
1

Exemplar-based Inpainting: Technical Review and
new Heuristics for better Geometric Reconstructions

P. Buyssens∗, M. Daisy∗, D. Tschumperlé, O. Lézoray

Abstract—This paper proposes a technical review of exemplar-
based inpainting approaches with a particular focus on greedy
methods. Several comparative and illustrative experiments are
provided to deeply explore and enlighten these methods, and to
have a better understanding on the state-of-the-art improvements
of these approaches. From this analysis three improvements
over Criminisi et al. algorithm are then presented: 1) a tensor-
based data term for a better selection of pixel candidates to
fill in, 2) a fast patch lookup strategy to ensure a better
global coherence of the reconstruction, and 3) a fast anisotropic
spatial blending algorithm that reduces typical block artifacts
using tensor models. Relevant comparisons to state-of-the-art
inpainting methods are provided that exhibit the effectiveness
of our contributions.

Index Terms—Exemplar-based image inpainting, Structure
tensor analysis, Patch lookup strategy, Anisotropic spatial blend-
ing

I. INTRODUCTION AND CONTEXT

Image inpainting, also known as “disocclusion”, “filling-in”
or “image completion”, refers to the recovery of missing or
damaged parts in an image such that the resulting image looks
as natural as possible.

It differs from other common image processing techniques
such as denoising since the part to inpaint (often referred to
mask or hole) is completely unknown. Numerous applications
for inpainting have emerged over recent years: restoring im-
ages with scratches, text or logo removal, interpolation, and
more complex ones such as removal of objects or persons.

Since 2000, intensive research on this topic has led to
various and numerous inpainting algorithms. A general over-
review of these has recently been proposed in [1]. They can be
roughly divided into two main kinds of approaches: geometry-
based, and patch-based methods. Although geometry-based
approaches are beyond the scope of this paper, we briefly
summarize them in Section II since they are the earlier
inpainting methods proposed in the literature, and they inspired
some hybrid methods described in the Section III. Patch-based
methods use patches for the analysis of the image content, and
include sparsity-based methods and the subset of exemplar-
based approaches. Contrary to sparsity-based methods, the
exemplar-based ones also use image content (i.e., patches)
to reconstruct the missing data. They mainly proceed in a

∗ These authors contributed equally.
The authors are with the GREYC laboratory, Université de Caen Basse-

Normandie, ENSICAEN, Caen, France.
Email: pierre.buyssens@unicaen.fr, maxime.daisy@ensicaen.fr,

david.tschumperle@ensicaen.fr, olivier.lezoray@unicaen.fr
This research was supported by French national grant Action 3DS.

copy/paste fashion of patches chunks, or by mixing several
patches together in a pixel-level inpainting scheme.

Our contributions are twofold:
• First we propose a review of exemplar-based inpainting
methods. The seminal algorithm of Crimini et al. [2] is
detailed and a technical review of up-to-date derived works
is proposed.
• Second, we propose to develop and gather our previous
adjustments [3], [4] of this algorithm into a unified
framework. Particularly we propose in this paper a tensor-
directed extension of our previous isotropic patch blending
algorithm [3] that reduces typical recontruction artifacts of
greedy inpainting methods.

Before entering the review of exemplar-based methods, we
provide in Section II a taxonomy of image inpainting tech-
niques by briefly summarizing geometry-based and sparsity-
based methods. We also take a short detour into the sub-
ject of texture synthesis because important considerations of
exemplar-based methods come from this domain.

Then we propose in Section III a technical review of
examplar-based inpainting methods. We feature in Section IV
three different adjustments to the original method we made,
and show that they clearly improve the geometric coherence
of the inpainted results. Each of these modifications is com-
pared to appropriate state-of-the-art methods, and the visual
improvements are shown in Section V on several difficult real
cases examples. Section VI concludes the paper.

II. INPAINTING METHODS TAXONOMY

A. Geometry-based methods

The notion of inpainting can be closely related to the notion
of interpolation since both aim at determining unknown values
of a function from known ones. Various types of Geometry-
aware interpolation of images were the first introduced meth-
ods, and have been proposed in [5]–[13] using various different
techniques: level lines completion in [6], anisotropic diffusion
using variational or Partial Differential Equations (PDE’s) in
[5], [7], [12], minimization of the Total Variation [10] using
curvature [8], coherence transport [13], and minimization of
some image-based statistic functional [11], [14], [15]. These
techniques introduce smoothness priors and tend to propagate
local structures from the exterior of the mask to the interior.

They usually provide interesting results in terms of global
geometry consistency. However, they mainly fail at recon-
structing large-scale textures and tend to reconstruct flat-
looking images. This kind of methods are then better adapted

2

to small occlusions rather than large ones, or to process images
that are continuous by parts (cartoon-like). They are sometimes
used as a component of more complex hybrid inpainting
schemes as detailed in further sections.

B. Sparsity-based methods

Sparsity-based inpainting methods take benefit of the natural
redundancy present in an image under a given transformation
[16]–[19]. They assume that the image can be sparsely repre-
sented in a given basis (wavelet, framelet, DCT . . .), and the
synthesis of the missing part is then optimized according to
this sparse distribution. Depending on the actual content of the
image (edges, textures, . . .), the choice of the dictionnary can
be critical. In [16], an image is first decomposed into cartoon
and textures components. The inpainting of both is processed
respectively with piecewise linear polynomial functions, and
a DCT basis. As shown in Section III-C, such separation are
also used in hybrid methods.

The sparsity-based inpainting approaches have been mainly
derived from image denoising methods [20], and can then
show impressive results [18] when the missing part is small,
thin, or sparsely distributed over the image (like noise).
Anyway, they mainly fail in reconstructing points of the image
containing macro-textures.

C. Texture synthesis

Texture synthesis is important for many applications in
computer graphics, vision, and image processing. Beyond the
traditional stochastic model using Markov Random Fields
[21], Efros and Leung [22] have been the first to introduce
the notion of image patches for texture synthesis. The core
of their proposed method is the concept of the self-similarity
prior. This kind of prior has largely influenced recent and
successfully advances in image processing [23].

The method proposed in [22] synthesizes a texture by
estimating the value of a pixel p according to a patch Ψp

centered on it. It is found by searching the k-nearest neighbors
of Ψp according to the metric d = dSSD ∗G where dSSD is
the vector of squared differences and G is a 2D Gaussian
weighting kernel. Wei et al. [24] have proposed a similar
approach within a multiscale framework and focus on using
a tree-structure vector quantization to speed up the patch
search. M. Ashikhmin [25] further has proposed a smart search
scheme that enhance the texture synthesis while being faster.
This last method in fact influences our patch search scheme
presented in Section IV-B2.

D. Exemplar-based methods

Many of the ideas introduced in texture synthesis have
led to the so-called exemplar-based inpainting approaches
more detailed in Section III, and in fact some inpainting-like
results can already be found in [22]. The introduction of
patches led to many new insights in the image processing
field, and particularly in inpainting. In the early 2000s,
Bornard et al. [26], Drori et al. [27], and Criminisi et al.
[2] proposed independently three exemplar-based inpainting

approaches that lay the foundation of important notions of the
exemplar-based inpainting approaches. Many methods have
then been derived from these seminal works, that we propose
to classify and review hereafter.

III. A COMPREHENSIVE REVIEW OF EXEMPLAR-BASED
INPAINTING METHODS

Exemplar-based inpainting techniques use patches of an
image both to analyze its content to find the best way to
inpaint it, and to reconstruct the missing part. Such methods
can themselves be subdivided into three main approaches:
• the greedy approaches [2], [26]–[31] inpaint the hole in
one pass by copying multiple patches or chunks in a greedy
manner,
• the hybrid ones [32]–[35] that incorporate elements from
the geometry-based methods to inpaint macro structures first,
• and the energy-based [36]–[42] methods that often mini-
mizes an energy and requires several iteration to converge.
These methods often reconstruct the missing part at the pixel
level by mixing patches together.

