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Abstract— In this paper, we propose a time consistent video
segmentation algorithm designed for real-time implementation.
Our algorithm is based on a region merging process that
combines both spatial and motion information. The spatial
segmentation takes benefit of an adaptive decision rule and a
specific order of merging. Our method has proven to be efficient
for the segmentation of natural images with few parameters to
be set. Temporal consistency of the segmentation is ensuredby
incorporating motion information through the use of an improved
change detection mask. This mask is designed using both illu-
mination differences between frames, and region segmentation
of the previous frame. By considering both pixel and region
levels, we obtain a particularly efficient algorithm at a low
computational cost, allowing its implementation in real-time on
the TriMedia processor for CIF image sequences.

I. I NTRODUCTION

The segmentation of each frame of a video into ho-
mogeneous regions is an important issue for many video
applications such as region-based motion estimation, image
enhancement (since different processing may be applied on
different regions), 2D to 3D conversion. These applications
require two main features from segmentation: accuracy of
regions boundaries in the spatial segmentation and temporal
stability of the segmentation from frame to frame.

As far as spatial segmentation is concerned, it can be
classified into two main categories, namely contour-based
and region-based methods. In the first category, edges are
computed and connected components are extracted [1]. One of
the drawback of such an approach is that the computation of
the gradient is prone to large errors especially on noisy images.
Moreover, the closure of the edges in order to create connected
regions is a difficult task and an efficient resolution of sucha
problem may induce cumbersome computations. Finally, such
an approach cannot take benefit of statistical properties of
the considered image regions. The region based segmentation
methods avoid these drawbacks by considering regions as
basic elements. Among region-based segmentation methods
[2], [3], [4], [5], [6], we are interested here in a bottom-
up segmentation approach where regions are grown using a
merging process. In such approaches, similar neighbouring
regions are merged according to a decision rule [7], [8]. The
initial regions can be the pixels or an over-segmentation of
the image which can be obtained by a watershed algorithm
[9], [10]. As mentioned by [11], bottom-up algorithms rely

on three notions: a model for the description of a region, a
merging predicate and a merging order. This gives rise to nu-
merous heuristics according to the different choices performed
on these three steps [12], [13], [7], [14], [4]. Compared to other
classical approaches, e.g. [12], [13], [7], the authors of [4] have
proposed recently an adaptive threshold justified by statistical
inequalities. They obtain good results with few parametersto
tune. However in the context of a real time implementation,
their merging predicate still requires too many computations.
Moreover, their algorithm is dedicated to the segmentationof
still images and so, it does not take into account the temporal
dimension of video sequences.

When dealing with video segmentation, various algorithms
have been tested in the literature. The first class of approaches
proposes to perform a 3D segmentation by considering the
spatio-temporal data as a volume. We can cite the work of [15]
that takes benefit of the 3D tensor of structures for segmenta-
tion. Some other recent works propose 3D approaches using a
mean shift based analysis [16], [17]. Let us note that if each
shot is segmented as a 3D volume the number of frames to
store for each segmentation may be unbounded. On the other
hand, if the number of stored frames is artificially limited by
the available memory, some 3D regions may be artificially split
on long shots. Therefore, 3D approaches require the storage
of several frames in memory and necessitate a high bandwidth
which is a drawback for the design of electronic devices.

The second class of methods concerns frame-by-frame
algorithms. In these approaches, the spatial segmentationof
the second frame is deduced from the spatial segmentation of
the first frame using motion estimation [18], [13], [19], [20].
Regions from adjacent frames are then merged according to
motion similarity, colour similarity or localisation similarity.
In such approaches, a matching is performed between regions
of the different frames. All the regions are then linked and
video objects tracking algorithms [20] may then take benefit
of such a correspondence between regions.

On the other hand some applications such as image enhance-
ment or video compression, may need a coherent segmentation
between frames without requiring an exact tracking of each
region from frame to frame. In this paper, we propose a
segmentation algorithm devoted to such applications. The first
aim of our algorithm is thus not to match the regions of
two consecutive frames but only to take benefit of the spatial
segmentation of the first frame in order to construct a coherent
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spatial segmentation of the second one.
Our contributions may be divided in three points :
• Spatial segmentation: Our spatial segmentation takes ben-

efit of both an adaptive decision rule and an original order
of merging. As in [4], the adaptive threshold is computed
using a statistical modelisation of the region combined
with the statistical inequality of McDiarmid [21]. How-
ever, in our approach, each pixel is modelled as a single
random variable (in [4], the authors model each pixel
as a sum ofM random variables). This method gives
a simpler predicate that is more adapted to real time
implementation. Good results are obtained for spatial
segmentation with few parameters to be set.

• Temporal consistency: Another contribution is the design
of a region segmentation that does not encounter strong
variations over time. We then propose to simply take
benefit of scene change detection, that is widely used in
video segmentation [22], [23], [24], rather than motion
estimation that remains a real bottleneck for real-time
implementation. We construct a coherent segmentation
from frame to frame by combining both pixel and region
information through the use of an improved Change
Detection Mask (CDM ) that takes benefit of the region
segmentation of the previous frame. Experimental results
conducted on real video sequences demonstrate a good
temporal consistency.

