when n = 1) :minI TVn(I) =vuut nXi=1 �Z
 krIik d
�2:Minimizing the TVn leads to the following ve
tor dif-fusion PDE (written in a 
omponent by 
omponentstyle) : �Ii�t = R
 krIikTVn(I) div� rIikrIik� (7)Note that introdu
ing the orthogonal gradient dire
-tion �i = (rIi=krIik)?, de�ned in se
tion 1, this PDE

writes :�Ii�t = Ai I�i�ikrIik where Ai = �R
 krIik d
�TVn(I)The di�usion is then a 
hannel by 
hannel TV,weighted by a 
oupling term Ai whi
h is 
onstant fora whole 
hannel Ii. No lo
al ve
tor intera
tions areused : Noisy ve
tor edges that not 
learly appear inea
h 
hannel of the image, may be smoothed by thismethod (look at the bottom of the 
entral grey obje
tin Figure 3). Otherwise, this method is well adaptedfor removing un
orrelated noise. Minimizing a ve
tor
oupled fun
tional do not ne
essary lead to a PDE thatimpli
itly 
onsiders a lo
al ve
tor geometry.3.2 Coheren
e Enhan
ing Di�usionIn [58, 59, 61℄, Wei
kert viewed the image regulariza-tion pro
ess as the di�usion of 
hemi
al 
on
entrationsand propose to apply this di�usion PDE, inspired fromthe �eld of 
uid physi
s :�Ii�t = div (D rIi ) (8)(Note that this PDE may not 
ome from a variationalprin
iple)D = �1uuT + �2 vvT is the di�usion tensor (i.e asymmetri
 and positive de�nite matrix) that possesses�1,�2 as positive eigenvalues and u,v as 
orrespondingorthonormal eigenve
tors and that drive the regulariza-tion pro
ess : the amount of di�usion in the dire
tionsu and v will be weighted by �1 and �2.For the parti
ular problem of ve
tor-valued imagedi�usion [58℄, D is expli
itely 
onstru
ted from asmoothed version G� of the Di Zenzo variation ma-trix G (5), in order to possesses the following spe
tralelements :( �1 = ��2 = � + (1� �) exp� �C(�+ � ��)2�and � u = �+v = �� (�;C > 0)where �+=� and �+=� are smoothed versions of theeigen elements of the matrix G�. This equation geo-metri
ally reads as :- On 
at regions, a

ording to the 
oheren
e norm N�(i.e �+ ' ��), the smoothing is isotropi
 with a weight� 2 [0; 1℄, sin
e �1 = �2 = �.- Near the edges (N� � 0 i.e �+ � ��), the di�usion



is mainly made along the ve
tor edge orientation �� butalso along its orthogonal orientation �+, with a weight� (note that edges may be blurred for high values of �,Figure 3d).To avoid orthogonal smoothing in the edge regions, one
an 
hoose � ! 0, but it also suppresses the interestingisotropi
 smoothing behaviour in 
at regions (Figure3e).3.3 The Beltrami FlowWith a 
ompletely di�erent approa
h, So
hen andKimmel [47, 20℄ found a parti
ular 
ase of the 
o-heren
e enhan
ing di�usion (8). Considering a ve
-tor/
olor image as a 2D surfa
e embedded in a (n+2)Dspa
e (this idea was also used in [63℄) and minimizing aPolyakov a
tion, they end up in the following di�usionPDE 
alled Beltrami Flow, that 
an be expressed withthe Di Zenzo matrix G (5), by :�Ii�t = 1pdet(A) div�pdet(A) A�1 rIi� (9)where A = Id+G and Id is the 2� 2 identity matrix.This equation is then a weighted version of eq.(8), withthe following di�usion tensor :D =pdet(Id+G) (Id+G)�1In this 
ase, the spe
tral elements of D that geometri-
ally drives the di�usion 
an also be written using theeigenvalues and eigenve
tors of G :�1 =s1 + ��1 + �+ , �2 =s1 + �+1 + ��and � u = �+v = ��Here, the di�usion behaviour depends mainly in how�+ 
ompares to ��, i.e impli
itely depends of the 
o-heren
e variation norm N� :- On 
at regions (�+ ' �� i.e N� ! 0), the di�usionis isotropi
 : �1 ' �2 ' 1.- Near edges, (�+ � �� i.e N� � 0), the di�usion ismainly done along the ve
tor edge dire
tion ��, as inthis 
ase �1 ' 0.Note also that the weighting term of the eq.(9)1pdet(Id+G) = 1p(1 + �+)(1 + ��)qui
kly de
reases the amount of di�usion near high gra-dients, and ve
tor edges may be preserved for a longtime during the 
ow (and unfortunately noisy edgestoo, as illustrated in Figure 3f).