A. Notations and definitions

An image to be inpainted is considered as a function I :
I → R3 (color image) where I defines the image domain,
Ω is the masked part of the image (i.e., the unknown pixels
to resynthesize), and δΩ is the boundary of the mask. In the
following, a patch Ψp centered on the pixel p is considered
as a function Ψp : Np → R3 where Np ⊂ I is the square
support of Ψp. Note that this patch can be masked (i.e., some
of its pixels are unknown). Ψp̂ denotes a patch that matches
Ψp according to a given metric d:

Ψp̂ =

{
Ψq| arg min

q|Nq∩(I−Ω)

d(Ψp,Ψq)

}
The simplest (and widely used essentially for computational
efficiency purposes) distance d to compare the visual similarity
of two patches is the Sum of Square Differences (SSD):

dSSD(Ψp,Ψq) =
∑

v∈(Np∩(I−Ω))

‖Ψp(v)−Ψq(v + p− q)‖2

(1)
Note that other distances have been proposed in the litera-
ture such as the Bhattacharya distance [43] or the Hellinger
distance [31] together with the SSD to compare patches
probability density functions. Nevertheless the advantages of
using these distances over the classical SSD is still unclear for
the purpose of processing generic images.

B. Greedy approaches

The greedy approaches consist in gradually filling Ω with
pixels or group of pixels until |Ω| = ∅, each pixel of Ω being
inpainted once. The sketch of these methods is expressed in
4 main steps:

1) Select one pixel p lying on δΩ,
2) Search for the patch Ψp̂ that best matches the patch Ψp

centered on p,

3

3) Paste values from valid patch Ψp̂ around p in Ω.
4) If |Ω| 6= ∅, goto 1.
1) Criminisi Algorithm: The first two steps are of critical

importance for the inpainting results. Naive implementations
often leading to bad results, we focus now more in depth on
these two steps that are essential parts of the Criminisi et al.
[2] algorithm.

a) Filling Order: All three initial papers [26], [27], and
[2] emphasize the importance of the filling order (i.e., how to
select the pixel p on δΩ), for this kind of inpainting techniques.

Filling in a layer fashion from the boundary of the initial
mask to the center of it, in the so-called onion-peel way, is used
in [26] and within a multiscale scheme in [27]. This filling
order seems natural but in fact led often to unnatural results,
especially near the center of the mask: important structures
that should have been reconstructed first are lost.

To overcome this critical step, Criminisi et al. proposed in
[2] a filling order based on known structures lying on δΩ: a
priority term Pp is computed for all pixels p ∈ δΩ as:

Pp = Cp ·Dp (2)

where Cp is a measure of a confidence, and Dp is defined as
a data term that takes care of the presence of structures in
Ψp. The latter plays a critical role in the priority calculation
and favors the continuation of structures that enter the mask
Ω. Fig 1 (bottom) shows an inpainting at different iterations
using Criminisi et al. algorithm and exhibits this main feature.

More precisely, the confidence term Cp can be seen as a
measure of reliable information in the neighborhood of p. It
is defined in [2] as:

Cp =

∑
q∈(Np∩(I−Ω)) Cq

|Np|
(3)

where | · | is the size of Np (i.e., the number of pixels), and
at the initialization, one sets:{

Cp = 1 ∀p ∈ I − Ω
Cp = 0 ∀p ∈ Ω

This term has high values near the border of the initial mask,
and decreases near the center of Ω. It tends then to inpaint
first pixels having the most valid neighbors. This is a similar
term that defines the onion-peel filling order in [26], [27].

The data term Dp reflects the local image structure around
Ω and is defined in [2] as:

Dp =
|
−−→
∇Ip⊥ · −→np|

α
(4)

with
−−→
∇Ip⊥ the isophote direction defined as:

−−→
∇Ip⊥ =

{
−−→
∇Iq⊥ | arg max

q∈(Np∩(I−Ω))

‖
−−→
∇Iq‖

}
, (5)

−→np is the normal vector to Ω at p, α a constant normalization
factor (that can be in fact ignored since it is the same for
all p), and

−−→
∇Ip the color gradient vector at p. If several

gradient vectors have the maximal norm, the one maximizing
|
−−→
∇Ip⊥ ·−→np| is retained. This data term favors the reconstruction

of local linear structure orthogonally crossing Ω at p, and is

closely related to the notion of isophotes of geometry-based
methods. As shown in Fig 1 (bottom), it strongly affects the
filling-order and favors the continuation of structures that have
been lost with a classical onion-peel scheme.

Fig. 1. Comparison between the onion-peel filling order (first row) and the
data aware one (second row), courtesy of [2]. Thanks to the data term, the
sign pole is correctly reconstructed.

(a) (b) (c) (d)

Fig. 2. Illustration of one iteration of the greedy approach [2]. (a) Original
Image. (b) Masked image. (c) Search for the best patch. The target patch is
depicted in red, the lookup area in green, and the best patch in blue. (d) Result
after pasting the blue patch of (c).

Once all priorities Pq,∀q ∈ δΩ have been computed, the
pixel with the highest priority is chosen as the target pixel p
to reconstruct.

b) Searching and matching patch and reconstruction: At
each iteration, the best patch Ψp̂ matching the non masked part
of the patch Ψp centered on the target pixel p is searched all
over the image. This area is actually often reduced to a square
of smaller size centered at p in order to reduce the search
space and then the overall processing time. More information
about this key point are given at the end of this section.

Fig 2c shows for a given target pixel p, its patch Ψp (red
square), the lookup region (green), and the best patch found
Ψp̂ found in it (blue square). Once the best patch Ψp̂ has been
found, its non masked part is drawn at p in Np ∩Ω (Fig 2d).
Confidences are also duplicated from the confidence of Ψp:

Cq = Cp,∀q ∈ Np ∩ Ω (6)

2) Enhancements in the state-of-the-art: Many variations
of this seminal algorithm have been proposed in the literature.
Since the inpainting process is greedy, a minor change in
the priority filling order could lead to significant changes in
the final inpainted results. We illustrate this fact in Fig 3 by
changing only the numerical gradient computation schemes
(i.e., backward, centered and forward finite differences) in the
data term computation, and keeping the other parameters of
the algorithm constant. Significant changes of the results can

4

be observed. Moreover, by changing the patch size, completely
different results are obtained, and in practice no numerical
scheme seems better than the others. As a consequence, several
works have then been conducted to produce enhanced priority
terms.
• The authors of [29] proposed some heuristics to improve the
priorities by using a tensor-based data term:

Dp = α+ (1− α) exp

(
η

(λ1 − λ2)2

)
(7)

where λ1 and λ2 are the eigenvalues of the structure tensor
[44], η and α are hyperparameters fixed at η = 8 and
α = 0.01. Using such tensors is intended to give a better
modelization of the local image variations, and relies on two
hyperparameters arbitrarily fixed by the authors.
• The authors of [30] proposed a sparse data term that

Fig. 3. Inpainting results with the Criminisi et al. algorithm [2] according to
different numerical schemes for the gradient computation and different patch
sizes. From left to right columns: Backward finite differences, centered finite
differences, and forward finite differences. Patch size equal to 7 × 7 for the
first row, 13× 13 for the second.

measures for each pixel p ∈ δΩ the global similarity of a
patch centered at p with patches contained in a user-defined
neighborhood. The sparseness of a boundary pixel is computed
as:

ρp = ‖−→ωp‖2
√
|Ns(p)|
|N(p)| (8)

where |Ns(p)| is the number of valid patches in the neigh-
borhood of p (i.e., patches that do not contain masked pixels),
|N(p)| is the total number of patches in the neighborhood of p,
and −→wp is the vector containing the similarities wp,pj defined
as:

wp,pj =
1

Zp
exp

(−d(Ψp,Ψpj)

σ2

)
(9)

where d(·) measures the mean squared distance between the
known parts of Ψp and a valid patch Ψpj , Zp is a normalization
constant such that

∑
pj∈Ns(p) wp,pj = 1, and σ is an

hyperparameter fixed at σ = 5. This data term allows to

discriminate between pixels of a texture from pixels belonging
to the edge between two objects. Both pixels could have a
high gradient, but the latter (edge pixels) is more sparsely
distributed among its neighbors (low similarity), and is chosen
first.
• Recently, the authors of [31] proposed to amplify the data

term in a nonlinear fashion to compute the priorities:

D̂p = exp
(
Dp
2σ2

)
(10)

with σ an additional parameter. This variation enforces the
data term in the presence of a strong isophote (Dp → 1), and
lowers it in flat areas (Dp → 0).

