
Di�usion PDE's on Vetor-valued Images :Loal Approah and Geometri ViewpointD. Tshumperl�e R. DeriheI.N.R.I.A, Projet ROBOTVIS/ODYSSEE, 2004 Rte des Luioles,BP 93, 06902 Sophia Antipolis, FraneAbstrat1 We study multivalued di�usion PDE's (Partial Dif-ferential Equations) and their appliation to olor im-age proessing. The analysis of lassi salar di�usionPDE's leads to a new multivalued regularization equa-tion whih is oherent with a loal vetor image geom-etry. Then, we are interested in onstrained regular-ization problems, where vetor norm onstraints haveto be onsidered. A general extension for unit vetorregularization is then proposed. Finally, experimentalresults of olor image restoration are presented.IntrodutionFor many years, the restoration of noisy and blurreddigital data has been widely studied, and many al-gorithms based on variational or stohasti formula-tions have tried to solve this ill-posed problem. Thevariational methods based on di�usion PDE's (PartialDi�erential Equations) have partiularly proven theireÆienies in order to regularize images while preserv-ing important data disontinuities, that often ontainedge informations. Atually, one of the �rst steps wasinitiated more than ten years ago, with the pionner-ing work of Perona & Malik [34℄, who proposed ananisotropi di�usion PDE reonstrution algorithm tosmooth grey-valued images while preserving the edges,overoming the restritions imposed by linear �lter-ing tehniques. Sine then, many authors have pro-posed and studied well-posedness PDE's that taklethe problem of salar image regularization. We anite for instane papers from Alvarez [2, 1℄, Aubert[10℄, Chambolle & Lions [7℄, Chan [5℄, Cohen [13℄,Cottet & Germain [14℄, Hamza & Krim [18℄, Ko-rnprobst & Derihe [22, 23, 24℄, Malladi & Sethian[27℄, Mumford & Shah [29, 46℄, Morel [28℄, Nord-str�om [30℄, Osher & Rudin [39℄, Perona & Malik [34℄,Polyak [35℄, Proesman [38℄, Sapiro [6, 43, 44, 45℄, We-1This artile was published in IEEE SPM (Signal ProessingMagazine) Speial Issue, 2002

ikert [58, 60, 61℄ and You [64℄. More reently andthanks to inreased omputer memory apaity, theproblem of regularizing images of vetor-valued fea-tures has beome an ative researh area, beause ofthe large number of possible appliations, inludingvarious omputer vision tasks : olor image restora-tion, [5, 20, 45, 48, 53, 58℄, regularization of optialows and diretion �elds [8, 21, 33, 50, 49, 55℄, im-age inpainting [4, 9℄, regularization of di�usion MRI,[15, 12, 36, 54, 57℄, sale spae analysis [1, 62℄. Pro-posed algorithms rely on various frameworks, suh asimage variation minimization [3, 5, 46℄, loal geometry-based di�usion [45, 53℄, ow of manifolds embedded inhigher dimensional spae minimizing Polyakov ations[47℄ or di�usion of hemial onentrations [58℄.In this paper, we are �rst interested in the geometriproperties that should satisfy an eÆient image restora-tion PDE, illustrated with the well known �-funtionframework for salar images. Then we fous on vetor-valued data (and partiularly olor images) and om-pare di�erent vetor geometry de�nitions, based on theDi Zenzo alulus [65℄. It allows us to analyze refer-ene works in the domain of vetor image di�usion withPDE's [5, 45, 47, 58℄ using a loal approah and a geo-metri viewpoint. From this study a natural generaliza-tion of the �-funtion based di�usion to multi-valuedimages will emerge. Within the same idea, we proposeto enhane blurred multi-valued edges, thanks to a ve-tor extension of the shok �lter method [31℄. Proposedequations are then derived in order to proess �elds ofnorm onstrained vetors. Finally, we illustrate the dif-ferent appliations of our vetor regularization PDE's,inluding restoration of olor images, optial ows, di-retion �elds and hromatiity noise removal.1 Anisotropi di�usion and loal ge-ometry of imagesFew years ago, the �-funtion formulation enabled theuni�ation of many proposed anisotropi regularization