• Hardware implementation: As far as the implementation
is concerned, we exploit the Data Level Parallelism
(DLP) by processing some basic treatments in parallel.
Moreover, the classical UNION-FIND data structure [25]
is improved by using local registers to reduce the access
time of FIND operations. We obtain an efficient algorithm
for video segmentation at a low computational cost. Our
method runs in real-time on the TriMedia processor for
CIF image sequences.

The paper is organised as follows. The spatial segmentation
method is detailed in section II. The temporal consistency
improvement is explained in section III. In section IV, we
discuss the implementation of the algorithm. Experimental
results and measures are given in section V.

II. SPATIAL SEGMENTATION

Let us consider an imageI, the notation|.| represents the
cardinal andI(p, n) the pixel intensity at positionp = (x, y)T

in the framen.
A region-based segmentation problem aims at finding

a relevant partition of the image domain inm regions
{S1, S2, .., Sm}. We focus here on region merging algorithms
where a decision criterion determines whether two regions
must be merged or not. In this paper, we first introduce a
statistical model for the regions. We then detail how these
statistical tools are used for the computation of the merging
predicate. We finally explain the whole merging algorithm and
especially the order of merging.

A. Statistical model

Images are corrupted by noise which gives random values
(r.v.) to pixel intensities. Due to this random part in image

acquisition systems, an imageI is classically considered
to be an observation of a perfect statistical imageI∗. The
intensity I(p) of a pixel p = (x, y)T is then modelled as
the observation of a random vectorXi whose values belongs
to the interval[0, g] (e.g. g = 255 for 8 bits images). An
ideal regionS∗ is then represented by a vector of independent
r.v (X1, X2, .., Xn), where n = |S∗|. Let us denote byS
the real region associated toS∗, i.e. composed of the same
set of pixels thanS∗. The intensity of theith pixel of S
within I is then considered as an observation of the r.v.Xi.
Following [4], we define a partition ofI∗ into homogeneous
regions{S∗

1 , . . . , S∗
m} by the following requirements:

1) All the pixels of any statistical region should have a
same expectation:

∀i ∈ {1, . . . , m}
∀(p, q) ∈ (S∗

i )2,

}

E(I∗(p)) = E(I∗(q))

(1)
2) Two adjacent pixels belonging to different statistical

regions should have different expectations:

∀(i, j) ∈ {1, . . . , m}2

∀(p, q) ∈ S∗
i S∗

j

p adjacent toq






E(I∗(p)) 6= E(I∗(q)) (2)

Such a definition may be easily extended to multi-channels
images [4] by requiring that the pixel’s expectations are equal
on each channel within one region and that the expectation
of at least one channel differs between pixels belonging to
different regions.

Note that according to our definition, all the pixels of one
region should have a same expectation. The regions extracted
by a segmentation algorithm based on this definition should
thus be composed of pixels with a nearly constant intensity (we
thus assume an underlying flat facet model). This criterion may
be justified by the reflective properties of surfaces. Indeed, the
reflection of light under a surface is determined by a Lamber-
tian and a Specular component [26]. The Specular component
produces specular spikes often characterised by regions with a
nearly maximal intensity. The specular component decreases
abruptly and may be neglected, within a segmentation scheme,
outside the specular spikes. The intensity of a Lambertian
surface varies slowly according to its normals. A region of
the image with a nearly constant value correspond thus either
to a specular spike or to a Lambertian surface with an almost
constant normal. Such a segmentation scheme provides thus
a partition which resumes the main physical and geometrical
properties of a 3D scene. Higher level processes such as the
segmentation of the image into objects or the segmentation
of textured objects [27] would require to input within the
algorithm a priori knowledge about what are the expected
objects of the scene or what a textured area is.

In order to be self content, let us now introduce the very
useful statistical inequality proposed by [21] and introduced
within the region segmentation framework by [4]. We take
benefit of this inequality for the computation of the merging
predicate.

Theorem 2.1 (McDiarmid’s inequality):If {Xl} areN in-
dependent random variables whose observationsxl take their
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values in a measurable spaceA, and f : AN 7−→ R is a
function that satisfies the following constraint for1 ≤ l ≤ N :

sup |f(x1, .., xN ) − f(x1, .., xl−1, x
′
l, xl+1, .., xN )| < cl

where xl and x′
l are two different possibilities for thelth

component of an observation vector(x1, .., xN ) ∈ AN . Then
for everyǫ > 0,

P (|f(X1, .., XN ) − E(f(X1, .., XN ))| > ǫ) ≤ 2 exp

 

−2ǫ2

P

N

l=1
c2

l

!

B. Merging predicate

In order to compute a merging predicate, we consider two
regionsS1 andS2 of a current partition. The associated vectors
of r.v. in the ideal imageI∗ are respectively denoted byY1

andY2. The r.v.µ1(Y1) andµ2(Y2) denote respectively the
means ofY1 andY2. We suppose thatY1 andY2 belong to
a same homogeneous region ofI∗. Our default decision rule
consists thus to merge the two regionsS1 andS2 respectively
associated toY1 andY2. However, under the hypothesis that
Y1 and Y2 are included in a same homogeneous region of
I∗, the probability that|µ1(Y1) − µ2(Y2)| is greater than a
given value is bounded by Theorem 2.1. If this probability falls
under a given threshold we refuse the hypothesis and thus do
not merge the two regionsS1 andS2.

