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Abstract

We address the problem of restoring, while preserving pos-

sible discontinuities, fields of noisy orthonormal vectetss
taking the orthonormal constraints explicitly into acceun
We develop a variational solution for the general case
where each image feature may correspond to multip[@
orthogonal vectors of unit norms. We first formulate the
problem in a new variational framework, where discontinu-

on constrained manifoldbas also permitted to regularize
more complex and specific data, using the knowledge of the
solution space. We can mention for instance the case of vec-
tor directions and chromaticity diffusion, based on the har
monic map framework [33], on total variation minimization
[8], and the diffusion of vector data on arbitrary manifold
[4]. Constrained minimizations usually lead to sets of cou-
pled PDE’s where the coupling between data is taken into

ities and orthonormal constraints are preserved by means ofaccount.

constrained minimization ané-functions regularization,
leading to a set of coupled anisotropic diffusion PDE’s. A
geometric interpretation of the resulting equations, cogni
from the field of solid mechanics, is proposed for the 3D
case. Two interesting restrictions of our framework areals
tackled : the regularization of 3D rotation matrices and
the Direction diffusion (the parallel with previous worlks i

The aim of this paper is to propose a variational frame-
work, allowing to regularize an original and interestingey
of constrained vector data : imageswb orthonormal vec-
tor sets Many informations can be represented (even par-
tially) by such images, since data may be decomposed into
orthogonal vectors : We can cite for instance images or se-

made). Finally, we present a number of denoising results quences of rotation matrices, diffusion tensors afterreige

and applications.

1. Introduction
For many years, data regularization with discontinu-

value decomposition,.. The idea is then to find a process
that diffuse directly such structures, avoiding transfarm
tions with eventual loss of informations (the case of 3D ro-
tation decompositions will be discussed). It also betterco

ities preservation has been heavily studied in the com-Siders the correlation between the data, while ensuring tha

puter vision community. The variational framework, based
on functional minimizations via diffusion PDE’s evolu-
tions has proved its efficiency for scalar data regulariza-
tion (in particular, within the®-functions theory). We
can cite for instance, Alvareet al. [1, 2], Aubertet al.
[10], Chambolle & Lions [7], Chan [5], Cohen [11], Ko-
rnprobst & Deriche [15, 16, 17], Malladi & Sethian [18],
Mumford & Shah [20, 31], Morel [19], Nordstrom [21],
Osher & Rudin [26], Perona & Malik [23], Proesmanal.
[25], Sapiro [6, 28, 29, 30], Weickert [38, 39], You [41]..
More recentlyyvector field regularizatiomvith vector dif-
fusion PDE'’s, while preserving discontinuities, has beeom

the resulting vector structure stays orthonormal.

In section 2, we formalise mathematically the prob-
lem, then propose a PDE based solution, coming from a
constrained gradient descent ofafunction minimization
(section 3). Then, we are interested more precisely in the
simple case where each image feature is a 3D orthonormal
basis, and propose a physical interpretation coming from
the field of solid mechanics (section 4) as well as apply our
algorithm to regularize fields of 3D rotation matrices. Pre-
vious works on vector direction diffusion (as described in
[8, 33]) can also be integrated into our proposed framework

an active research area, due to the large number of possi{section 5), as a simple particular case : The regularizatio

ble applications, including various computer vision tasks
multivalued image restoration (in particular color images
[5, 14, 30, 32, 36, 37, 38], regularization of optical flows
and direction fields [8, 22, 33], image inpainting [3, 9],lsca
space analysis [2, 40], . The introduction of minimization

of sets of single vectorsnder orthonormal constraints. Fi-
nally, we present possible applications and some regalariz
tion results of 2D and 3D orthonormal basis fields (section
6), including restoration of video camera motion and chro-
maticity noise in color images.
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1) = (Il[k](M) 7 Igg](M) G578 ) Figure 1. Restoring an orthonormal field
We defineB, the set of then vector imaged!*! : 3. A variational formulation
YMeQ, B(M)= { (), 1210, 1) } Our goal is to find a regularized versighof an initial im-

. . agelB3, of orthonormal vector sets
We also suppose the followiraggthonormalconstraints : 9e=o

if k= Bo(M) = TN (M), T80y, ..., T (M
VM € Q, I[k](M).I[l](M)zékl:{é :IZ¢§ o(M) { (M)o, TZ(M)o, ..., T )0}
(1) preserving the orthonormal structure of the vector sets.
where I(M).J(M) =" L(M) J,(M) isthe usual
dot product of two vectors. It just means that : 3.1. Unconstrained vector regularization