PDE's ating on salar images within a ommon vari-ational framework [10, 23, 11℄. Let 
 be a spatial 2Ddomain (for instane, 
 = [a; b℄). We assume Neu-mann boundary onditions on �
. A noisy salar im-age I0 : 
 ! R an be regularized by minimizing thefollowing �-funtionalE(I) = Z
 h�2 (I � I0)2 + �(krIk)i d
The �xed parameter � > 0 prevents the expeted solu-tion from being too di�erent from the given noisy imageI0, while � : R ! R is an inreasing funtion, whihontrols the regularization behaviour. The minimiza-tion is often performed via the orresponding di�usionPDE evolution, oming from the Euler-Lagrange equa-tions of E(I) :�I�t = �(I0 � I) + div �0(krIk)krIk rI! (1)A lot of proposed salar regularization methods anthen be expressed by �nding the orresponding �-funtion : Minimal surfaes [10℄, Geman & M-Clure [17℄, Perona & Malik [34℄, Total variation [40℄,Tikhonov [51℄ among other examples.Moreover, an interesting development of (1) has beenproposed in [23℄ :�I�t = �(I0 � I) + �00(krIk) I�� + �0(krIk)krIk I�� (2)where I�� = �TH� and I�� = �TH� are the seondspatial derivatives of I in the diretions of the gradi-ent � = rI=krIk and its orthogonal � = �? (here Hdenotes the hessian of I and I�� and I�� are then di-retional 1D seond derivatives). Note that if M 2 
is loated on an image disontinuity (edge), �(M) is avetor tangent to this edge (sine it is tangent to theisophotes). Geometrially speaking, the PDE (2) per-forms then two sequential and diretional 1D di�usionsthat smooth the image data in the isophote diretion �with a weight � and in its orthogonal diretion � witha weight � :�I�t = �(I0 � I) + � I�� + � I�� (3)with� = �0(krIk)=krIk and � = �00(krIk) (4)Di�erent hoies of � obviously lead to di�erent lo-al di�usion behaviours. Anyway for image restorationpurposes, there are natural geometri properties that

should be veri�ed by the oeÆients � and � :- The funtions � and � must be positive, in order toavoid instable inverse di�usion along � or �.- When the loal geometry is at and doesn't ontainany edges (krIk ! 0), the di�usion should be isotropii.e with no prefered di�usion diretions sine � and �do not represent signi�ant orientations in this ase :� ' � = � > 0 then �I�t ' � (I�� + I��) = � �I-On high gradient regions (krIk � 0), the urrentpoint may be loated on an edge, the di�usion shouldbe done only along the edge diretion �, in order topreserve it (anisotropi di�usion) :� � � and � ' 0 then �I�t ' � I��For instane, the hypersurfae funtion �(s) =2p1 + s2 � 2 de�ned in [10℄ satis�es these properties.In [23℄, the authors proposed also to �x the smooth-ing intensities � = g� (krIk) (dereasing funtion)and � = 1, whih ensures a permanent noise removal,but tends to smooth sharp orners, orresponding tovery high gradients points. Note that in this ase, nofuntion � an be found to have the same geometribehaviour, and the orresponding PDE annot be in-terpreted as a gradient desent of an energy funtionalanymore. Nevertheless, this means that one an hoose� and � to �t more preise geometri onstraints thatthose veri�ed by the original � funtion formulation.The observation of salar image di�usion equationsteahes us that a regularization equation should adaptits di�usion behaviour to the loal geometry of theimage, de�ned by edge indiators and edge orienta-tions. For salar images, suh attributes are respe-tively given by krIk and by the orientation basis( � ; � ). Regularization proesses ating on vetor-valued images I need to be driven by equivalent geo-metri attributes, taking the oupling between vetorhannels Ii into aount (omputing suh a geometryis the matter of setion 2).Using separate salar PDE's on eah omponent Ii ofa multi-valued image I is then useless : eah hannelare di�using with di�erent loal geometries krIik and( �i ; �i ). The resulting image is blended, and vetoredges are falsely smoothed, as illustrated on Figure 1.2 De�ning a vetor geometryWe onentrate now our attention on vetor imagesI(M) : 
 ! Rn (n = 3 for olor images). We denote