We compare in Fig 4 these three data terms with the
initial one proposed by Criminisi et al. [2] (with a forward
finite differences scheme for the gradient computation). We
manually tuned the additional parameters (the size of the
neighborhood of Xu et al. method [30], and the standard
deviation σ of the exponential data term (Eq. 10) of Martinez
et al. method [31]) to get the best results. The remaining
parameters (patch size and lookup size area) are kept constant.
The pros and the cons of these priorities proposal together with
our proposed data term will be discussed in Section IV-A.

Semi-supervised algorithms based on Criminisi et al. work
have also been proposed. For instance [28] constrains the
search space of patches by requiring the user to specify coarse
search locations. The approach of [45] synthesizes image
patches along user-specified curves in the unknown region
using patches selected around the curves in the known region.
The results of these semi-supervised algorithms highly depend
on the manual interactions of the user, and are then difficult to
evaluate, and indeed impossible to apply in a fully automatic
way.

Several exemplar-based [29], [31], [46], [47] and other
hybrid/global approaches [36], [42], [48] (detailed in the
Section III-C and III-D) synthesize the missing part by mixing
several patches. More precisely, the K best patches that match
the target patch are found, and the missing part is synthesized
pixel-wise with a linear combination of these patches. This
kind of synthesis appears appealing but often produces blurry
results, especially for textured regions.

C. Hybrid methods

Geometry-based methods have proven to reconstruct global
structures correctly, but often fail at reconstructing textures [6],
[7], [12]. On the other hand, greedy approaches are suitable for
filling-in texture parts of an image, but have more difficulties
to reconstruct missing structures globally. This is especially
the case when the missing part of a structure is not present in
the rest of the image, when the mask overlay a curved isophote
for instance.

Since natural images often contain structures and textures at
the same time, hybrid approaches combining both geometry-
based and exemplar-based methods have been naturally ex-
plored in the literature.

Two main classes of hybrid methods have been proposed.
The first one [32], [33] starts to decompose the image

5

(a) Original. (b) Mask.

(c) With Dp from [2] (20.01s). (d) With Dp from [29] (22.63s).

(e) With Dp from [30] (50.5s). (f) With Dp from [31] (19.90s).

Fig. 4. Comparison of inpainting results with different data terms with a
constant patch size of 11 × 11 for all methods. The synthesis is the same
for all the methods, and additional parameters for the methods of [30] and
[31] have been manually tuned to get the best result. The processing times
in parentheses stand for the whole inpainting process. The inpainting result
with the same parameters and our proposed data term (see Section IV-A) can
be seen in Fig.7 (bottom right).

to inpaint into structure and texture parts, leading to two
sub-images that are inpainted independently with different
approaches (geometry-based methods for the structure part,
texture-synthesis for the textured part). These images are
then recombined to reconstruct the final inpainted result.

By separating the structures from the textures of an image,
the first class of hybrid algorithms alleviates the potential
drawbacks of geometry-based and texture synthesis methods,
and these sub-images should become well suited for each
inpainting step. This separation being a crucial step of such
approaches, it is tackled in [32] with the use of a total
variation minimization [49] and oscillating functions [50].
The authors of [33] decompose the image with a sparse prior
onto a well suited dictionary, composed of two different
sub-dictionaries to handle properly both structure and texture
components of the image. The second class of hybrid method
[34], [35] first tries to reconstruct strong edges of objects
that enter the mask. This initial sketch serves then to define
the lookup areas to further fill in the missing pixels with and
exemplar-based approach. By continuing the main structures
that are broken by the mask, the second class of hybrid
approaches can reconstruct structures that are not present
in the non masked part of the image (on which classical
exemplar-based method can fail). While the method proposed
in [34] uses tensor voting to infer the missing part of curves,
level lines with Euler spiral are used in [35] to complete such
curves. Once restored sketchs have been obtained, masked
pixels are filled-in with a texture synthesis approach, while
completed curves are used to constrain the search.

Hybrid approaches seems appealing but are in fact very
difficult to apply in practice. Separating structure from texture
parts of an image is indeed an open problem, which makes
the task difficult especially in presence of both tiny and macro
textures (which is often the case in natural images). Similarly,
continuing main structures first before synthesizing missing
pixels requires a (coarse) segmentation which can not be
sufficiently general to handle numerous natural images cases.
In addition, the high computation time of such kind of methods
reduces their potential toward a practical use.

D. Energy-based methods

The last class of inpainting algorithms makes use of patches
for the image analysis but synthesizes the missing part of
the image pixelwise. They perform the reconstruction of the
missing part via a minimization of a global energy (coherence
of the reconstruction). They often require several iterations
of the inpainting process to refine the reconstruction of the
missing part, and sometimes in a multi-scale fashion.

Wexler et al. [36] propose a pixel-based synthesis as a
weighted mean of patches that contain a pixel to be filled
in. To ensure a global coherence, they propose to minimize
the following measure of coherence, that measures for each
missing pixel, the similarity between its surrounding patches
and patches in the known part of the image:

Coh =
∏
q∈Ω

max
p∈Ω

sim(Ψp,Ψq) (11)

where sim(·) is a similarity measure between two patches
based on a Gaussian function. They achieve this reconstruction
in a pyramidal fashion (from lowest to full resolution) via an
Expectation-Maximization optimization scheme. As noted in

6

[42], the weighted mean tends to blur uniformly reconstructed
parts of the image, which can be annoying for tiny textures
but at the same time performing this kind of blending can be
useful to hide minor reconstruction artifacts. Together with the
PatchMatch algorithm [51], it is actually the main component
of the ”Content-Aware Fill” tool in Photoshop CS51. Mansfield
et al. [39] further enhance the synthesis of Wexler’s method by
allowing various patch transformations (translation, rotation,
scaling, or brightness shifts). Kawai et al. [48] also based their
proposal upon Wexler’s framework. Brightness change is, on
one hand, taken into account in the search space such that the
number of candidate patches is largely augmented, and on the
other hand, the spatial locality of texture patterns is considered
as an implicit constraint.

Komodakis et al. [37] cast the inpainting problem into a
labeling problem of a MRF. An objective function is defined
and optimized via a Priority Belief Propagation (Priority-
BP) carrying improvements over standard BP to handle the
important number of labels. The extension compared to state-
of-the-art methods using optimization is that their method also
tackles texture synthesis problems. Inpainting reconstructions
with this method seem natural, but the computation time (up
to 2 minutes for 256x127 images) makes this method hard to
use in practice.

Pritch et al. [38] also cast the inpainting problem (and in fact
many other such as image retargeting or object rearrangement)
as a graph labeling problem. Here, the labels attached to the
vertices of the graph are the relative shift of every pixel of
the output image, and the optimal shift-map is computed via
the minimization of an energy composed of two terms: a data
term indicating constraints on the pixels, and a smoothness
term that minimizes discontinuities between objects due to the
discontinuities in the shift-map. In this method, the shift-map
computation (pre-inpainting task) takes up to 30 seconds for
1600x1600 images.

He et al. [41] propose to compute principal patch offsets
in the known part of the image, and to use them into a
Photomontage framework [52]. The input image is shifted
several times (by the principal offsets), then these images are
stacked and the best cuts are found via the graph-cut algorithm.
Poisson seamless blending technique [53] is further employed
to minimize discontinuities between pasted image parts. This
method provides a new way to perform image analysis for
image inpainting. However the number of the offsets to extract
(the parameters K [41]) really depends on the image topology
and can lead to texture repetitions or local inconsistencies.

Finally Arias et al. [40] propose a general variational
framework to handle both local and non-local (i.e., patches)
methods. Several schemes are then derived via the selection
of the appropriate patch similarity criterion: patch NL-means,
-medians, -Poisson, and -gradient medians corresponding to
similarity criterions based on L2- and L1- norms between
patches or their gradients. The objective function adds to the
similarity term (similar to equation 11) a term that measures
the entropy of the similarities: for each pixel, the similarities
are defined as a function that gives the probabilities to match

1http://www.photoshopessentials.com/photo-editing/content-aware-fill-cs5/

any other pixel of the image. For a given pixel, the entropy
of these similarities gives then the reliability of its matching
pixel. A coordinate descent algorithm is used to minimize the
objective function, alternating between similarity weights and
the image updates.