3.4 Ve
tor I�� Di�usionIn [45℄, Ringa
h and Sapiro proposed an extension ofthe weighted mean 
urvature equation It = � I�� forthe ve
tor 
ase. They naturally used the Di Zenzove
tor geometry to design this regularization PDE :�I�t = g(�+ � ��) I���� (10)where g : R ! R is a positive de
reasing fun
tion,avoiding the smoothing of regions 
ontaining large gra-dients. It was one of the �rst attempts to 
onstru
t ave
tor di�usion PDE dire
tly from a lo
al geometryviewpoint. At a given point, all 
hannels Ii evolve inthe dire
tion of ve
tor edges and with a mutual inten-sity. Anyway, some drawba
ks subsist :- The 
oheren
e normN� =p�+ � �� may not dete
tsome ve
tor 
orners (Figure 2d).- In 
at regions (N� ! 0), the di�usion is made alonga dire
tion ��, whi
h is mainly dire
ted by the noise.Texture e�e
ts may result from this uni-dire
tionnalsmoothing in homogeneous areas (look at the yellow
ir
le in Figure 3g).3.5 A new geometri
 designed di�usion PDEOur approa
h is based on some regularization heuris-ti
s that would be used if one had to restore a ve
tor-valued image (espe
ially a 
olor image). We use theve
tor gradient norm N+ = p�+ + �� to dete
t thelo
al 
on�guration of the image (
at region or edges),for reasons explained in se
tion 2.- On almost 
onstant 
olor (or ve
tor) regions, a nat-ural idea would be to smooth isotropi
ally the region,in order to remove the noise. The di�usion equationmust then be 
lose to :�I�t = �I when N+ ! 0- On edges and 
orners, we want to smooth the imagewith less intensity and in the dire
tion of the ve
toredge, whi
h means that :N+ � 0 =) �I�t = �(N+) I����(� is a de
reasing fun
tion).As des
ribed in Se
tion 1, these geometri
 proper-ties are naturally veri�ed by di�usion equations of theform :�I�t = 
��(N+) I����+
�+(N+) I�+�++� (I0�I) (11)



where 
�� : R ! R and 
�+ : R ! R are de
reasingfun
tions, like those proposed in the s
alar 
ase.Note that with this geometri
 approa
h, we 
an obtainthe original di�usion behaviours of the �-fun
tions, ifwe 
hoose 
�� and 
�+ to be de�ned by (4). This equa-tion is designed to fully adapt its smoothing behaviourto the lo
al ve
tor geometry of the image and so per-forms a 
oherent restoration pro
ess (Figure 3h).3.6 Comparisons of the PDE's on a syntheti

olor imageWe tested the des
ribed methodseq.(7),(8),(9),(10),(11) on a very noisy 
olor syn-theti
 image (Figure 3).
(a) (b) (
)
(d) (e) (f)
(g) (h)Figure 3: Comparison of ve
tor di�usion PDE's on asyntheti
 