More precisely, let us consider the vector

Y = (Y1,Y2) = (I∗(p1), ..., I
∗(p|S1|)

︸ ︷︷ ︸

Y1

, I∗(p′1), ..., I
∗(p′|S2|)

︸ ︷︷ ︸

Y2

)

and the mean functions:

µi(Yi) =
1

|S∗
i |

k=|Si|∑

k=1

I∗i (pk), i = 1, 2

Our merging decision rule is based on the following theorem:
Theorem 2.2:Let us consider two vectors of r.v.Y1 andY2

encoding the intensities of two connected regions of an ideal
imageI∗. Under the hypothesis thatY1 andY2 are included
into a same homogeneous region and using the previously
defined notations we have:

P (|µ1(Y1) − µ2(Y2)| > ǫ) ≤ 2exp

(
−2ǫ2|Y1||Y2|

g2(|Y1| + |Y2|)

)

where (|Yj |)j∈{1,2} denotes the size of vectorYj (i.e. the
cardinal of the associated regionSj).

Proof: Let us consider the vectory = (x1, . . . , xN ) in
[0, g]N . This vector may be considered as an outcome of the
r.v. Y. In order to apply the McDiarmid theorem we define
the following function:

f(y) = f(x1, . . . , xN ) = (µ1(y1) − µ2(y2)) (3)

where N = |Y1| + |Y2|, y1 = (x1, . . . , x|Y1|) and y2 =

(x|Y1|+1
, . . . , xN ).

Let us compute the variation of the function. If we make a
variation on the intensity of onexl with l ≤ |S1|. We have :

sup |f(x1, .., xn) − f(x1, .., x
′
l, .., xn)| ≤

g

|S1|

This gives us the value of the bounding coefficientscl =
g

|Y1|
for the |Y1| first variables. Similarly, if we make a

variation on the intensity ofxl, l ∈ {[Y1| + 1, . . . , N}, we
obtain cl = g

|Y2|
. We then compute the sum over all the

variables:
N∑

l=1

c2
l = g2

( 1

|Y1|
+

1

|Y2|

)

(4)

Moreover, according to our hypothesis, ifY1 and Y2

belong to a same homogeneous region ofI∗, all the pixels
of Y1 and Y2 have the same expectation. We have thus,
E(f(Y)) = E(µ1(Y1) − µ2(Y2)) = 0 and we obtain the
expected result using conjointly Theorem 2.1 and equation 4.

Note that the bounds on the probability provided by Theo-
rem 2.2 may be equivalently represented by:

P
(
|µ1(Y1) − µ2(Y2)| > F−1(δ)

)
≤ δ

with δ = F (ǫ) = 2 exp

(
−2ǫ2|Y1||Y2|

g2(|Y1| + |Y2|)

)

.

After some basic calculus we find that, under the assumption
thatY1 andY2 are included into a same homogeneous region
of I∗ we have with a probability at mostδ:

|µ1(Y1) − µ2(Y2)| > g Q

√

|Y1| + |Y2|

|Y1||Y2|

with Q =
√

1

2
ln

(
2

δ

)

Below the probabilityδ, which is supposed to be low, we
consider that the event|µ1(Y1) − µ2(Y2)| > F−1(δ) is not
probable. In this case, we refuse the initial hypothesis stating
thatY1 andY2 belong to a same homogeneous region ofI∗

and thus do not merge the two regions. Our merging predicate
may thus be stated as follows:

P (S1, S2) =

{

true if |µ1 − µ2| ≤ Q g
√

|S1|+|S2|
|S1||S2|

false otherwise
(5)

whereµ1 andµ2 denote respectively the values ofµ1(Y1) and
µ2(Y2) for the observationI. These two terms represent the
mean value of the two regionsS1 andS2. The termg denotes
the maximum level ofI (g = 255 for gray-scale images).

Note that our merge criterion is equivalent to:

|S1||S2|

|S1| + |S2|
(µ1 − µ2)

2 ≤ (Qg)2

The left member of this last equation corresponds to the
difference between the squared error ofS1 ∪ S2 and the sum
of the squared errors ofS1 andS2 [28]. Our merge criterion
may thus be also interpreted as a bound on the increase of the
squared errors of the regions.

Our criterion may be adapted to multi-channels images as
follows:

P (S1, S2) =







true if max
c∈{a,b,c}

|c1 − c2| ≤ Q gc

√
|S1|+|S2|
|S1||S2|

false otherwise
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whereci represents the mean value of the regionSi for the
channelc taken in the set of channels{a, b, c} andgc denotes
the maximum value on channelc. We take the maximum of
the values obtained for each channel as a criterion. Indeed if
the predicate is true, it will be true for all the channels and
so the merge hypothesis is accepted. In this paper we have
chosen theY UV space which is the native colour space of
video sequences.