This kind of approach requires several iterations to con-
verge.

E. Source patch(es) search

Beyond the distance metric used to compute the similarity
between patches, a key component both in term of execution
speed and visual coherence of an inpainting result is the way
to search for a good source patch for the reconstruction.

First, the chosen search method for a patch-based inpainting
algorithm must be effective in term of reconstruction
consistency, i.e., guaranteeing a sufficient quality for the final
result. It must be fast as well, for the inpainting algorithm to
be easily used in image editing applications. Seeking for the
best source patch is often in fact the most costly part of an
inpainting algorithm. A fast search often means approximate
solution, leading locally to a worse quality of result than with
a complete search. Satisfying the constraints of both speed
and quality is so a quite difficult task in image inpainting
context.

A simple and, in fact, efficient scheme to search for a
source patch is to use a window of a defined size around the
target patch. The search space being considerably reduced, far
fewer candidates are checked during the seeking process than
with a full search over the entire image. Such a full search
is equivalent to computing an exact Nearest Neighbor Field
(NNF) with respect to a given distance metric.

(a) Propagation. Plain arrows are the
current patch offsets. The dotted ar-
rows are the offsets that are checked
during the propagation.

(b) Random search. The dotted
squares represent the successive
windows used to search a good
approximate neighbor.

Fig. 5. Illustration of the two main phases of the PatchMatch algorithm:
propagation (a) and random search (b).

Another scheme is to use a method for computing an
Approximate Nearest Neighbor Field (ANNF) that helps to
find a good source patch all over the image. Such an ANNF
does not give the exact solution (i.e., the best source patch for
all target patches) but an acceptable one. An ANNF between
two images Ia and Ib is an offset map Φ(p) that provides
for each p ∈ Ia the relative location of the center q ∈ Ib of

7

the patch Ψq that is the approximate nearest neighbor of Ψp.
For the particular case of inpainting, Ia and Ib represent the
same image, and are restricted to Ω̄. Several methods exist to
compute such an ANNF:
• KD-trees have been widely used to retrieve an ANNF in
a faster way than with a full search, especially for inpaint-
ing requiring several iterations [36]. KD-trees have further
been improved [54] to accelerate the retrieval of approximate
nearest neighbors by using a so-called propagation assisted
technique. Note that this search method is used to efficiently
compute statistics of patch offsets in [41].
• In 2009, Barnes et al. propose the PatchMatch algorithm
[51] which is an iterative algorithm. It is based on three key
observations:

1) The dimensionality of offsets space is much smaller than
those of patch space.

2) The structures in natural images are often organized in
a contiguous way.

3) With the law of large numbers, “some nontrivial fraction
of a large field of random assignments will likely be
good guesses”.

The ANNF Φ(p) is initialized randomly, and refined iteratively
in two phases: propagation and random search. The propaga-
tion phase, reminiscent of the texture synthesis method [25],
improves a link of the ANNF by looking to its neighbor links
(see Fig 5). The second phase, named random search seeks
randomly a better source patch within a window of decreasing
radius. The goal of this second phase is possibly to escape
from a local minima of the ANNF, and to insure a more global
consistency.

These algorithms are interesting owing to the fact that they
bring a global coherence with the global search, but also a
local coherence thanks to information propagation. On the
other hand, they were originally for complete images that are
not subject to change after the ANNF computation. If they
can be used as is, for image denoising or object detection,
these methods require some adaptations in case of patch-based
inpainting. First, they must be able to handle patches where
information is missing. Then, as the ANNF becomes out of
date when the image information change, an extra update
phase is needed for each patch that is reconstructed.

IV. THREE IMPROVEMENTS OF EXEMPLAR-BASED
INPAINTING

The technical review of the state-of-the-art methods we
made in the previous section has enlighted several enhance-
ments to the key points of exemplar-based inpainting algo-
rithm. But as we will discuss further, in some cases they
are not the best suited solution. From our observations de-
tailed above, we describe and discuss in this section the
improvements we propose for each key point of the algorithm,
and provide results and comparisons with the state-of-the-art
methods to show their effectiveness in challenging cases.

A. Tensor-based data term

We showed that the priority term is one of the key fea-
tures introduced in [2] for selecting an ideal reconstruction

location at a given iteration of the inpainting algorithm. More
particularly, the sub-priority term Dp (Eq. 4) will favor target
points that are located on an image contour, oriented along
the normal to the inpainting mask. Giving a high priority to
these points is indeed a great idea, as it will naturally allow
the important (contrasted) structures to be reconstructed and
extended first.

Unfortunately, the original expression proposed for Dp in
[2] has one major flaw: it assumes that the gradient

−−→
∇Ip of

the target point is computed as the maximum value of the
image gradient in the non-masked neighborhood Np ∩ I of
p (Eq. 5). In fact, when the fixed patch size N set for the
reconstruction is large, the data term Dp will be high not
only on the exact location of the image contour to extend,
but also for every pixels ∈ δΩ whose distance from the image
contour is less or equal than N (Eq. 5). This dilation effect
of the data term gives usually too much importance to these
neighboring target candidates, and they can be unfortunately
selected instead of the exact contour point, particularly when
the mask shape makes these points best candidates regarding
the confidence term Cp that is the other sub-priority term.
This fact is illustrated on Fig.6a on a real case. The data term
(Eq. 4) is high for all target points around the frontier between
the sand and the see, and the final selected target patch to
reconstruct will not be centered at this interface (Fig.6b). A
patch containing only sand is likely to be pasted there, and
will break the sand-see edge.

(a) Local inpainting con-
figuration.

(b) Original Dp. (c) Our modified Dp.

Fig. 6. Illustration of the impact of the data terms. The dashed (b) and dotted
(c) squares are the priority patches respectively chosen with the original Dp
from [2] (Eq. 4) and with ours (Eq. 12).

As discussed in Section III-B, several data terms have been
proposed in the literature. While they try to overcome the
main issue of the initial data term, they suffer from different
shortcomings that we discuss here.

The data term proposed in [29] is based on local structure
tensors (Eq. 7). Using such tensors is a good idea since
tensors modelize the local image variations and are more
geometry-aware. Nevertheless, this data term (Eq. 7) relies on
ad-hoc hyperparameters η and α whose role is unclear. More
annoying, as defined in [29], it does not take into account the
normal vector to Ω. Hence a contour that is tangent to Ω will
have a strong anisotropy, and can led to high priorities for its
pixels, which is not a desirable property.

The sparse-based data term proposed in [30] mainly allows
to efficiently deal with texture pixels lying on δΩ. With the
Criminisi et al. data term (Eq. 4), most of these pixels can have
high gradients, and then high priority values. Since a patch

8

centered on such a pixel is redundant over its neighborhood,
the data term proposed by Xu et al. (Eq. 8) lowers its priority.
Nevertheless, this data term has two drawbacks: first, the
neighborhood of a pixel p is a square area centered at p whose
size has an important impact on the sparseness term. In fact
it depends of the size of the texture patterns, which is not
predictable. Second, this data term is cumbersome in term of
processing times. At the first iteration, for each pixel of the
boundary, one has to compute several SSD distances between
patches which is very time consuming. Although this has to
be done at next iterations for only a small number of pixels
(those who have been pasted at the previous iteration), the
processing times of the whole process is one to two orders of
magnitude higher than for the other data terms.

Finally, the method proposed in [31] enforces the data term
in an exponential fashion for the computation of the priorities
(Eq. 10). The rationale behind this amplification is to enforce
much more the data term in the presence of a strong isophote
(Dp → 1), while not amplifying it in flat areas (Dp → 0).
The main issue of this heuristic is, as for the sparse-based data
term described above, the presence of an additional parameter
σ. This extra parameter has in fact a strong influence, and in
fine has to be manually tuned, which can be unpractical.

