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Abstract
We address the problem of restoring, while preserving pos-
sible discontinuities, fields of noisy orthonormal vector sets,
taking the orthonormal constraints explicitly into account.
We develop a variational solution for the general case
where each image feature may correspond to multiplen-D
orthogonal vectors of unit norms. We first formulate the
problem in a new variational framework, where discontinu-
ities and orthonormal constraints are preserved by means of
constrained minimization and�-functions regularization,
leading to a set of coupled anisotropic diffusion PDE’s. A
geometric interpretation of the resulting equations, coming
from the field of solid mechanics, is proposed for the 3D
case. Two interesting restrictions of our framework are also
tackled : the regularization of 3D rotation matrices and
the Direction diffusion (the parallel with previous works is
made). Finally, we present a number of denoising results
and applications.

1. Introduction
For many years, data regularization with discontinu-

ities preservation has been heavily studied in the com-
puter vision community. The variational framework, based
on functional minimizations via diffusion PDE’s evolu-
tions has proved its efficiency for scalar data regulariza-
tion (in particular, within the�-functions theory). We
can cite for instance, Alvarezet al. [1, 2], Aubertet al.
[10], Chambolle & Lions [7], Chan [5], Cohen [11], Ko-
rnprobst & Deriche [15, 16, 17], Malladi & Sethian [18],
Mumford & Shah [20, 31], Morel [19], Nordström [21],
Osher & Rudin [26], Perona & Malik [23], Proesmanet al.
[25], Sapiro [6, 28, 29, 30], Weickert [38, 39], You [41],: : :

More recently,vector field regularizationwith vector dif-
fusion PDE’s, while preserving discontinuities, has become
an active research area, due to the large number of possi-
ble applications, including various computer vision tasks:
multivalued image restoration (in particular color images)
[5, 14, 30, 32, 36, 37, 38], regularization of optical flows
and direction fields [8, 22, 33], image inpainting [3, 9], scale
space analysis [2, 40],: : : The introduction of minimization

on constrained manifoldshas also permitted to regularize
more complex and specific data, using the knowledge of the
solution space. We can mention for instance the case of vec-
tor directions and chromaticity diffusion, based on the har-
monic map framework [33], on total variation minimization
[8], and the diffusion of vector data on arbitrary manifold
[4]. Constrained minimizations usually lead to sets of cou-
pled PDE’s where the coupling between data is taken into
account.

The aim of this paper is to propose a variational frame-
work, allowing to regularize an original and interesting type
of constrained vector data : images ofn-D orthonormal vec-
tor sets. Many informations can be represented (even par-
tially) by such images, since data may be decomposed into
orthogonal vectors : We can cite for instance images or se-
quences of rotation matrices, diffusion tensors after eigen-
value decomposition,: : : The idea is then to find a process
that diffuse directly such structures, avoiding transforma-
tions with eventual loss of informations (the case of 3D ro-
tation decompositions will be discussed). It also better con-
siders the correlation between the data, while ensuring that
the resulting vector structure stays orthonormal.

In section 2, we formalise mathematically the prob-
lem, then propose a PDE based solution, coming from a
constrained gradient descent of a�-function minimization
(section 3). Then, we are interested more precisely in the
simple case where each image feature is a 3D orthonormal
basis, and propose a physical interpretation coming from
the field of solid mechanics (section 4) as well as apply our
algorithm to regularize fields of 3D rotation matrices. Pre-
vious works on vector direction diffusion (as described in
[8, 33]) can also be integrated into our proposed framework
(section 5), as a simple particular case : The regularization
of sets of single vectorsunder orthonormal constraints. Fi-
nally, we present possible applications and some regulariza-
tion results of 2D and 3D orthonormal basis fields (section
6), including restoration of video camera motion and chro-
maticity noise in color images.