olor image : (a) Color image, (b) Noisy im-age, (
) Color TV eq.(7), (d) Coheren
e Enhan
ing eq.(8)(� = 0:05), (e) Coheren
e Enhan
ing eq.(8) (� = 0:01), (f)Beltrami 
ow eq.(9), (g) Ve
tor I�� eq.(10), (h) Geometri
Ve
tor PDE eq.(11)A data atta
hment term �(I0 � I) (with � = 0:01)has been added to all equations, and the PDE 
owshave been applied on the (R;G;B) 
olor spa
e. Figure3 shows the results at 
onvergen
e. The added noiseis highly 
orrelated between the image 
hannels andhas been obtained in noisying the (H;S; V ) 
olor spa
eof the original syntheti
 image with uniform noise. Itavoid to favour PDE's working separatly on the ve
tor
omponents (noise in real ve
tor images are seldom un-


orrelated) This �gure allows to experimentally analyzethe expe
ted lo
al di�usion behaviour of ea
h ve
tordi�usion PDE's, on 
at regions and around the edgesand 
orners.4 Redu
ing the blur e�e
tRedu
ing the blurred edges 
an also be a part of an im-age restoration pro
ess. The s
alar sho
k �lter methodproposed in [31℄ enhan
es blurred edges in grey-valuedimages without any knowledge of the 
onvolution mask.It operates by raising the signal in the gradient dire
-tion � (Figure 4) :�I�t = �sign(I��) krIk
I(x,y)

Figure 4: Prin
iple of sho
k �ltersFor ve
tor images, we naturally would like to raise ea
hve
tor 
omponent Ii of I in the same dire
tion �+ of theve
tor dis
ontinuities. We also add a weighting termthat adapts the intensity of the sho
k �lter pro
ess inorder to enhan
e only edges and not 
at regions :�I�t = � (1� g(N+)) U ( with N+ =p�+ + �� )(12)where g : R ! [0; 1℄ is a de
reasing fun
tion and U isthe sho
k �lter ve
tor whose 
omponents are :Ui = sign��2Ii��2+� 



 �Ii��+ 



Some results of appli
ations 
an be found in the re-sult Se
tion 6. We also propose to add this ve
torsho
k �lter term to our geometri
 �-fun
tion di�usionPDE eq.(11), to obtain a single ve
tor image restora-tion PDE, allowing to 
lear lo
al noise and enhan
eblurred edges :�I�t = 
�� I���� + 
�+ I�+�+ + � (I0 � I)� �(N+) U(13)where � : R ! R is an in
reasing fun
tion. The posi-tive parameters � and � weight the importan
e of thesho
k �lters and the data atta
hment towards the dif-fusion pro
ess. An example of 
olor image restorationusing eq.(13) is illustrated in Figure 6f.



5 Norm 
onstrained restorationRe
ently, some authors have proposed smoothing ve
-tor �elds with equations that preserve the ve
tor norm[33, 49, 8, 3℄. The obtained PDE's are 
onstrained ver-sions of 
lassi
 ve
tor di�usion equations. Here is ageometri
 viewpoint of this problem. Indeed, the norm
onstraint is equivalent to :kI(x; y)k2 = 
onstant() 2 I(M) : �I(x; y)�t = 0This implies that the PDE velo
ity ve
tor �I(M)�t mustbe orthogonal to the ve
tor I(M), in order to pre-serve its norm. Note this is a pointwise 
onstraint thatdoesn't depend on spatial relations between ve
tor pix-els. Consider then the following ve
tor PDE of thegeneral form :�I�t = � where � 2 RnAdding the norm 
onstraint 
an be naturally done by�nding the 
omponent of the un
onstrained velo
ity �that is orthogonal to the ve
tor I (Figure 5) :�
 = P?I (�) = � ��� : IkIk2� I
βc(M)

ρ2

M

I(M)

β(Μ)

β(Μ) .I Ι( )