VM € Q, B(M) isasetofm orthonormaln-D vectors i . .
We propose to find3 as the solution of an energy min-

In this paper, we propose a way to regularize any data thatimization, following the well know idea ofe-function
can be represented as an imd§eof orthonormal vector  diffusion, used to restore scalar images (see for instance

sets, using anisotropic diffusion PDE’s. [10, 16, 17, 23]), and more recently, vector fields [5, 14,
30, 32, 36, 37, 38]). We quickly remind the idea. A vector
An interesting case is reached when= n: B(M) is imagel can be anisotropically smoothed (denoising with

thenan orthonormal vector basid et us illustrate the par-  preservation of discontinuities), by minimizing :
ticular example of 3D rotation matrix field8. In this case,

each pixelR (M) is a3 x 3 rotation matrix o = n = 3) Eqi (1) = / [% 11— Lo|? + q>(||v1||)] aQ (2
Q

Il(M) Jl(M) Kl(M)
R(M) = ( L(M)  J2(M)  Kx(M) )

I3(M) Jg(M) Kg(M)

that can be seen as8® direct orthonormal vector basi8,
since a rotation matrix is orthogonal.

where ||VI|| = />, [[VL]]? is defined as theector

gradient normwhich measures a global vector variation
(norm and orientation). The fixed parameterc R pre-
vents the final solution from being too different from the
initial image. The functior® : R — R is adiffusion func-
VMeQ BM)={IM), J(M), K(M)} tion, which controls the regularization behaviour. A lot of
different®-functions have already been proposed in the lit-
erature related to scalar image restoration : Minimal sur-
{ (M) LI(M), I(M) LK(M), JM)LK(M) faces [10], Geman & McClure [12], Perona & Malik [23],

verifying the orthonormal constraints :

IL(M)|| = IT(M)]| = |IK(M)]| =1 Total variation [27], Tikhonov [35], .. (choosing the right
. ®-function depends on the application).
(M) = VI(M) . I(M) is the usual’; vector norm).  one way of minimizing the functionali (I), is to calcu-

] o } late the correspondingector LagrangianC ( Egir (I)) € R™
Then, one possible application of our proposed algorithm yhich is. using a component by component writing style :
is the regularization of 3D rotation matrix images. For in-

stance, such image8 are estimated from real video se- ) <I>'(||VI||)
guences, using camera motion estimation techniques (see L(Egit(1)): = a (I — I;,) — div WVL-
section 4.3), or obtained from an eigenvalue decomposition
of 3D matrices (diffusion tensor imaging,) (Fig.1).

More generally, our method will restoreD orthonormal
vectors setd3 which can represent a lot of different data { Lio)=1Io

types. If those images are computed from real data, the ) '
P . 9 - comp . y 0L — o (I, — ) +div (Vg ) G
may be noisy and a regularization process is then useful. 0 VI

Then use a vector gradient desce@{ = —L(Eqi (1)) :

ot



until convergencei(e [1...n], there are: scalar PDE’s) It is obviously the same expression th&n Eqix(I)) de-
fined in (3), for the unconstrained case. The constraints
For our purpose of orthonormal vector set regulariza- are then introduced by adding? Lagrange multipliers
tion, a naive idea would be to use such diffusion PDE's A, : @ — R (wherep,¢g € [1...m]) to the functional
(3) on each vectolgk] of the orthonormal vector sd8,, E(B), where each\,,, is associated with the constraint :
then reconstruct the final vector set imafewith the re- ol xidl
sulting smoothed vectors. Fig.2 shows such a result, using VM eQ, IP.I%=éy

the Tikhonov function on a 2D synthetic image of orthonor- |t |eads to theunconstrained minimizatioof the following
mal bases (mixture of direct and indirect bases). functional, with respect té* and),, :

E*(B,\) = E(B)+ > A (M T — ) dO
Q
(pa)€lL...m]

In fact, as the dot product arég, are symmetric, the con-
straints 1?1 . 14 = ¢,, and Il4 . 1Pl = §,, are the
same, and should need only one Lagrange multiplier. The
two Lagrange multipliers.,,, and ), are then equal.

When the constrained minimum is reached, the Euler-
Lagrange equations correspondingdt(B, \) are then :

LB 42577 Ay I =0 (5)
il 1ld =, (k,p,qg € [1...m]).