To overcome these issues, we propose a geometry-aware
approach using structure tensors [44]. They are considered to
modelize image variations inside a candidate patch. First, this
has the interest of estimating the local image structures using
a channel-correlated approach (correlation between the R, G,
B channels will be taken into account for considering the local
geometry of color images). Second, we take advantage of the
algebraic properties of the tensor sum, to allow target patches
containing structures with multiple orientations (typically tex-
tures) to score favorably regarding the local orientation −→np of
the mask normal at p. Our proposed data term Dp is then:

Dp = ‖Gp
−→np‖ (12)

where G is a weighted average of structure tensors estimated
on non-masked parts of the target patch Ψp:

Gp =
∑

q∈(Np∩(I−Ω))

wq
−−→
∇Iq
−−→
∇IqT

and w is a normalized 2d Gaussian function centered at p.
This new data term can be understood as follows.
• When G is strongly anisotropic (i.e., G ≈ uuT), there is
one clear single image contour inside the target patch Ψp,
oriented along −→u⊥. So, our data term (Eq. 12) becomes
approximatively equal to | < −→u ,−→np > | which will be high
when the contour is oriented along the normal of Ω. Note also
that Dp will be higher for the target points p that are located
precisely on the image contour (as the Gaussian weights w
favor the centering of the target patch on the contour itself).
There are no more dilation effects that can cause target points
around the actual contour to be selected in priority.
• When G is isotropic (i.e., G ≈ λ Id) with small values
(i.e., λ ≈ 0), there are very few variations inside Ψp and we
are located on an homogeneous region. In that case, our data
term (Eq. 12) is low, as it is roughly equal to λ.
• When G is isotropic with high values (i.e., λ >> 0), the

target patch Ψp contains a lot of variations oriented in different
directions (contrasted and complex structure). In this case, our
data term (Eq. 12) is always high whatever the orientation of
the mask normal −→np is.

The interest of this priority term replacement is illustrated
on Fig.6c where we can clearly see the better localization
of the prioritized target points, as well as the correctness
of the selected patch (the one with the highest priority) for
the reconstruction at a given iteration. As inpainting is an
iterative process where each patch selection depends on the
previous iteration, we have observed this has indeed a dramatic
incidence on the quality of the reconstructed image (see
Figures 4 and 7 for instance).

Fig. 7. Illustration of the proposed data term for the Bungee jumping. Top:
the original image and the part we want to remove. Middle: data terms of
Criminisi et al. [2] (left) and ours (right) with a heat color map (dark red for
low data term values, and yellow for high values). Bottom: resulting inpainted
images. Due to the dilation effect of the original data term (Eq. 4), the roof
of the shelter is broken (left). One can see also some texture garbage on the
water. The proposed data term (Eq. 12) concentrates on the interface between
the roof of the shelter and the jumper and avoids the copy of a forest-only
patch onto the roof. Similar results with state-of-the-art data terms can be
found in Fig.4.

9

B. Proposed lookup strategy

In Criminisi-like exemplar-based inpainting state-of-the-art,
many methods try to improve the priority term Pp, often by
modifying Cp or Dp, or trying to improve the way to compare
patches, The way to search a good patch for the reconstruction
often stays unclear while it is an important key point for
this kind of algorithm to work well. For our experiments
we tried several methods to search good candidates: a search
window, (an adaptation of the) PatchMatch algorithm, and
offset statistics.

A search window can be fast, but is tricky to use in case
of large holes. Also, because of the spatial proximity of the
samples according to the target patch, it does not insure
enough global consistency. PatchMatch algorithm needs many
adaptations to be used in a Criminisi-like exemplar-based
inpainting. The SSD formula to use must take the hole in
account, and the ANNF must be updated each time a patch
is reconstructed. The latter makes in fact the PatchMatch
algorithm far slower than its original version [51]. Finally,
within for offsets statistics framework [41], as the number of
selected histogram peaks is small, some local specific cases
are left out, leading to local inconsistencies. Our contribution
combine the speed of a search window, the global consistency
of PatchMatch, and the speed and local consistency of offset
statistics. The idea is to search inside a window, and keep each
target patch offset to use them further in the algorithm. This
way we build a set of search sites where we perform a fast
windowed search.

1) Lookup state-of-the-art methods analysis:
a) Search window: A search window is an area of a

much smaller size than the image one, where a good source
patch is sought during inpainting process. This way, only a few
patches are scanned during the search, and the reconstruction
is then considerably accelerated since only a few SSD are
computed. On the other hand, the use of a search window can
be problematic. First, the fact that the window must be small
enough size to accelerate noticeably the process may lead to
poor reconstructions. Patterns and textures are more likely
to be repeated in the final result. Note that a too large size
window may also lead to poor reconstructions since too many
patch candidates may be considered for the reconstruction and
finally lowers the global consistency of the inpainted part.

An important problem in such a search scheme, is that
the patches are searched only inside I\Ω to avoid the copy
of synthesized pixels. When the mask size is larger than the
search window, everything goes fine for the first iterations
(Fig. 8a). But, after some iterations, the search space becomes
too small to find a good candidate for the reconstruction
(Fig. 8b). An ad-hoc solution [26] is to enlarge the search
window to increase the number of candidates to insure finding
a good one, at the cost of gradually longer iterations. Even
if the use of a search window induces local coherence in
the reconstruction (small SSD), which is a real benefit in
patch-based inpainting, it lacks flexibility in the choice of the
parameters and provides no guarantee of global coherence: a
local coherence does not imply a global one.

(a) Inpainting at iteration 0. (b) Inpainting at iteration n.

Fig. 8. Illustration of the window size problem. Much less samples can be
checked in the search window at iteration n.

b) PatchMatch: PatchMatch algorithm [51] was
originally described as an algorithm to map patches from
an image to patches of another one. Therefore, using this
algorithm for exemplar-based image inpainting requires some
adaptations. In state-of-the-art inpainting methods using
PatchMatch, the way to handle missing data often stay
unclear despite the importance of this key point. As the image
hole color can corrupt the PatchMatch result, the missing
data must be handled properly. The most obvious way to do
so is to change the way to compare two patches. In the case
of exemplar-based inpainting, Eq. 1 can be used for example.
The second adaptation is related to the exemplar-based
inpainting process. PatchMatch is generally performed on a
still image, but in the case of image inpainting, the image
content changes during the process. Therefore, Φ(p) has to
be updated for all the centers of the patches whose content
has changed, i.e {q | Nq ∩Np 6= ∅}. This phase is very time
consuming in practice and makes PatchMatch quite difficult
to use in our case.

c) Offset statistics: An interesting idea with an ANNF
is to benefit from offsets statistics [41], and it can easily be
adapted to exemplar-based inpainting. We performed exper-
iments where a pre-inpainting phase serves as a basis for a
plain computation of the ANNF (using PatchMatch).

The K prevailing offsets can then be extracted to guide
the search of patch candidates within the second inpainting
pass. This scheme works fine in some cases by providing
natural inpainted results. Nevertheless, by using only the K
prevailing offsets, specific cases are left out and this may
lead to unnatural local reconstructions. Some offsets can
be artificially created by manually drawing strokes on the
image (Fig. 18 in [41]) to partially solve the problem. In
this case, this method becomes a semi-automatic method and
goes beyond the scope a fully automatic framework we aim at.

2) Fast and smart search contribution: The contribution
we propose gather many ideas from the previously exposed
search algorithms. The proposed strategy is first to search the
nearby reconstructed target patch offsets Φ(p), and then use
them as several new search sites to find a good source patch
for the reconstruction (Fig. 9). The search area then consists

10

in several search windows, each centered at the location of the
center of the previous source patch (w.r.t. Φ(p)). In practice,
the set of nearby reconstructed patches {Ψc} of a target patch
Ψt are those for which Nc ∩Nt 6= ∅.

Fig. 9. Illustration of our fast and smart search for exemplar-based inpainting
algorithms. Each reconstructed patch Ψ1,Ψ2 provides respectively a site
W1,W2 to help finding a good candidate to reconstruct Ψt. Note that a
site Wt is also centered on Ψt (not shown here for visualization purposes).
As Ψ0 has no nearby reconstructed patch, its search window W0 is simply
centered on it.