Both our method and the one of Nock [4] are based on the
McDiarmid’s inequality. However, Nock models each pixel of
the ideal imageI∗ as a sum ofM random variables whereas
our method only uses one r.v. per pixel. The approach proposed
by Nock consists to fix the probabilityδ and to useM in
order to vary the merge threshold. To our point of view, the
probabilityδ below which we refuse the merge hypothesis has
a more straightforward interpretation than the variableM . The
resulting criteria are slightly different, our criterion differs by a
factor 1√

M
from the one first proposed by Nock. Our criterion

is also significantly different from the second Nock’s criterion
which uses an estimate of the number of final regions whose
cardinal is equal to a given value. However, both our criterion
and the final Nock’s criterion may be related, our one being
more strict than the one of Nock [4] for a given probabilityδ.

Let us note finally, that the way we derived our criterion pro-
vides an alternative explanation to the eventual over-merging
produced both by our algorithm and the one of Nock. Indeed,
our basic hypothesis consists to suppose thatY1 and Y2

belong to a same homogeneous region ofI∗. As in a contrario
approaches first introduced by [29], we refuse this hypothesis
only when we observe an event which has a low probability
(according toδ) to occur under this hypothesis. We may thus
merge regions corresponding to different homogeneous regions
of I∗ if our observation does not contradict our hypothesis.

C. Merging order

An edgee denotes a couple of adjacent pixels(p, p′) in a 4-
connectivity scheme. The set of edges of an image is denoted
by Ae and the number of edges byNe. The order of merging is
built on the edges weights as in [4], [12]. The idea behind this
order of merging is to merge first similar regions rather than
different ones. The similarity between pixels is measured by
computing the distance between two pixel colours as follows:

w(p, p′, n) = |I(p, n) − I(p′, n)| . (6)

For colour images, the edge weight becomes :

w(p, p′, n) =

√
∑

I∈{a,b,c}
(I(p, n) − I(p′, n))2. (7)

wherea, b, c denote the three channels of a particular color
space.

Note that alternative weight may be designed. For example,
one may balance the distance along each axis of a color space
by some weight (or equivalently scale each axis according to
its weight). Numerous color space with different properties
may be chosen in equation 7. For our algorithm, we consider
the Y UV colour space which is the native colour space of
CIF sequences. The colour space(L∗a∗b∗) provides partitions

with a little greater subjective quality but with a higher
computational cost.

The edges are sorted in increasing order of their weights and
corresponding couples of pixels are processed in this orderfor
merging. This sorting step only requires two traversals of the
image: the first traversal allows to compute the histogram of
edge weights. The second traversal stores each edge in an array
associated to its weight. The amount of memory required for
each array is deduced from the histogram of edge weights.
This sorting step is similar to the one usually used within the
watershed algorithm [9].

D. Merging algorithm

Our spatial segmentation could be divided in three steps.
In the first one, we compute the weights of edges and their
histogram. In the second step, we sort edges increasingly
according to their weights. In the last step we merge pixels
or regions connected by edges following their order. The
algorithm1 describes more particularly the merging loop:

Algorithm 1 Merging regions algorithm
for i := 1 to Ne do

Read theith edge:(p1, p2)
S1 = FIND(p1)
S2 = FIND(p2)
if P (S1, S2) = True then

UNION(S1, S2)
end if

end for

The term Ne represents the number of edges within the
imageI in the 4-connectivity. In the merging process, we use
the UNION-FIND data structure [25]. The UNION function
merges two disjoint regions into one region, and the FIND
function identifies the region a certain pixel belongs to. Im-
plementation details are given in section IV.

III. TIME CONSISTENCY IMPROVEMENT

In video segmentation, the quality of the spatial segmen-
tation is not the only requirement, time consistency is alsoa
very important one. If in two successive frames, one region
is segmented very differently because of noise, occlusion or
deocclusion, results of segmentation would be very difficult
to exploit for any application like image enhancement, depth
estimation and motion estimation. Many works, see for exam-
ple [19], use motion estimation to improve time consistencyin
video segmentation. However, motion estimation [30] is a real
bottleneck for real-time implementation and is even sometimes
unreliable. In this paper, we combine an improved Change
Detection Mask (CDM ) with spatial segmentation in order to
improve the temporal consistency of our segmentation.

A. Change Detection Mask

The CDM is designed using both illumination differences
between frames and region segmentation of the previous
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frame. We first detect changing pixels using the frame dif-
ference. Then, we take benefit of the region segmentation of
the previous frame in order to classify the pixels not only at
a pixel level but also at a region level.

Given the current frameI(:, n) and the previous one
I(:, n − 1), the frame differenceFD is given by:

FD(n, p) = |I(p, n) − I(p, n − 1)| .

Classically,FD is thresholded in order to distinguish changing
pixels from noise. The pixel label is given by:

L(n, p) =

{

0 if FD(n, p) ≤ tr1.