a) Noisy image b) Channel by hannel
) Vetor approahFigure 1: Channel by hannel approah vs vetor-basedPDE, applied on a noisy olor image (onsidering the(R;G;B) vetor spae).by Ii the ith image hannel (1 � i � n) :8M 2 
; I(M) = ( I1(M) ; I2(M) ; : : : ; In(M) )The idea is to �nd a loal vetor geometry on eah pointM 2 
, de�ned by :- A vetor gradient norm N(M) that detet edges andorners when its value beomes high. N should thenredue to krIk for salar images (n = 1).- Two orresponding variation orientations �+(M) and��(M) that are respetively orthogonal and tangent tothe vetor edges, if there are any.One approah would be to ompute �rst a salar im-age f(I), using a funtion f : Rn ! R that models thehuman pereption of vetor edges. For instane, oneould hoose the luminane funtion f = L� for olorimages. Then we ould de�ne �+ = rf(I)=krf(I)k,and N = krf(I)k. However, there are mathematiallyno funtions f that an detet all possible vetor vari-ations : For instane, the luminane funtion wouldn'tbe able to detet iso-luminane ontours.Another solution has been proposed by Di Zenzo in[65℄. He onsiders a multi-valued image I as a 2D !n-D vetor �eld, and looks for the loal variations ofthe norm kdIk2, mainly given by a variation matrixG = (gi;j). If we denote by X = (x; y)T , we get :kdIk2 = dXT G dX where G = nXi=1 rIi rITiFor olor images I = (R;G;B) the symmetri and semi-positive matrix G is then :G = � R2x +G2x +B2x RxRy +GxGy + BxByRxRy +GxGy +BxBy R2y +G2y +B2y �(5)

The positive eigenvalues �+=� of G are the maximumand the minimum of kdIk2 and the orthogonal eigen-vetors �+ and �� are the orresponding variation ori-entations : �+=� = g11 + g22 �p�2 (6)and �+=� == � 2 g12g22 � g11 �p� �where � = (g11 � g22)2 + 4 g212 . Note then that �+ ��� � 0.The loal orientations of the vetor edges are thennaturally de�ned by the orthogonal bases (�+ ; ��).Conerning the �+=�, three geometri ases ould beonsidered (an example of olor image illustrates theseases, Figure 2a).- If �+ ' �� ' 0, there are very few vetor variationsaround the urrent point : the region is at and doesn'tontain any edges or orners (look at the inside of thestrips in Figure 2a).- If �+ � ��, there are a lot of vetor variations. Theurrent point may then be loated on a vetor edge (theedges of the strips in Figure 2a).- If �+ ' �� � 0, we are loated on a saddle point ofthe image, whih an possibly be a vetor orner (theintersetions of the strips in Figure 2a).Three di�erents hoies of vetor gradient normsN anthen be made :- N = p�+, as a natural extension of the salar gra-dient norm viewed as the value of maximum variations[41, 42, 52, 53℄ (Figure 2b).- N� = p�+ � ��, also alled oherene norm, havebeen hoosen in [45, 57, 58℄ to measure vetor varia-tions. Note that this norm fails to detet disontinu-ities that are saddle points of the image (Figure 2).- N+ = p�+ + ��, also denoted by krIk is oftenhoosen [49, 3, 5, 32, 46, 55, 54℄ sine it detets edgesand orners in a good way, and it is easy to ompute :N+ =ptrae(G) =sXi krIik2Note that N+ sometimes gives preferenes to ertainorners (Figure 2d), whih is very interesting for imagerestoration purposes, sine the smoothing will be atten-uated on these orners (whih is a desired behaviour).Note also that for the salar ase (n = 1), N+, N� andN naturally redue to krIk, as in this ase �� = 0and �+ = krIk2.One a loal vetor geometry is de�ned, we an use itas a measure in many omputer vision proesses atingon vetor images. For instane, olor edge detetion



(a) (b) () (d)
(e) (f)Figure 2: Vetor variations norms and appliation to edgedetetion : (a) Color image, (b) N = p�+, () N� =p�+ � ��, (d) N+ = p�+ + ��, (e) Original olor image,(f) Edge detetion with the N norman be performed by �nding the loal maxima of N inthe �+ diretion (Figure 2e,f and [25℄). This vetor ge-ometry omputation has also been integrated for olorimage segmentation purposes in [41, 42℄.3 Vetor di�usion PDE'sWe will now analyze the reent proposed di�usionPDE's ating on vetor images with respet to theirloal geometri behaviour. We will use the previous no-tations �, � to refer to the salar loal geometry (setion1), and �+, ��, N+, N�, N and the matrix G to referto the vetor loal geometry (setion 2). This Setiononludes in a omparative �gure Figure 3 that illus-trates the behaviour of eah proposed equation appliedon a higly noisy syntheti olor image.3.1 Color Total VariationIn order to regularize vetor-valued images, Blomgrenand Chan in [5℄ proposed to minimize a measure of aolor total variation TVn (whih redues to the salarTV when n = 1) :minI TVn(I) =vuut nXi=1 �Z
 krIik d
�2:Minimizing the TVn leads to the following vetor dif-fusion PDE (written in a omponent by omponentstyle) : �Ii�t = R
 krIikTVn(I) div� rIikrIik� (7)Note that introduing the orthogonal gradient dire-tion �i = (rIi=krIik)?, de�ned in setion 1, this PDE