For each Ψp to be reconstructed, the search of a good
candidate is performed as follows. First, the set of offsets Φ(p)
of patches that have already been reconstructed are sought
inside a window of the size of Ψp. Note that the offset (0, 0)
is also taken into account. The size of the look-up windows
W(p) is then computed with the following formula:

wsize(p) =

{
γ if |Φ(p)| = 1

γα
√
|Φ(p)| otherwise

(13)

where γ is the maximum size of the search window, and α is
a scale factor giving the amount of space of the main window
to grant to the search sites: the more sites are found (and
further visited), the smaller they are. Once these search sites
have been defined, a classical window search is performed into
these multiples sub-windows:

Ψp̂ = {Ψq | q = arg min⋃
q̂∈Φ(p)

Wq̂

d(Ψp,Ψq̂)}

The advantages of this proposed search scheme are multiple:
• As search sub-windows often overlap themselves in practice
(but not systematically), the number of candidates is always
lower than the one within the initial search window strategy
[2]. This increases the speed of the search phase by a non-
neglictible factor.
• The window size problem illustrated in Fig. 8 does not occur
anymore, since the search sites are always defined to be outside
the inpainting mask.
• As fewer candidates are investigated, the aproximate nearest
neighbor may not be optimal (in the sense of the SSD), but
often results visually better. Search sub-windows are in fact
centered at geometrically coherent locations according to the

previous inpainting iterations (i.e., previously pasted patches).
As a consequence, the best patch may not be the optimal for
local coherence (in terms of SSD), but it provides a more
global consistency to the results.
• Reminiscent of the method of [25] for texture synthesis,
our search strategy often achieves a better global consistency
by searching only at smart locations, and then becomes less
sensitive to the patch size. One can copy/paste larger structures
and textures and have a correct reconstruction of these with
smaller patch sizes than with a classical search.

Figure 10 illustrates our proposed search scheme and
compares it to the classical window search on a difficult
image that contains both structures and textures. Although
inpainting results looks similar, inpainting with our method
requires only 17 × 17 patches (bottom left) when 23 × 23
patches are required with the classical window search (bottom
right). Inpainting with the classical window search and too
small patches (17 × 17) degrades too much the structure of
the columns (top right).

Fig. 10. Comparison of inpainting results with the classical window search
(right column) and our search scheme (bottom left). The best results have
been obtained with 23× 23 patches for the classical window search (bottom
right) and with 17 × 17 patches for our search scheme (bottom left). The
initial window size is found to be equal for both (400 × 400). Inpainting
with the classical window search and 17 × 17 patches (top right) degrades
too much the structure of the inpainted columns.

Gathering ideas from several state-of-the-art algorithms, we
succeeded in creating an original search algorithm that is able
to maintain both a certain local and global consistency over
the image reconstruction, and this with a quite high speed.
But, as for pure exemplar-based inpainting algorithm, some
seams might appear in the final result. In the next section we
describe the way we found to strongly reduce these possible
artifacts.

C. Spatial patch blending

Criminisi-like exemplar-based inpainting algorithms often
produce block effect artefacts during the reconstruction. This
is mainly caused by the copy and paste of patches chunks that
do not match perfectly on their common boundaries, even with
a smart selection scheme. Some methods are used to try to

11

reduce these artifacts. In [29], a K-means algorithm is used,
but depending on the number of patches K, the result can
look very blurry. The pixel-based reconstruction method of
[36] provides an intrinsic way to not create artefacts, but the
results can also be blurry, or present some texture warping.
Reminiscent of the the Poisson blending method [53] used in
[28], we proposed in [3] a fast way to reduce these block effect
artifacts by spatially blend nearby patches one another where
artifacts are located. Contrary to [28] where the interfaces
between blocks are known and fixed in advance (since patches
are fully copied), artifacts are first detected by analyzing the
result and the reconstructed patch offsets provided by the
inpainting process. Then, the spatial blending algorithm is
applied on the inpainting result to reduce the visibility of the
artifacts.

1) Artefact detection: The results provided by a exemplar-
based inpainting algorithm do not present artefact everywhere.
Our detection method for the artifacts is empirically based
on the two following complementary hypotheses: 1) there
are sharp variations of luminosity or color where artefacts
are located, and 2) patches stuck side by side and coming
from very different locations are most likely to be of different
natures. The pipeline of the detection process (Fig. 11) is
divided on two parts: break field computation, and break point
extraction.

a) Break field: The break field associates each points of
an image, the strength of the artifact that is locally present (if
any). It is defined by the two above hypotheses, and modeled
with the following equation:

R(p) =
|∇Ip| . |∇Φ(p)|

α with R(p) ∈ [0, 1] (14)

where α = max
q∈I

(|∇Iq| × |∇φ(q)|) is a normalization factor.

This equation makes the break field higher when both sharp
variations are presents (high |∇Ip|) and patches come from
different locations (high |∇Φ(p)|). On the contrary, the break
field strength gets locally lower when one of the two above
key conditions is not respected.

b) Break points: In order to blend the inpainting result
only where needed, the break point set E , points of the
highest break strength, are selected by using a threshold value
τ . The higher τ , the less blending strength. Thanks to the
normalization factor α used in equation 14, the values of τ
are in [0, 1]. It makes these parameters easy to use.

2) Spatial patch blending algorithm: The principle of the
spatial patch blending is to merge overlapping parts of nearby
patches together in a way that the boundaries of these patches
become much less visible, and even invisible. For each p ∈ Ω,
the spatial blending performs a linear combination of all
the pixels overlapping at p from the set of reconstructed
patches {Ψ1, . . . ,Ψn}. In the following, we detail the core
of our tensor-based patch blending that has the advantage of
blending/removing incoherent patch data while preserving the
significant structures and textures as much as possible.

a) Tensor model for spatial patch blending: We propose
a tensor-based spatial blending algorithm that is much more

careful about local image structures and textures than our
previously proposed algorithm [3].

While in [3] the blending for a given pixel was performed
equally in all direction (isotropic model), we propose here to
model into a unified model the following three properties: (1)
blend a flat area with a strong strengh in all direction (isotropy
with a high amplitude), (2) blend a textured area with a small
strengh in all directions (isotropy with a small amplitude), and
(3) blend a structured area with a weak strengh in the structure
direction (anisotropy).

The first step is then to construct tensors that fit this
model, the so-called blending-tensors B. The eigen values
λB{1,2} and eigen vectors eB{1,2} of blending tensors λB
will represent respectively the bandwidth and the direction of
the spatial patch blending to be applied locally. As structure
tensors S already provide a good local geometry analysis for
each pixel of the image, we propose to use structure tensors
as a basis for the building our blending tensor model.

Constructing blending tensors is performed in three steps:
• The eigen values of structure tensors used as a basis are fully
dependant of the image value range. The first step is then to
normalize them:

λ̂S(p)i =
λS(p)

max
p∈I

λS(p)i
(15)

• As the local blending bandwidth (i.e., the eigen vales of the
blending tensors) is defined by the ratio between the smallest
and the biggest eigenvalue of the struture tensors, this step
intends to modify eigen values λ̂S(p)i depending on this ratio
in order to have new eigen values λBi. Proposed function,
inspired by partial differential equations for diffusion [12], is
the following:

λBi =
1

(1 + λ̂S1 + λ̂S2)
γi (16)

where γi (i ∈ {1, 2}) are parameters controlling overall tensor
isotropy. Examples of the effect of different configurations of
γi are provided in Fig. 12.
• This final step consists in building the final blending tensor
for each pixel. It is defined as a positive symmetric and positive
definite matrix and expressed as:

B = λσB1e
⊥
S1.

Te⊥S1 + λσB2e
⊥
S2.

Te⊥S2 (17)

where λσBi = σBλBi, are the bandwidth-scaled eigen values
of the blending tensors.

b) Tensor-directed patch blending: The direct applica-
tion of the patch blending process aims at blending the whole
image in a pixel-wise fashion using the proposed tensor model
B(p). The proposed approach computes a linear combination
of pixels coming from several patches overlapping each other,
with respect to the local geometry. For each p ∈ Ω in each
image channel k, the blended result is computed as :

Jk(p) =

∑
ψq∈Ψp

wB(p,q) ψkq (p−q)

ε+
∑

ψq∈Ψp

wB(p,q) (18)

where Ψp = {ψ0, . . . , ψn} is the set of source patches
overlapping p, and wB is an anisotropic Gaussian weight

12

(a) Sample image. (b) γ2
γ1
≈ 1

(c) γ2
γ1

> 1 (d) γ2
γ1
→∞

Fig. 12. Illustration of the effect of the values of parameters γi.

function defined as follows:

wB(p, q) = e
XTB(p)−1X

2σ2
B with X = q − p (19)

This blending scheme has the effect of blending strongly
flat areas, while blending slightly textures or in the contour
direction. In the first case, unwanted seams disappear while,
in the second case, it preserves the sharpness of synthesized
structures and textures.

c) Making blending faster: The inner formulation of our
proposed tensor-based patch blending, as pointed in [3], is
quite slow to process in practice since the tensors have to be
defined for each pixel of the mask. A simple and effective way
to make the blending faster is to approximate the geometry
of the reconstructed patches using only a blending tensor on
their center. This approximation makes sense since the center
of a reconstructed patch is related to the processing order
built upon the pixels anisotropy (see Section IV-A). While
in the inner formulation (see above) there are as many weight
functions as patches overlapping the position of a specified
pixel to compute. In this faster formulation only one weight
per patch has to be computed. This approximation does not
degrade too much the blending result, while it makes it faster
such it can easily be applied. The main parameter of our
blending algorithm is the blending strength, which is in fact
closely related to the patch size. Since the blending is fast
and is somehow disconnected from the core of the inpainting
process, it can easily be manually tuned for specific needs.