1 otherwise.

wheretr1 is a positive constant chosen according to the noise
level of the image. This threshold may be set experimentally
(section V) or estimated according to any measure of the
image noise. A pixelp, with L(n, p) = 1 is considered as
a changing pixel. We then use the previous segmentation in
order to convert theCDM from the pixel level to a region
level which is more reliable [23]. For each regionSi in the
previous segmentation, we computeNi,changing:

Ni,changing = |{p ∈ Si, L(n, p) = 1}|

which denotes the number of changing pixels of the current
image whose(x, y) coordinates belong toSi in the previous
segmentation. We then computeτ(Si) =

Ni,changing

|Si| which
represents the ratio of changing pixels between the previous
and the current image in the regionSi. Pixels are then
classified using three categories:

CDM(n, p) =

8

>

<

>

:

0 if (τ (Si) ≤ tr2).

1 if (τ (Si) > tr2) and (L(n, p) = 0).

2 if (τ (Si) > tr2) and (L(n, p) = 1).

(8)

wheretr2 is a positive constant. In the experiments, we take
tr2 = 0.01 (i.e. a region is a changing region when it contains
at least1% of changing pixels). The value of the threshold is
chosen so that we don’t miss any changing region.
Every pixel of regions qualified as static is labelled using
CDM(n, p) = 0. The two other labels concern pixels within
changing regions. Depending on the value of the frame differ-
ence, the pixel is qualified as a changing one (CDM(n, p) =
2) or as a not changing one (CDM(n, p) = 1). Such a
classification is then used to segment the current frame. An
example of classification is given in Fig.1 for the video
sequence “Table”.

B. Merging process

The merging process is now divided in three main steps.
Firstly, static regions are kept as they were segmented in the
previous frame. Secondly we apply a connected component la-
belling (CCL) algorithm [31] to extract connected components
of pixels withCDM(n, p) = 1. This second step builds seeds
from the segmentation of the previous frame. These seeds
link the current segmentation to the previous one in a time
consistent way. Thirdly, we apply the spatial segmentation
only on edges(p, p′) connecting a changing pixel within a
changing region (CDM(n, p) = 2) to a pixel belonging to

Fig. 1. Computation of theCDM using the difference between the current
image and the previous one and the region segmentation of theprevious frame.

a changing region. This last pixel may be either changing or
static(CDM(n, p) ∈ {1, 2}). Note that static pixels within
changing regions have been connected in the second step by
a CCL algorithm.

The whole process can be formalised as follows. Con-
sidering an edge(pi, p

′
i) between two pixels, we define the

following function:

ϕ(n, (pi, p
′
i)) =







0 if CDM(n, pi)CDM(n, p′

i) = 0.

1 if CDM(n, pi)CDM(n, p′

i) = 1.

2 if CDM(n, pi)CDM(n, p′

i) ≥ 2.

(9)

The ϕ function allows us to classify the edges in the
following three categories (a brief summary is provided by
Fig.2):

• The first category (ϕ(n, a) = 0) (Fig.2(a)) corresponds
to the edges which have at least one pixel belonging to
a static region. These edges are not considered for the
segmentation of the current imagen. Static regions are
then segmented in the same way between two successive
imagesn − 1 et n.

• The second category (ϕ(n, a) = 1) (Fig. 2(b)) corre-
sponds to the edges that connect two non changing pixels
in changing regions. For these edges, we simply apply a
connected component labelling (CCL) algorithm [31].

• The third category (ϕ(n, a) ≥ 2) (Fig. 2(c)) corresponds
to the edges which have at least one pixel that is
considered as a changing one (i.e.CDM(n, pi) = 2).
These edges are processed using the merging order and
the merging predicate defined in section II-B. Edges
belonging to this category are denoted byAu.

(a) ϕ(n, a) = 0 (b) ϕ(n, a) = 1 (c) ϕ(n, a) = 2

Fig. 2. The figure gives the different combinations of pixelsavail-
able for each category. The pixels are designed as follows : black
pixel (CDM(n, p) = 0), gray pixel (CDM(n, p) = 1), white pixel
(CDM(n, p) = 2).

Fig. 3 describes the three steps corresponding to the process
of the three categories of edges.
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(a) The different values of CDM

(b) Segmentation of static regions
(ϕ(n, a) = 0)

(c) CCL (ϕ(n, a) = 1) and static
regions

(d) Segmentation of changing pix-
els

Fig. 3. Description of the three steps of the segmentation process for the
video ”Table”. The figure a gives the different values of the CDM. The figures
b,c,d describe the evolution of the process of the edgesa with respectively
ϕ(n, a) = 0, ϕ(n, a) = 1 and ϕ(n, a) = 2. In these three last figures,
black pixels are pixels that have not yet been classified, whereas white pixels
correspond to region boundaries found at each step.

In section V, we propose the computation of an objective
measure for temporal consistency. The measures obtained
on real video sequences demonstrate a real improvement
of temporal consistency. Moreover, the way we exploit the
CDM decreases also the computational cost of the algorithm
since the edges in static area are not reconsidered, and those
linking the “no changing pixels” in changing area are simply
processed by a CCL algorithm.

When successive images are not correlated (in the case of
a scene cut for example), the setAu contains most of the
edges of the image which leads to a new spatial segmentation
as shown in the example of a shot cut given in Fig.11. Our
algorithm handles thus naturally the shot cuts and does not
need to be combined with a shot cuts detection algorithm.