Unfortunately, this unconstrained method breaks the or-  Finding the);; reached at the minimum is performed as
thonormal properties : vector norms and orthogonal anglesfollow : we take the dot product of the first equations
are notintrinsically preserved. We must explicitly intuoe (first row) with each vectol!”! (p € [1...m]), then sim-
orthonormal constraintsin the minimization process. In-  plify it using the relationsI”! . 1!l = §,, (second row) :
teresting work on constrained minimization of vector fields % Tl
has already been done in [4, 8, 33, 37]. The idea was to Vi i€ [l...m], Au= _LE)m.
regularize a normalised vector field, preserving the uypitar 2
vector norm. It yielded a set of PDE's taking the coupling Finally, replacing all the\;;, in the Euler-Lagrange system
between vector components into account. Anyway, no ap-eq.(5) gives the gradient descemeserving the orthonor-
proach dealing with multiple vectors were proposed (which mal constraints
is needed in our case). Actually, these works can be seen as 1 m
a part of our proposed framework (section 5). - Z ( g(E)[l] ) I[k]) I — E(E)[k] (6)

a) Original fieldBy b) "Regularized” fieldB

Figure 2. decoupled diffusion of 2D bases.

ot
=1

3.2. Adding orthonormal constraints where

In order to regularize the orthonormal vector 8§tV ), 0 o 0 . ,1)'(||v1[k] [
while preserving the orthonormal properties, we propose a L(E); " = o (I = I;") — div S CT
constrained minimization of the following functional :

m is the vector Lagrangian of the correspondingcon-
E(B) = Z @ ||1[k'] _ ¥ I? + @(”vﬂk] | dan strained functionallt can be seen asgure diffusion vector
2 0 . . . . . .
Q3 force (Section 4.2 provides a simple physical interpretation

(4) of this vector).
with respect to then vector functiondl!*!, subject to the

orthonormal constraints : The proposed equation (6) is a setsofcoupled vec-
] ] 1 ifp=gq tor PDE’s (where the coupling between vectarsd vec-
VM € Q, TIP(M). T9(M)=5b, = { 0 ifpq tor components is clearly present), which allows to regu-

larize any field of orthonormal vector sets, preserving the
We denote byC(E)* € R, theLagrangian vectoof the orthonormal structure of the vectors during the PDE evolu-
energyE(B) subject to the vectdi*! : tion. It is also worth to mention that it naturally preserves
. ] the direct or indirect feature of the bases, since the evolu-
LB = o (1M~ 1) — div <<I’ (”VI. ||)VI[k]> tion is smooth (rotation matrices as described in section 2
: : : [[VIH| : cannot then transform to rotoinversions).



4. The case of 3D orthonormal basis ' fow

4.1. Notations and equations ! :‘

!

y 1)
We are now interested in the constrained diffusion of 3D fo
orthonormal basis fieldsi{ = n = 3), using eq.(6). For M
simplicity reasons, we denote the three basis vectors by :
K ==rmmmmes > fin

I=1!, J=1? and K=1F then B={1J K}
Figure 4. A solid object  B,submitted to forces.

Ay aos I If we suppose thaBB has an unit moment of inertia, we can

AT T s express the velocities', v? andv¥ at each free extremity

Tl ﬁ/ of the stems, correspondingttte constrained movemeuit

S BRI N 4 L) the solid :

NN I

v § et K(M) VJ:QXI , . S ”
v =0 xJ with Q=Ixf " +Jxf" +Kxf
vE=0xK

Figure 3. Example of a 3D orthonormal field.

Developing these expressions, using the double vector prod
In order to regularizé while preserving discontinuities, uct formulau x (v x w) = (u.w) v — (u.v) w and the

we minimize the functional (4), with, = n = 3 orthogonal propertied!*! . 1! = §;, leadsto:
E(B) = / S (IT = T[> + [T — Jo|* + 1K — Ko [|*) Vi = f; - (f;I) I- (f‘}I) J- (fI;-I) K
o TR(IVI)]) + 2(|IVI]) + 2(|VK]]) d vi = - (£ ) I-(".NHI-(*J)K

vE=fK _(fLIK)I- (f!.K)J - (f€« K) K
Using eg.(6), we find the corresponding constrained set of

3D vector diffusion PDE’s : A velocity is an infinitesimal variation of a vector in the
time :
J, =9 - (fLNI-FPNHI-KHK () ootV T Y
K, =f¥ - (fLK)I-(f' K)J - (fC. K)K