Fig. 13 shows an inpainted image, and compares our tensor-
directed patch blending method with the one in [3]. Particu-
larly, one can see the removal of artifacts while slightly better
keeping the sharpness of the structures and textures.

Fig. 13. Comparison of the proposed tensor-directed patch blending method
(bottom right) and the one in [3] (bottom left).

V. RESULTS

Fig. 14 illustrates our inpainting method on several natural
images containing both structures and textures. Our results are
exclusively compared to other state-of-the-art methods results,
extracted from their respective papers, or computed from
scratch when the corresponding code was made available. As
one can notice, these qualitative comparisons exhibit visually
equivalent or better final results on these difficult natural
images.

Beyond not-well chosen parameters, our method can give
unsatisfactory inpainting results on difficult images. Fig. 15
shows such bad results. For these images, the missing infor-
mation can not be properly filled since it does not exist in the
rest of the image. In fact, most of the exemplar-based methods
can not deal with such cases, and this is the main limitations
of such approaches (including ours).

The complexity of the whole algorithm can be detailed as
follows:
• Similarly to the data terms of the literature (except the
sparse-based one of [30]) detailed in Section III-B2, our
tensor-based data term has a negligible complexity compared
to the complexity of the whole algorithm. The slight differ-
ences of processing times shown in Figure 4 simply come
from a different processing order that may induce more (or
less) iterations.
• The complexity of our search scheme is difficult to compute
since it relies on many parameters (patch size, lookup window
size, . . .). We then compare it to the classical window search
scheme on the number of computed SSD required to inpaint an
image. Figure 16 plots these values for all the images of this
paper. Our search scheme requires between 2 to 5 times less

13

Algorithm 1 Complete inpainting algorithm.
{Inpainting part}

1: while ‖Ω‖ 6= ∅ do
2: ∀p ∈ δΩ, compute priority Pp = Cp ·Dp (Eq.2):

3: Cp =

∑
q∈Np∩(I−Ω) Cq

|Np|
4: Dp = ‖Gp

−→np‖ (Eq.12)
5: Select the target patch Ψp centered at p st.:

p = arg max
q

Pq

6: Construct search sites (see Section IV-B2) w.r.t. nearby
reconstructed target patch offsets Φ(p) with size

wsize(p) =

{
γ if |Φ(p)| = 1

γα
√
|Φ(p)| otherwise

7: Search for the best patch Ψp̂ (Eq.1)
8: Paste Ψp̂ in Np ∩ Ω
9: Update confidences : ∀q ∈ Np ∩ Ω, Cq = Cp

10: Update δΩ and associated confidences
11: Update Φ
{Blending part: Fast method}

12: J : blending output
13: A: scalar image of dimension of I
14: for each reconstruction target p do
15: wB: anisotropic weight function (Eq.19) based on

blending tensor B(p̂) (Eq.17)
16: Ψ̃p̂: Point-wise multiplication of Ψp̂ by wB

17: Draw Ψ̃p̂ at p in J
18: Draw wB at p in A
19: Point-wise division of J by A
20: ∀p ∈ Ω, Ip ← Jp

Fig. 15. Example of a failure case. Here, the missing information can not
be properly filled since no patches lying at the interface of the three areas
(water, grass, and stones for the lion image, and sand, sea, and sky for the
boat image) can be found in the rest of the image.

SSD computation, which is known to be the main bottleneck
of such approaches [51].
• The proposed approximation of our tensor-directed
anisotropic blending is some somehow similar to the isotropic
one previously proposed in [3]. The spatial blending (in its fast

version) has a negligible cost in view of the whole process.
Moreover, once the image is inpainted, the parameters of our
blending algorithm can be tuned at interactive rate.

Fig. 16. Comparison of the number of SSD required to inpaint images of
this paper with the classical window search and the proposed search scheme.

VI. CONCLUSION

In this paper we have presented a review of examplar-based
image inpainting methods in a technical fashion, with a focus
on the greedy ones. Each key point of the algorithm is then
compared both technically and visually to similar state-of-
the-art solutions. By using structure tensors, the data term of
our method is robust and insures a global coherence in the
reconstruction. Then, the strategy we proposed to search good
reconstruction patch allows synthesizing micro and macro
textures with a good local coherence. Finally, the method
proposed to spatially blend the reconstructed patches in the
final result beautifies and reduces typical block artifacts that
are present.

Further work include the extension of our inpainting ap-
proach to video and stereo images/video inpainting.

14

REFERENCES

[1] C. Guillemot and O. Le Meur, “Image inpainting: Overview and recent
advances,” Signal Processing Magazine, IEEE, vol. 31, no. 1, pp. 127–
144, 2014.

[2] A. Criminisi, P. Pérez, and K. Toyama, “Region filling and object
removal by exemplar-based image inpainting,” IEEE T. Image Process.,
vol. 13, no. 9, pp. 1200–1212, Sep. 2004.

[3] M. Daisy, D. Tschumperlé, and O. Lézoray, “A fast spatial patch blend-
ing algorithm for artefact reduction in pattern-based image inpainting,”
in SIGGRAPH Asia 2013 Technical Briefs. ACM, 2013, pp. 8:1–8:4.

[4] M. Daisy, P. Buyssens, D. Tschumperlé, and O. Lézoray, “A smarter
exemplar-based inpainting algorithm using local and global heuristics
for more geometric coherence,” in ICIP. IEEE, 2014, pp. 1–5.

[5] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpaint-
ing,” in ACM T. Graphic., 2000, pp. 417–424.

[6] S. Masnou, “Disocclusion: a variational approach using level lines,”
IEEE Trans. Image Process., vol. 11, no. 2, pp. 68–76, 2002.

[7] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera,
“Filling-in by joint interpolation of vector fields and gray levels,” IEEE
Trans. on Image Process., vol. 10, no. 8, pp. 1200–1211, 2001.

[8] T. F. Chan and J. Shen, “Nontexture inpainting by curvature-driven
diffusions,” Journal of Visual Communication and Image Representation,
vol. 12, no. 4, pp. 436–449, 2001.

[9] J. H. Elder and R. M. Goldberg, “Image editing in the contour domain,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 3, pp. 291–296,
2001.

[10] J. Shen and T. F. Chan, “Mathematical models for local nontexture
inpaintings,” SIAM J. Appl. Math., vol. 62, no. 3, pp. 1019–1043, 2002.

[11] S. Roth and M. J. Black, “Fields of experts: A framework for learning
image priors,” in CVPR, vol. 2. IEEE, 2005, pp. 860–867.

[12] D. Tschumperle and R. Deriche, “Vector-valued image regularization
with pdes: A common framework for different applications,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 27, no. 4, pp. 506–517, 2005.

[13] F. Bornemann and T. März, “Fast image inpainting based on coherence
transport,” J. Math. Imaging Vis., vol. 28, no. 3, pp. 259–278, 2007.

[14] L. Demanet, B. Song, and T. Chan, “Image inpainting by correspondence
maps: a deterministic approach,” Appl. Comput. Math., vol. 1100, pp.
217–50, 2003.

[15] A. Levin, A. Zomet, and Y. Weiss, “Learning how to inpaint from global
image statistics,” in ICCV. IEEE, 2003, pp. 305–312.