IV. I MPLEMENTATION CONSIDERATIONS

In this section, we propose to describe optimisations that
have been made to allow a real time treatment. The whole
algorithm of video segmentation is summarised in Fig. 4.

Apart from the merging loop, all other functions access
pixels data in a predictable way (for example from top to

Fig. 4. The general diagram of video segmentation

bottom left to right). The cache memory benefits from this
regularity, since it exploits spatial and temporal locality of
data, and consequently causes less cache misses. In the merg-
ing loop, the UNION-FIND data structure is unpredictable,
and consequently causes an important data cache stalls. To
reduce the data cache stalls cycles, we investigate some
optimisations that are detailed in the following sections and we
take benefit of the TriMedia processor to exploit the Data Level
Parallelism (DLP) and Instruction Level Parallelism (ILP)of
our algorithm.

A. Organisation of data

Our organisation of data should allow an efficient compu-
tation of both our merge criterion (equation 5) and our union
and find operations. Let us recall that when using an union-
find merging scheme each region of the image is encoded by
a spanning tree whose vertices are the pixels of the region.
These tree data structures are usually encoded by storing for
each pixel the index of its parent within the spanning tree.
The information about the region are associated to the root of
the trees and both the roots and the region’s information are
updated during an union operation.

Since our merge criterion only uses the mean color(y, u, v)
and the cardinal|S| of the regions, one simple organisation
of our data would consist in associating each pixelp with the
fields (y, u, v, |S|, father), wherefather denotes the father
of p within the tree.

However grouping the region’s data and the father’s
index would require to manipulate the whole vector
(y, u, v, |S|, father) within find operations. Since only the fa-
ther field is required by the find operation such an organisation
of the data would induce the storage of useless data within the
cache memory.

We thus decided to store into two separate arrays the
data required for the merge operations (namely the vector
(y, u, v, |S|) and the encoding of the trees. More precisely
our organization of data is as follows:

1) One arrayData which stores for each created region its
(y, u, v, |S|) fields.

2) One arrayFather which encodes our sequence of union
operations.

3) One arrayLabel of size |I[ initialised to a special flag
indicating that each pixel is initially its own father.

If a region is reduced to a single pixelp, Label(p) is set to
a special flag and the data of the region may be retrieve from
the imageI. We thus decide to create a new entry within the
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Fig. 5. The data structures used to compute union-find operations and our
merge criterion.

array Data only if the associated region is composed of at
least2 pixels. More precisely, if a merge of two pixelsp1 and
p2 is decided by our merge criterion:

1) A new entry l is created within the arrayData and
initialised according toI(p1) andI(p2).

2) Label(p1) andLabel(p2) are set tol,
3) Father(l) is set to a special flag indicating thatl has

yet no father.

Our data structure is further updated in the two following
cases:

1) One pixelp is aggregated to an already created region
labelled by l. In this caseLabel(p) is set to l and
Data(l) is updated according toI(p). The arrayFather
remains unchanged.

2) Two already created regions with respective labelsl1
andl2 are merged. In this case, one of the label (sayl1)
survives,Data(l1) is updated according toData(l2) and
Father(l2) is set tol1.

Fig. 5(b) illustrates the state of our different data structures
after the segmentation of Fig. 5(a). Two pixels in Fig. 5(a) are
merged if they have a same label. In this example, we first
considered horizontal edges between pixels and then vertical
ones. Both horizontal and vertical edges have been considered
using a scan line order. Note that the array Data is completely
filled by the four regions created during the union operations.
We only get three final regions as encoded by the array Father
where all labels, except label 2 are their own father.

Since all regions encoded by the arrayData are composed
of at least2 pixels, the maximal number of entries within
this array is equal to|I|

2
. Moreover, the vertices of the trees

encoded by the arrayFather correspond to regions composed
of at least2 pixels. The maximal size of the arrayFather is
thus also equal to|I|

2
. Note that this upper bound may be

reached if we first decompose the image into regions made of
2 adjacent pixels and then order the merges in such a way that
the tree encoding the union of all these elementary regions is
linear.

Note that when using such an organisation of data all the
required memory is allocated before union and find operations.
We thus avoid the risk of a memory overflow.

B. TriMedia processor

We experimented this data organisation on the TriMedia
processor [32]. The cache memory of this particular TriMedia
is 128 KByte, 4 way associative, with block of128 Byte.
The replacement algorithm used isLRU .

In order to increase the computational efficiency, we pro-
pose to take benefit of the DLP (data level parallelism) pro-
vided by our algorithm (computation of edge’s weight, frame
difference, classification of pixels inCDM ). This allows to
increase the throughput (i.e. amount of pixels processed per
unit time), by processing data in parallel when it is possible.
The core of TriMedia is a VLIW architecture with 5 issues
slots. Each slot has some functional unit, and each functional
unit could process 4 bytes in parallel (SIMD mode). The ILP
(Instruction Level Parallelism) is extracted by the compiler,
while the DLP could be exploited through the use of custom
operations, loop unrolling, and grafting. So we use these
optimisations to exploit the DLP available in our algorithm.

V. EXPERIMENTAL RESULTS

In this section we present experimental results of our
algorithm run on TriMedia with many very knownCIF video
sequences.