writes :�Ii�t = Ai I�i�ikrIik where Ai = �R
 krIik d
�TVn(I)The di�usion is then a hannel by hannel TV,weighted by a oupling term Ai whih is onstant fora whole hannel Ii. No loal vetor interations areused : Noisy vetor edges that not learly appear ineah hannel of the image, may be smoothed by thismethod (look at the bottom of the entral grey objetin Figure 3). Otherwise, this method is well adaptedfor removing unorrelated noise. Minimizing a vetoroupled funtional do not neessary lead to a PDE thatimpliitly onsiders a loal vetor geometry.3.2 Coherene Enhaning Di�usionIn [58, 59, 61℄, Weikert viewed the image regulariza-tion proess as the di�usion of hemial onentrationsand propose to apply this di�usion PDE, inspired fromthe �eld of uid physis :�Ii�t = div (D rIi ) (8)(Note that this PDE may not ome from a variationalpriniple)D = �1uuT + �2 vvT is the di�usion tensor (i.e asymmetri and positive de�nite matrix) that possesses�1,�2 as positive eigenvalues and u,v as orrespondingorthonormal eigenvetors and that drive the regulariza-tion proess : the amount of di�usion in the diretionsu and v will be weighted by �1 and �2.For the partiular problem of vetor-valued imagedi�usion [58℄, D is expliitely onstruted from asmoothed version G� of the Di Zenzo variation ma-trix G (5), in order to possesses the following spetralelements :( �1 = ��2 = � + (1� �) exp� �C(�+ � ��)2�and � u = �+v = �� (�;C > 0)where �+=� and �+=� are smoothed versions of theeigen elements of the matrix G�. This equation geo-metrially reads as :- On at regions, aording to the oherene norm N�(i.e �+ ' ��), the smoothing is isotropi with a weight� 2 [0; 1℄, sine �1 = �2 = �.- Near the edges (N� � 0 i.e �+ � ��), the di�usion



is mainly made along the vetor edge orientation �� butalso along its orthogonal orientation �+, with a weight� (note that edges may be blurred for high values of �,Figure 3d).To avoid orthogonal smoothing in the edge regions, onean hoose � ! 0, but it also suppresses the interestingisotropi smoothing behaviour in at regions (Figure3e).3.3 The Beltrami FlowWith a ompletely di�erent approah, Sohen andKimmel [47, 20℄ found a partiular ase of the o-herene enhaning di�usion (8). Considering a ve-tor/olor image as a 2D surfae embedded in a (n+2)Dspae (this idea was also used in [63℄) and minimizing aPolyakov ation, they end up in the following di�usionPDE alled Beltrami Flow, that an be expressed withthe Di Zenzo matrix G (5), by :�Ii�t = 1pdet(A) div�pdet(A) A�1 rIi� (9)where A = Id+G and Id is the 2� 2 identity matrix.This equation is then a weighted version of eq.(8), withthe following di�usion tensor :D =pdet(Id+G) (Id+G)�1In this ase, the spetral elements of D that geometri-ally drives the di�usion an also be written using theeigenvalues and eigenvetors of G :�1 =s1 + ��1 + �+ , �2 =s1 + �+1 + ��and � u = �+v = ��Here, the di�usion behaviour depends mainly in how�+ ompares to ��, i.e impliitely depends of the o-herene variation norm N� :- On at regions (�+ ' �� i.e N� ! 0), the di�usionis isotropi : �1 ' �2 ' 1.- Near edges, (�+ � �� i.e N� � 0), the di�usion ismainly done along the vetor edge diretion ��, as inthis ase �1 ' 0.Note also that the weighting term of the eq.(9)1pdet(Id+G) = 1p(1 + �+)(1 + ��)quikly dereases the amount of di�usion near high gra-dients, and vetor edges may be preserved for a longtime during the ow (and unfortunately noisy edgestoo, as illustrated in Figure 3f).