1



2. Notations and context

We considerm vector imagesI[k℄ : 
! Rn , supposed
twice differentiable and defined on a closed set
 of Rp
(where1 � k � m � n, and usuallyp = 1; 2; 3).I [k℄i : 
 ! R denotes the scalar image corresponding to
theith vector component ofI[k℄ : 8M 2 
,I[k℄(M) = � I [k℄1 (M) ; I [k℄2 (M) ; : : : ; I [k℄n (M) �
We defineB, the set of them vector imagesI[k℄ :8M 2 
 ; B(M) = n I[1℄(M) ; I[2℄(M) ; : : : ; I[m℄(M) o
We also suppose the followingorthonormalconstraints :8M 2 
; I[k℄(M) : I[l℄(M) = Ækl = � 1 if k = l0 if k 6= l

(1)
where I(M) : J(M) =Pni=1 Ii(M) Ji(M) is the usual
dot product of two vectors. It just means that :8M 2 
 ; B(M) is a set ofm orthonormaln-D vectors:
In this paper, we propose a way to regularize any data that
can be represented as an imageB of orthonormal vector
sets, using anisotropic diffusion PDE’s.

An interesting case is reached whenm = n : B(M) is
thenan orthonormal vector basis. Let us illustrate the par-
ticular example of 3D rotation matrix fieldsR. In this case,
each pixelR(M) is a3� 3 rotation matrix (m = n = 3)R(M) = 0� I1(M) J1(M) K1(M)I2(M) J2(M) K2(M)I3(M) J3(M) K3(M) 1A
that can be seen as a3D direct orthonormal vector basisB,
since a rotation matrix is orthogonal.8M 2 
 B(M) = f I(M) ; J(M) ; K(M) g
verifying the orthonormal constraints :� I(M) ? J(M) ; I(M) ? K(M) ; J(M) ?K(M)kI(M)k = kJ(M)k = kK(M)k = 1
( kI(M)k =pI(M) : I(M) is the usualL2 vector norm).

Then, one possible application of our proposed algorithm
is the regularization of 3D rotation matrix images. For in-
stance, such imagesB are estimated from real video se-
quences, using camera motion estimation techniques (see
section 4.3), or obtained from an eigenvalue decomposition
of 3D matrices (diffusion tensor imaging,: : :) (Fig.1).

More generally, our method will restoren-D orthonormal
vectors setsB which can represent a lot of different data
types. If those images are computed from real data, they
may be noisy and a regularization process is then useful.

noising! 
denoising?

Figure 1. Restoring an orthonormal field

3. A variational formulation

Our goal is to find a regularized versionB of an initial im-
ageB0 of orthonormal vector sets:B0(M) = n I[1℄(M)0 ; I[2℄(M)0 ; : : : ; I[m℄(M)0 o
preserving the orthonormal structure of the vector sets.

3.1. Unconstrained vector regularization

We propose to findB as the solution of an energy min-
imization, following the well know idea of�-function
diffusion, used to restore scalar images (see for instance
[10, 16, 17, 23]), and more recently, vector fields [5, 14,
30, 32, 36, 37, 38]). We quickly remind the idea. A vector
imageI can be anisotropically smoothed (denoising with
preservation of discontinuities), by minimizing :Ediff (I) = Z
 h�2 kI� I0k2 +�(krIk)i d
 (2)

wherekrIk = pPni=1 krIik2 is defined as thevector
gradient normwhich measures a global vector variation
(norm and orientation). The fixed parameter� 2 R pre-
vents the final solution from being too different from the
initial image. The function� : R ! R is adiffusion func-
tion, which controls the regularization behaviour. A lot of
different�-functions have already been proposed in the lit-
erature related to scalar image restoration : Minimal sur-
faces [10], Geman & McClure [12], Perona & Malik [23],
Total variation [27], Tikhonov [35],: : : (choosing the right�-function depends on the application).
One way of minimizing the functionalEdiff (I), is to calcu-
late the correspondingvector LagrangianL(Ediff (I)) 2 Rn
which is, using a component by component writing style :L(Ediff (I))i = � (Ii � Ii0)� div