A. Spatial results

The probabilityδ tunes the coarseness of the segmentation.
In Fig.6, we show the influence of this parameter on the level
of details obtained. This parameter is highly correlated to
the number of segmented regions. A value of this parameter
around0.74 provides a sufficient level of details for most of
the video sequences we have considered. However, the chosen
value and the associated level of details is highly dependent
on the application. We can remark that this algorithm is able
to segment very precisely small regions of interest such as the
mouth or the eyes of “Akiyo”. It can also segment the different
numbers of the calendar in the sequence “Mobile”. However,
we can observe an over-segmentation of some textured regions
such as the wall in the sequence “Table”. This is mainly
due to the fact that the assumption (1) is more adapted to
the segmentation of flat regions. Our ongoing research is
directed towards the design of a new merging criterion for
the segmentation of textured regions.

As a comparison, we propose here some results obtained
with two other well-known algorithms: the algorithm EGBIS
[12] and the SRM (Statistical Region Merging) algorithm of
Nock et al [4]. These two algorithms are based on region
merging schemes with the same merging order than our
method. The main difference between the three methods lies
in the merging predicate. The results are displayed Fig.7. For
each algorithm, we have tuned the parameters in order to reach
a segmentation that allows a good subjective representation of
the elements of the image (numbers of the calendar, eyes of
the woman ...). We can see on these examples, that our real
time algorithm gives comparable results than the two other
algorithms. This last point has been confirmed by other experi-
ments that are not reported here. Our real time implementation
is thus achieved without detriment to the subjective quality of
the results.

B. Spatio-temporal results

In the experiments, we taketr1 = 6 and tr2 = 0.01 (i.e.
a region is a changing region when it contains at least1% of
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(a) δ = 0.0067 (b) δ = 0.27 (c) δ = 0.74

(d) δ = 0.0067 (e) δ = 0.27 (f) δ = 0.74

(g) δ = 0.0067 (h) δ = 0.27 (i) δ = 0.74

Fig. 6. Segmentation of one frame of the video sequences ”Akiyo”, ”Table”,
”Mobile” with δ = 0.0067, δ = 0.27, δ = 0.74.

(a) EGBIS (b) EGBIS

(c) SRM (d) SRM

(e) Our algorithm (f) Our algorithm

Fig. 7. Comparison of our segmentation results with those obtained using
the algorithms EGBIS [12] and SRM [4].

changing pixels). The value of these thresholds are the same
for all the video sequences.

In order to see the influence of our temporal process,
we show here an example of segmentation results with and
without time consistency in Fig.8(c) and 8(b). We can see that
the segmentation of the wall is the same for the two frames
1 and9 of the video sequence “Table” when we use the time
consistency improvement.

(a) Segmentation of frame1

(b) Segmentation of frame9 with-
out time consistency

(c) Segmentation of frame9 with
time consistency

Fig. 8. Comparison of the segmentation results obtained with and without
time consistency on the video sequence “Table”.

We then propose to display the segmentation results along
the video sequence “Akiyo” in Fig.9 and the video sequence
“Paris” in Fig.10. We can observe that the method gives
satisfying and stable results for these sequences.

We have also tested the robustness of our method in the
case of a shot cut. The video sequence ”Football” is followed
by the video ”BBC Disc”. Experimental results are given in
Fig. 11. We can observe that the spatial segmentation of the
first frame of the video “BBCDisc” is not influenced by the
spatial segmentation of the previous frame that belongs to
the video ”Football”. Indeed, in this case, most of edges will
belong to the third category of edges (ϕ(n, a) = 2) where the
predicate is re-computed.

C. Evaluation of time consistency

We use a classical measure to evaluate time consistency.
Given the segmentation of the previous frameSEG(n − 1)
and the segmentation of the current oneSEG(n), we find a
correspondence between regions inSEG(n−1) andSEG(n).
For each regionSi,n−1 ∈ SEG(n− 1), we choose the region
Sj,n ∈ SEG(n) that produces the most overlapping area:

Overlap(i, n − 1) = max
j

|Si,n−1 ∩ Sj,n|.

We then sum the overlap’s measures for all the regions in
SEG(n−1). The consistency measure is the percentage of this
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(a) n=1 (b) n=5

(c) n=10 (d) n=15

(e) n=20 (f) n=25

Fig. 9. Results for the spatio-temporal segmentation of twovideo sequences
”Akiyo”( δ = 0.81).

(a) n=1 (b) n=5

(c) n=10 (d) n=15

Fig. 10. Results for the spatio-temporal segmentation of two video sequences
”Paris”(δ = 0.81).

(a) (b)

Fig. 11. Experimental results in the presence of a video scene cut. Figure
a : Segmentation of the last frame of the video ”Football”. Figure b :
Segmentation of the first frame of the first image of the video ”BBCDisc”.

number to the size of the image. The results for this measure
are given in table I for the video sequences “Akiyo”, “Table
Tennis”, “Paris” and “Mobile”. When enforcing consistency
through theCDM , time consistency is higher, and visually,
segmentation is more stable from frame to frame and still fit
very well regions boundaries as shown in Fig.9 and Fig.10.
We can also see that the time consistency of the spatial
segmentation algorithm SRM ([4]) is roughly equivalent to the
time consistency of our spatial algorithm without computation
of the CDM.