3.4 Vetor I�� Di�usionIn [45℄, Ringah and Sapiro proposed an extension ofthe weighted mean urvature equation It = � I�� forthe vetor ase. They naturally used the Di Zenzovetor geometry to design this regularization PDE :�I�t = g(�+ � ��) I���� (10)where g : R ! R is a positive dereasing funtion,avoiding the smoothing of regions ontaining large gra-dients. It was one of the �rst attempts to onstrut avetor di�usion PDE diretly from a loal geometryviewpoint. At a given point, all hannels Ii evolve inthe diretion of vetor edges and with a mutual inten-sity. Anyway, some drawbaks subsist :- The oherene normN� =p�+ � �� may not detetsome vetor orners (Figure 2d).- In at regions (N� ! 0), the di�usion is made alonga diretion ��, whih is mainly direted by the noise.Texture e�ets may result from this uni-diretionnalsmoothing in homogeneous areas (look at the yellowirle in Figure 3g).3.5 A new geometri designed di�usion PDEOur approah is based on some regularization heuris-tis that would be used if one had to restore a vetor-valued image (espeially a olor image). We use thevetor gradient norm N+ = p�+ + �� to detet theloal on�guration of the image (at region or edges),for reasons explained in setion 2.- On almost onstant olor (or vetor) regions, a nat-ural idea would be to smooth isotropially the region,in order to remove the noise. The di�usion equationmust then be lose to :�I�t = �I when N+ ! 0- On edges and orners, we want to smooth the imagewith less intensity and in the diretion of the vetoredge, whih means that :N+ � 0 =) �I�t = �(N+) I����(� is a dereasing funtion).As desribed in Setion 1, these geometri proper-ties are naturally veri�ed by di�usion equations of theform :�I�t = ��(N+) I����+�+(N+) I�+�++� (I0�I) (11)



where �� : R ! R and �+ : R ! R are dereasingfuntions, like those proposed in the salar ase.Note that with this geometri approah, we an obtainthe original di�usion behaviours of the �-funtions, ifwe hoose �� and �+ to be de�ned by (4). This equa-tion is designed to fully adapt its smoothing behaviourto the loal vetor geometry of the image and so per-forms a oherent restoration proess (Figure 3h).3.6 Comparisons of the PDE's on a synthetiolor imageWe tested the desribed methodseq.(7),(8),(9),(10),(11) on a very noisy olor syn-theti image (Figure 3).
(a) (b) ()
(d) (e) (f)
(g) (h)Figure 3: Comparison of vetor di�usion PDE's on asyntheti olor image : (a) Color image, (b) Noisy im-age, () Color TV eq.(7), (d) Coherene Enhaning eq.(8)(� = 0:05), (e) Coherene Enhaning eq.(8) (� = 0:01), (f)Beltrami ow eq.(9), (g) Vetor I�� eq.(10), (h) GeometriVetor PDE eq.(11)A data attahment term �(I0 � I) (with � = 0:01)has been added to all equations, and the PDE owshave been applied on the (R;G;B) olor spae. Figure3 shows the results at onvergene. The added noiseis highly orrelated between the image hannels andhas been obtained in noisying the (H;S; V ) olor spaeof the original syntheti image with uniform noise. Itavoid to favour PDE's working separatly on the vetoromponents (noise in real vetor images are seldom un-

orrelated) This �gure allows to experimentally analyzethe expeted loal di�usion behaviour of eah vetordi�usion PDE's, on at regions and around the edgesand orners.4 Reduing the blur e�etReduing the blurred edges an also be a part of an im-age restoration proess. The salar shok �lter methodproposed in [31℄ enhanes blurred edges in grey-valuedimages without any knowledge of the onvolution mask.It operates by raising the signal in the gradient dire-tion � (Figure 4) :�I�t = �sign(I��) krIk
I(x,y)

Figure 4: Priniple of shok �ltersFor vetor images, we naturally would like to raise eahvetor omponent Ii of I in the same diretion �+ of thevetor disontinuities. We also add a weighting termthat adapts the intensity of the shok �lter proess inorder to enhane only edges and not at regions :�I�t = � (1� g(N+)) U ( with N+ =p�+ + �� )(12)where g : R ! [0; 1℄ is a dereasing funtion and U isthe shok �lter vetor whose omponents are :Ui = sign��2Ii��2+�  �Ii��+ Some results of appliations an be found in the re-sult Setion 6. We also propose to add this vetorshok �lter term to our geometri �-funtion di�usionPDE eq.(11), to obtain a single vetor image restora-tion PDE, allowing to lear loal noise and enhaneblurred edges :�I�t = �� I���� + �+ I�+�+ + � (I0 � I)� �(N+) U(13)where � : R ! R is an inreasing funtion. The posi-tive parameters � and � weight the importane of theshok �lters and the data attahment towards the dif-fusion proess. An example of olor image restorationusing eq.(13) is illustrated in Figure 6f.