And, by choosing the following forces applied to the stems :

wheref" is theunconstrained diffusion vectalefined by : . ®(|Vu]])
fiu =« (uio — Ui) + div ( WVUZ )
u

u_ (2 (IVul) -
it = a(wig—ui)+div ( [Vul Vu; (0=1,2,3) We find the expected orthonormal constrained regulariza-
tion PDE’s eq.(7), coming from the variational formulation
4.2. A physical interpretation The interpretation is then simple : Constrained minimiza-

tion of the functional (4) is equivalent to perform a move-
ment of a rigid and fixed objed8 submitted to threelif-
B(M) = { I(M),J(M),K(M) } can be seen as a fsjon forces™ which tend to rotate the object in order to

solid object composed of three orthogonal rigid stems of inimize the mechanic energy of the system (a kind of vec-
unit length, fixed at the same point, and submitted t0 oy pasis gradient).

forcesf!, f7 andf¥ respectively (Fig.4).
A rotation aroundM is obviously the only motion that R . .
can performB. Actually, each forcé?, fJ andf¥ induces 4.3. Application to 3D rotation matrices
a mechanic momentum on this object : . . e
If one wants to regularize rotation matrix fields, a natural

Op=Ixfl, Q;=Jxf, and Qg = K x f¥ idea is to decompose the matrices into more simple data that

are easy to regularize (usually Euler angles, unit quaiami
Where x designates the usual cross producRih Then, or rotation vectors), then reconstruct the final rotatiotufie
the total momentum applied to the obj@is given by : from these smoothed data (Fig.5).

Anyway this method has some drawbacks : The conversions
Q=+ +0x=IxfI+Ixf?+Kx ¥ induce numerical errors and are not unique. It introduces



b bty g b Rotation decomposition Sy e e d using our orthonormal constrained equation (6), while the
7T TR N (Buler angles/Quaternions) BIP AR P translation part is regularized using a classic vectorlergu
H '\7 - R A 1 DT s/ ization approach (as in [5, 14, 30, 32, 36, 37, 38]).

P Y 7'7\\ Simpledatarestoration | |# Ft L

h\ £ ij’ A RN e
W ) 1 N T Motion
A& k‘ k 17 f M Rotation reconstruction |—s| 1 | ':'::H rr Estimation
T eat SAX SRR /N ‘W\
Figure 5. A natural (but not effective) idea, for
3D rotations regularization. Sequence 0 Sequence of
translation Rotation
vectors T(t) Matrices R(t)
- . . ] . . I |
annoying discontinuities in the decomposed data, even if ' )
the initial rotation field is continuous. 3régtonstrained Orthonormal
These discontinuities are coming from : Reqularization Base PDE
e The 2r-periodicity ambiguity of the Euler angles or Mation regularization
the rotation vector norms. I

e The double representation of a single rotation by two

equivalent quaternionsand—gq. ) . o
Figure 7. Camera motion regularization

It has a large influence on the regularization process by de-

tecting non-existent discontinuities and modifying the di ~ For instance, this process allows smoother reprojections

fusion behaviour. of virtual 3D objects on the original movie. We show one
Actually, our proposed framework (section 3) deals eas- result of this method in section 6.

ily with this problem : An image of 3D rotation matrices

can be represented as a field of 3D orthonormal direct base$. A parallel with direction diffusion

(as described in section 2), without any conversion and loss o .

of informations. Then, the orthonormal constrained PDE’s Vector direction diffusion of vectors has already beenstud

eq.(6) allows to regularize the rotation field. The method is ied in [4, 8, 33, 37]. Actually, this problem can be seen as

direct and effective (coupling between vectors are expjici a particular case of our orthonormgl vector se_zt framework,
taken into account) where the vector se§(M ) are restricted to a single vector

B(M) = {I(M)}.
ﬁ I Indeed, the orthonormal constraints eq.(1) are reduced to
‘ E qu i"lkﬁ (SN ?Tfﬂr the unitary norm constraintéM € Q, |[|[I(M)|| = 1.
X \7 j 11 p| [Orthonormal constrained |5 + -, “l‘j\‘/‘* Y The corresponding functional eq.(4) also reduces to :

A U regularization PDE’'s | (277 YA fd

v

o 1 T4 o E(D) :/ [0 L= L2 + (| VI]))] ds2
WS ER I AT Q
AL I k\} 7&”\ TI TTTT U and the resulting constrained diffusion PDE is (eq.(6)) :
T e S indaladalalla