[16] M. Elad, J.-L. Starck, P. Querre, and D. L. Donoho, “Simultaneous
cartoon and texture image inpainting using morphological component
analysis (mca),” Applied and Computational Harmonic Analysis, vol. 19,
no. 3, pp. 340–358, 2005.

[17] T. F. Chan, J. Shen, and H.-M. Zhou, “Total variation wavelet inpaint-
ing,” J. Math. Imaging Vis., vol. 25, no. 1, pp. 107–125, 2006.

[18] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color image
restoration,” IEEE T. Image Process., vol. 17, no. 1, pp. 53–69, 2008.

[19] J.-F. Cai, R. H. Chan, and Z. Shen, “A framelet-based image inpainting
algorithm,” Appl. Comput. Harmon. A., vol. 24, no. 2, pp. 131–149,
2008.

[20] A. Buades, B. Coll, and J.-M. Morel, “A review of image denoising
algorithms, with a new one,” Multiscale Model. Sim., vol. 4, no. 2, pp.
490–530, 2005.

[21] G. R. Cross and A. K. Jain, “Markov random field texture models,”
IEEE Trans. Pattern Anal. Mach. Intell., no. 1, pp. 25–39, 1983.

[22] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in ICCV, vol. 2. IEEE, 1999, pp. 1033–1038.

[23] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in CVPR, vol. 2. IEEE, 2005, pp. 60–65.

[24] L.-Y. Wei and M. Levoy, “Fast texture synthesis using tree-structured
vector quantization,” in Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, 2000, pp. 479–488.

[25] M. Ashikhmin, “Synthesizing natural textures,” in Interactive 3D graph-
ics. ACM, 2001, pp. 217–226.

[26] R. Bornard, E. Lecan, L. Laborelli, and J.-H. Chenot, “Missing data
correction in still images and image sequences,” in Proceedings of the
tenth ACM international conference on Multimedia, 2002, pp. 355–361.

[27] I. Drori, D. Cohen-Or, and H. Yeshurun, “Fragment-based image com-
pletion,” in ACM T. Graphic., vol. 22, no. 3. ACM, 2003, pp. 303–312.

[28] P. Pérez, M. Gangnet, and A. Blake, “Patchworks: Example-based region
tiling for image editing,” Microsoft Research, MSR-TR-2004-04, Tech.
Rep., 2004.

[29] O. Le Meur, J. Gautier, and C. Guillemot, “Examplar-based inpainting
based on local geometry,” in ICIP, Brussel, Belgium, 2011, pp.
3401–3404. [Online]. Available: http://hal.inria.fr/inria-00628074

[30] Z. Xu and J. Sun, “Image inpainting by patch propagation using patch
sparsity,” IEEE T. Image Process., vol. 19, no. 5, pp. 1153–1165, 2010.

[31] R. Martinez-Noriega, A. Roumy, and G. Blanchard, “Exemplar-based
image inpainting: Fast priority and coherent nearest neighbor search,”
in MLSP. IEEE, 2012, pp. 1–6.

[32] M. Bertalmio, L. Vese, G. Sapiro, and S. Osher, “Simultaneous structure
and texture image inpainting,” IEEE T. Image Process., vol. 12, no. 8,
pp. 882–889, 2003.

[33] J.-L. Starck, M. Elad, and D. L. Donoho, “Image decomposition via the
combination of sparse representations and a variational approach,” IEEE
T. Image Process., vol. 14, no. 10, pp. 1570–1582, 2005.

[34] J. Jia and C.-K. Tang, “Inference of segmented color and texture
description by tensor voting,” IEEE Trans. Pattern Anal., vol. 26, no. 6,
pp. 771–786, 2004.

[35] F. Cao, Y. Gousseau, S. Masnou, and P. Pérez, “Geometrically guided
exemplar-based inpainting,” SIAM J. Imag. Sciences, vol. 4, no. 4, pp.
1143–1179, 2011.

[36] Y. Wexler, E. Shechtman, and M. Irani, “Space-time completion of
video,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 3, pp.
463–476, Mar. 2007.

[37] N. Komodakis and G. Tziritas, “Image completion using efficient
belief propagation via priority scheduling and dynamic pruning,” Image
Processing, IEEE Transactions on, vol. 16, no. 11, pp. 2649–2661, 2007.

[38] Y. Pritch, E. Kav-Venaki, and S. Peleg, “Shift-map image editing,” in
International Conference on Computer Vision. IEEE, 2009, pp. 151–
158.

[39] A. Mansfield, M. Prasad, C. Rother, T. Sharp, P. Kohli, and L. J.
Van Gool, “Transforming image completion.” in BMVC, 2011, pp. 1–11.

[40] P. Arias, V. Caselles, and G. Facciolo, “Analysis of a variational
framework for exemplar-based image inpainting,” Multiscale Modeling
& Simulation, vol. 10, no. 2, pp. 473–514, 2012.

[41] K. He and J. Sun, “Statistics of patch offsets for image completion,” in
European Conference on Computer Vision. Springer-Verlag, 2012, pp.
16–29.

[42] A. Newson, M. Fradet, P. Pérez, A. Almansa, and Y. Gousseau, “Towards
fast, generic video inpainting,” in European Conference on Visual Media
Production, 2013. CVMP 2013., 2013, pp. 1–8.

[43] O. Le Meur, M. Ebdelli, and C. Guillemot, “Hierarchical super-
resolution-based inpainting,” IEEE T. Image Process., vol. 22, no. 10,
pp. 3779–3790, 2013.

[44] S. Di Zenzo, “A note on the gradient of a multi-image,” Comput. Vision
Graph., vol. 33, no. 1, pp. 116–125, 1986.

[45] J. Sun, L. Yuan, J. Jia, and H.-Y. Shum, “Image completion with
structure propagation,” ACM T. Graphic., vol. 24, no. 3, pp. 861–868,
Jul. 2005.

[46] A. Wong and J. Orchard, “A nonlocal-means approach to exemplar-
based inpainting,” in Image Processing, 2008. ICIP 2008. 15th IEEE
International Conference on. IEEE, 2008, pp. 2600–2603.

[47] C. Guillemot, M. Turkan, O. Le Meur, M. Ebdelli et al., “Object removal
and loss concealment using neighbor embedding,” Eurasip Journal on
Signal Processing: Image Communication, 2013.

[48] N. Kawai, T. Sato, and N. Yokoya, “Image inpainting considering
brightness change and spatial locality of textures and its evaluation,”
in Proc. of the 3rd PSIVT, ser. PSIVT ’09, 2009, pp. 271–282.

[49] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D, vol. 60, no. 1, pp. 259–268, 1992.

[50] Y. Meyer, Oscillating patterns in image processing and nonlinear
evolution equations: the fifteenth Dean Jacqueline B. Lewis memorial
lectures. American Mathematical Soc., 2001, vol. 22.

[51] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, “Patch-
Match: A randomized correspondence algorithm for structural image
editing,” ACM T. Graphic., vol. 28, no. 3, Aug. 2009.

[52] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker, A. Colburn,
B. Curless, D. Salesin, and M. Cohen, “Interactive digital photomon-
tage,” in ACM Transactions on Graphics, vol. 23, no. 3. ACM, 2004,
pp. 294–302.

[53] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM T.
Graphic., vol. 22, no. 3, pp. 313–318, Jul. 2003.

[54] K. He and J. Sun, “Computing nearest-neighbor fields via propagation-
assisted kd-trees,” in CVPR. IEEE, 2012, pp. 111–118.

15

(a) Exemplar-based inpainting result. (b) Map of local artifacts strength. (c) Exemplar-based inpainting + our
spatial patch blending algorithm.

Fig. 11. Artifact detection pipeline from the inpainting result (left) to the spatially blended image result (right).

Masked image. Priority-BP [37] He et al. [41]

Lemeur et al. [43] ShiftMap [38] Ours

Masked image. Priority-BP [37] He et al. [41] Photoshop [36], [51] ShiftMap [38] Ours

Masked image. Lemeur et al. [43] He et al. [41] Ours

Masked image. Tschumperlé et al. [12] Criminisi et al. [2] Lemeur et al. [43] Ours

Fig. 14. Comparisons of inpainted results with several state-of-the-art methods on difficult natural images, namely cow, wall, yard, and Sydney opera.