5 Norm onstrained restorationReently, some authors have proposed smoothing ve-tor �elds with equations that preserve the vetor norm[33, 49, 8, 3℄. The obtained PDE's are onstrained ver-sions of lassi vetor di�usion equations. Here is ageometri viewpoint of this problem. Indeed, the normonstraint is equivalent to :kI(x; y)k2 = onstant() 2 I(M) : �I(x; y)�t = 0This implies that the PDE veloity vetor �I(M)�t mustbe orthogonal to the vetor I(M), in order to pre-serve its norm. Note this is a pointwise onstraint thatdoesn't depend on spatial relations between vetor pix-els. Consider then the following vetor PDE of thegeneral form :�I�t = � where � 2 RnAdding the norm onstraint an be naturally done by�nding the omponent of the unonstrained veloity �that is orthogonal to the vetor I (Figure 5) :� = P?I (�) = � ��� : IkIk2� I
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Figure 5: Geometri view of the norm onstraintThen, the following PDE ensures the preservation ofthe vetor norm kIk at eah point M 2 
 :�I�t = � ��� : IkIk2� I (14)For the partiular ase of vetor �eld restorations underonstrained norm, we an hoose � to be the expressionof eq.(13). It allows the use of shok �lters as well asaurate di�usion for norm onstrained vetor �elds.Interesting appliations of this equation are :- Chromatiity restoration of noisy olor image : It on-sists of splitting the olor vetors I = (R;G;B) into theunit hromatiity vetor I=kIk and the brightness val-ues kIk, and apply a norm onstrained PDE like eq.(14)

on the obtained hromatiity vetor image. If the noiseis known to be hromati, the obtained restoration willbe more better sine an adapted equation will be used.- Diretion regularization : This equation (14) is alsoable to restore 2D vetor �elds, oming for instanefrom optial ow alulation.6 AppliationsWe present some results on vetor image restoration(mainly olor images, n = 3), using the proposed equa-tions (7),(8),(9),(10), (11),(13),(14) in order to restorethe following type of images :- Color images with oupled noise (Figure6a,b,,d,e,f,g,h). The PDE's were applied on the(R;G;B) olor basis. Note how the use of vetorshok �lters in our equation (13) (Figure 6f,h) allowsto preserve the edges for a long time, durng the PDEow.- Color images with hromatiity noise : Figure 6i,j,killustrates that norm preserving PDE's are betteradapted to remove this kind of noise, and allows topreserve the little strutures (look at the enter of theower for instane).- Diretion �elds (Figure 6l,m) : The resulting di-retions are ombed by the di�usion equation, whileimportant disontinuities are preserved.- Blurred olor images (Figure 6n,o) : Our extensionof the shok �lter formulation an be used to enhaneblurred images, without any knowledge of the ause ofthe degradation (instead of deonvolution methods).Note also that the authors web page http://www-sop.inria.fr/robotvis/personnel inludes further resultsand PDE evolution movies.ConlusionIn this paper, we proposed a loal and geometri pointof view of vetor image �ltering, using di�usion PDE's.It allowed us to analyze reent proposed methods ofvetor data regularization, as well as propose a newvetor PDE, well adapted for image restoration. Thisequation, whose key feature is the use of a loal vetorgeometry, ombines the advantages of di�usion PDE'sfor noise removing, but also uses vetor shok �lters inorder to enhane blurred edges. The extension to normonstrained vetor �elds an be the start for other wellknown onstrained problems, as optial ow ompu-tation, orientation analysis, tensor image restoration.Promising results have been already obtained in reentpapers [12, 55, 54, 56℄.



a) Noisy olor image b) Color TV eq.(7) ) Coherene enhaning eq.(8)
d) Beltrami ow eq.(9) e) Color I�� eq.(10) f) Geometri Vetor PDE eq.(13)

g) Noisy olor image h) Geometri Vetor PDE eq.(13)
i) Noisy hromatiity image j) Using unonstrained PDE (13) k) Using norm onstrained PDE (14)

l) Noisy diretion �eld m) Restored �eld eq.(14) n) Blurred olor image o) Vetor shok �lters eq.(12)Figure 6: Some results of vetor-valued di�usion with PDE's : omparative results (a,b,,d,e,f,g,h), noisy hromatiityrestoration (i,j,k), diretion �eld regularization (l,m) and edge enhaning with vetor shok �lters (n,o).
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