=) D1~ £®) ®)

Figure 6. A more simple method.

whereL(E); = o (I, — I,,) — div <“’ ﬁvYI”)W>
Rotation matrix regularization can be a part of restor-

ing a video camera sequence (Fig.7) : Taking a real movieThis equation can be highly simplified : From the spatial

sequence as an input, a first process estimates the cameggrivation of||I()||? = 1, we find :

motion, then outputs two sequences, one corresponding to _ _ _ 9

the camera translation (change of the view point) and the I.L =I.1,=0 and AL. I = —|VI] (9)

second to the camera rotation (change of the view angle).Developing the divergence for eacfiE); :

These outputs may be noisy (the motion estimation algo- . .

i i i - P I ) 1

rithm often uses correspondence points which are very sen- g, ( 4y _ (IIVI|]) AL 1V UVIDY o

sitive to the noise). The rotation sequence is easily redtor IVI]] (VI



o' (IvI|)

whereAd = &1

VI.

o' (V1))

Ifwe note[a, b]7 =V ( VI

), then :

_ UV oy p @4,

N N

|

Using eq.(9), we get: digd) . I=—& (|VI||) |VI]|
Then, the proposed diffusion PDE eq.(8) becomes :

div (fEFL 1) + &' (19Tl 191 1

+a (I’io — (IO . I) Il)

oI,

ot

(10)

This vector diffusion PDE can be used to regularize vec-
tor direction fields, using variou-functions. Note that the
PDE's proposed in [8, 33] are a restriction of the eq.(10) to
a=0 and ®(s) = s" (r = 1,2). The beautiful thing of
our orthonormal vector sets regularizatianethod, is the
implicit unification of previous works on normalized vec-
tors diffusion, into a larger framework. It naturally extEn
norm constrained regularizations to arbitra@ryfunctions,
as well as it shows the corresponding physical interpreta-
tion.

6. Results

We illustrate the applications of the equations (6),(T)(1
proposed in this paper with some examples :

- Fig.8 and Fig.9,d,e,f show applications of our orthonor-
mal constrained PDE’s on synthetic 2D and 3D basis fields.

Note how the constraints are necessary to get an acceptable

result.
- Fig.9,a,b,c illustrates an useful application : the ragul

ization of real camera orientation sequence, using eq.(7),
as described in section 4.3. The corresponding Euler an-
gles of the sequences are displayed (but were not used

for the regularization !). Virtual 3D objects reprojected

on this movie, using the restored motion sequence have

then a smoother motion (sequence provided by REALVIZ
: http://www.realviz.com

- We can also use our orthonormal PDE’s eq.(6) reduced
to eq.(10), in order to smooth vector direction fields, while
preserving discontinuities (Fig.9,g,h,i). This exampszu
the hypersurfac@-function : ® = 2(v/1 + u? — 1).

- This last equation allows also to restore chromaticityadat
in color images (Fig.9,j,k,1), as mentioned in [8, 33, 37] :
The chromaticity information is given by the orientation
of the color vector, while the brightness is its norm. The
knowledge of a chromaticity noise allows a better restora-
tion than with unconstrained diffusion PDE’s.

Conclusions & Perspectives

In this paper, we addressed the problem of restoring, while
preserving possible discontinuities, fields of noisy onthie
mal vector sets. We have formulated the problem in a varia-
tional framework based on th-function principle, where
discontinuities and orthonormal basis constraints are pre
served thanks to coupled anisotropic diffusion PDE’s. The
importance of the basis constraint was clearly shown, as
well as the physical interpretation of the proposed equa-
tions, in the simple 3D case. We also made the link with
the previous work on norm constrained evolution of vec-
tor fields. We applied these constrained diffusion equa-
tions in order to restore 2D and 3D orthonormal basis fields,
and shown an original application : The regularization of a
video camera motion. As a perspective, we are in the pro-
cess to use the corresponding PDE’s, in order to reslibre
fusion tensor MRI images
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With our orthonormal consteal PDE’s.
ipNy chromaticity color image.
k) Uncaraned color restoration.
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[) Constrained restoration (eq.(10)).
. (arranged

tor set framework : camera orientation

fusion, color image restoration,

i) Restored direction field (&6){.

f) Restored field (eq.(7)).

Figure 9. Some possible applications of our orthonormal vec

regularization, rotation field restoration, direction dif

¢) Rotation regularization
column by column)

with eq(7) ( after 50 it.).