Figure 5: Geometri
 view of the norm 
onstraintThen, the following PDE ensures the preservation ofthe ve
tor norm kIk at ea
h point M 2 
 :�I�t = � ��� : IkIk2� I (14)For the parti
ular 
ase of ve
tor �eld restorations under
onstrained norm, we 
an 
hoose � to be the expressionof eq.(13). It allows the use of sho
k �lters as well asa

urate di�usion for norm 
onstrained ve
tor �elds.Interesting appli
ations of this equation are :- Chromati
ity restoration of noisy 
olor image : It 
on-sists of splitting the 
olor ve
tors I = (R;G;B) into theunit 
hromati
ity ve
tor I=kIk and the brightness val-ues kIk, and apply a norm 
onstrained PDE like eq.(14)

on the obtained 
hromati
ity ve
tor image. If the noiseis known to be 
hromati
, the obtained restoration willbe more better sin
e an adapted equation will be used.- Dire
tion regularization : This equation (14) is alsoable to restore 2D ve
tor �elds, 
oming for instan
efrom opti
al 
ow 
al
ulation.6 Appli
ationsWe present some results on ve
tor image restoration(mainly 
olor images, n = 3), using the proposed equa-tions (7),(8),(9),(10), (11),(13),(14) in order to restorethe following type of images :- Color images with 
oupled noise (Figure6a,b,
,d,e,f,g,h). The PDE's were applied on the(R;G;B) 
olor basis. Note how the use of ve
torsho
k �lters in our equation (13) (Figure 6f,h) allowsto preserve the edges for a long time, durng the PDE
ow.- Color images with 
hromati
ity noise : Figure 6i,j,killustrates that norm preserving PDE's are betteradapted to remove this kind of noise, and allows topreserve the little stru
tures (look at the 
enter of the
ower for instan
e).- Dire
tion �elds (Figure 6l,m) : The resulting di-re
tions are 
ombed by the di�usion equation, whileimportant dis
ontinuities are preserved.- Blurred 
olor images (Figure 6n,o) : Our extensionof the sho
k �lter formulation 
an be used to enhan
eblurred images, without any knowledge of the 
ause ofthe degradation (instead of de
onvolution methods).Note also that the authors web page http://www-sop.inria.fr/robotvis/personnel in
ludes further resultsand PDE evolution movies.Con
lusionIn this paper, we proposed a lo
al and geometri
 pointof view of ve
tor image �ltering, using di�usion PDE's.It allowed us to analyze re
ent proposed methods ofve
tor data regularization, as well as propose a newve
tor PDE, well adapted for image restoration. Thisequation, whose key feature is the use of a lo
al ve
torgeometry, 
ombines the advantages of di�usion PDE'sfor noise removing, but also uses ve
tor sho
k �lters inorder to enhan
e blurred edges. The extension to norm
onstrained ve
tor �elds 
an be the start for other wellknown 
onstrained problems, as opti
al 
ow 
ompu-tation, orientation analysis, tensor image restoration.Promising results have been already obtained in re
entpapers [12, 55, 54, 56℄.



a) Noisy 
olor image b) Color TV eq.(7) 
) Coheren
e enhan
ing eq.(8)
d) Beltrami 
ow eq.(9) e) Color I�� eq.(10) f) Geometri
 Ve
tor PDE eq.(13)

g) Noisy 
olor image h) Geometri
 Ve
tor PDE eq.(13)
i) Noisy 
hromati
ity image j) Using un
onstrained PDE (13) k) Using norm 
onstrained PDE (14)

l) Noisy dire
tion �eld m) Restored �eld eq.(14) n) Blurred 
olor image o) Ve
tor sho
k �lters eq.(12)Figure 6: Some results of ve
tor-valued di�usion with PDE's : 
omparative results (a,b,
,d,e,f,g,h), noisy 
hromati
ityrestoration (i,j,k), dire
tion �eld regularization (l,m) and edge enhan
ing with ve
tor sho
k �lters (n,o).
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