TABLE I

EXPERIMENTAL MEASURES OF TIME CONSISTENCY

Sequence Akiyo Table Paris Mobile

Time Consistency
(SRM) 0.95 0.80 0.86 0.79

Time Consistency
(Our approach

without CDM ) 0.88 0.73 0.89 0.84
Time Consistency

(Our approach
with CDM ) 0.98 0.92 0.97 0.92

D. Evaluation of the computational cost

In this section, we propose to give the number of Mcycles
the algorithm takes on TriMedia for different resolutions and
different versions of our algorithm. We propose to compare
the spatial computational cost with the one obtained using the
Nock algorithm [4].

The computational cost has been evaluated as a function of
the image size in Fig. 12. In this figure, the computational cost
(in Mcycles/frame) has been computed for one image of
the video “Akiyo” at different resolutions (QCIF, CIF, SD and
two other resolutions). This computation has been performed
with and without the optimisations described in section IV-
B). First, the results given in Fig.12 show that the complexity
is approximatively linear regarding the image size. Indeed,
the spatial computational cost is principally induced by the
UNION-FIND algorithm and the edges sorting. As explained
in section II-C, the sorting step is performed in a linear time
0(|I|) . As far as the UNION-FIND algorithm is concerned,
the complexity is given by0(α(nu, nf )nf ) wherenu is the
number of UNION operations andnf is the number of FIND



10

operations (nu < nf ). The functionα is a very slowly growing
function [25]. Since the number of FIND operations can be
upper-bounded byc|I| wherec is a constant, the complexity
at worst can be approximated by0(α(nu, nf )|I|) which gives
an almost linear complexity. This assessment is confirmed by
the experimental results given in Fig. 12.
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Fig. 12. Evaluation of the computational cost regarding with the image size
(with one image of the video Akiyo,δ = 0.74)

We then propose to compare the computational cost of our
algorithm to the SRM algorithm [4]. The main difference
between the two spatial algorithms lies in the computation
of the predicate. The predicate of SRM leads to higher com-
putational cost as demonstrated in the Table II. Our algorithm
gives a lower computational cost even without optimisations.
When including these improvements, the computational cost
decreases. In table II, we also give the number of Mcycles
the algorithm takes on TriMedia when enforcing the tempo-
ral consistency. The exploitation of theCDM reduces the
computational cost. This reduction depends on the correlation
between two successive frames.

With a 450 MHz TriMedia, we are able to process more
than 25 frames per second. We can then conclude that our
algorithm is avalaible in real-time for QCIF or CIF sequences.

TABLE II

COMPUATIONAL COST

Sequence Akiyo Table Paris Mobile

Mcycles/frame
(SRM) 34.57 66.53 38.03 25.41

Mcycles/frame
(without CDM , 26.33 32.21 28.18 24.73

without optimisations)
Mcycles/frame

(without CDM , 15.68 15.84 16.59 16.20
with optimisations)

Mcycles/frame
(with CDM ) 9.87 11.37 11.02 10.06

VI. DISCUSSION

Designing usable algorithms for video processing requires
low computational methods. Directed by this constraint, we

propose here an efficient time consistent algorithm for video
segmentation. Let us discuss the strengths and limitationsof
our algorithm regarding the three main points of this work :

• Spatial segmentation: We propose here an alternative
statistical modelisation to the work of Nock et al [4].
This leads to a simpler predicate for merging that is more
adapted to a real-time implementation and gives good
results for the spatial segmentation. However, as in [4],
such a statistical model is dedicated to the segmentation
of flat regions and may produce an over-segmentation on
textured area of an image.

• Temporal consistency: The proposed algorithm allows to
obtain both stable segmentation results and a reduction
of the computational cost. This method is based on the
use of a CDM and of region information deduced from
the first frame. Regions are not linked from one frame
to another leading to a video segmentation algorithm
that is robust to scene cut and occlusion. However,
if never this algorithm has to be exploited for video
object tracking, region matching will be useful. It can be
obtained by comparing regions of two consecutive frames
using statistical inequalities.

• Hardware implementation : Our algorithm runs in real-
time for CIF sequences. For SD (Standard Definition) or
HD (High Definition) sequences some further efforts are
needed. In order to obtain a real-time implementation, we
have directed our attention to the parallelisation by blocks
of the spatial segmentation. However, we still investigate
this part and notably the merging of the different spatial
segmentation obtained for the different blocks. This last
step remains delicate.

We finally want to outline that, such a real-time video
segmentation algorithm would help many video algorithms
by leading to a better comprehension of the image content.
Among applications, we can think to time conversion, peaking
(also named unsharp masking), video compression or deinter-
lacing. The region segmentation algorithm can be exploited
directly using regions boundaries and region color properties
or as a source of information on the image content (level of
noise, complexity of the scene, main colors) which can be
exploited to better design existing algorithms [33]. Our on
going research is also directed to the design of such region-
based algorithms for electronic devices (e.g. : Set Top Box).
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