 �0(krIk)krIk rIi!
Then use a vector gradient descent :�I�t = �L(Ediff (I)) :8<: I(t=0) = I0�Ii�t = � (Ii0 � Ii) + div

��0 (krIk)krIk rIi� (3)



until convergence. (i 2 [1 : : : n℄, there aren scalar PDE’s)

For our purpose of orthonormal vector set regulariza-
tion, a naive idea would be to use such diffusion PDE’s
(3) on each vectorI[k℄0 of the orthonormal vector setB0,
then reconstruct the final vector set imageB with the re-
sulting smoothed vectors. Fig.2 shows such a result, using
the Tikhonov function on a 2D synthetic image of orthonor-
mal bases (mixture of direct and indirect bases).

a) Original fieldB0 b) ”Regularized” fieldB
Figure 2. decoupled diffusion of 2D bases.

Unfortunately, this unconstrained method breaks the or-
thonormal properties : vector norms and orthogonal angles
are not intrinsically preserved. We must explicitly introduce
orthonormal constraints, in the minimization process. In-
teresting work on constrained minimization of vector fields
has already been done in [4, 8, 33, 37]. The idea was to
regularize a normalised vector field, preserving the unitary
vector norm. It yielded a set of PDE’s taking the coupling
between vector components into account. Anyway, no ap-
proach dealing with multiple vectors were proposed (which
is needed in our case). Actually, these works can be seen as
a part of our proposed framework (section 5).

3.2. Adding orthonormal constraints

In order to regularize the orthonormal vector setB(M)0
while preserving the orthonormal properties, we propose a
constrained minimization of the following functional :E(B) = Z
 mXk=1 h�2 kI[k℄ � I[k℄0 k2 +�(krI[k℄k) i d


(4)
with respect to them vector functionsI[k℄, subject to the
orthonormal constraints :8M 2 
; I[p℄(M) : I[q℄(M) = Æpq = � 1 if p = q0 if p 6= q
We denote byL(E)[k℄ 2 Rn , theLagrangian vectorof the
energyE(B) subject to the vectorI[k℄ :L(E)[k℄i = � (I [k℄i � I [k℄i0 )� div

 �0(krI[k℄k)krI[k℄k rI [k℄i !

It is obviously the same expression thanL(Ediff (I)) de-
fined in (3), for the unconstrained case. The constraints
are then introduced by addingm2 Lagrange multipliers�pq : 
! R (where p; q 2 [1 : : :m℄) to the functionalE(B), where each�pq is associated with the constraint :8M 2 
; I[p℄ : I[q℄ = Æpq
It leads to theunconstrained minimizationof the following
functional, with respect toI[k℄ and�pq :E�(B; �) = E(B)+Z
 X(p;q)2[1:::m℄�pq (I[p℄ : I[q℄ � Æpq) d

In fact, as the dot product andÆpq are symmetric, the con-
straints I[p℄ : I[q℄ = Æpq and I[q℄ : I[p℄ = Æqp are the
same, and should need only one Lagrange multiplier. The
two Lagrange multipliers�pq and�qp are then equal.
When the constrained minimum is reached, the Euler-
Lagrange equations corresponding toE�(B; �) are then :� L(E)[k℄ + 2Pml=1 �lk I[l℄ = 0I[p℄ : I[q℄ = Æpq (k; p; q 2 [1 : : :m℄): (5)

Finding the�kl reached at the minimum is performed as
follow : we take the dot product of the firstm equations
(first row) with each vectorI[p℄ (p 2 [1 : : :m℄), then sim-
plify it using the relationsI[p℄ : I[l℄ = Æpl (second row) :8k; l 2 [1 : : :m℄; �kl = �L(E)[k℄ : I[l℄2
Finally, replacing all the�lk in the Euler-Lagrange system
eq.(5) gives the gradient descentpreserving the orthonor-
mal constraints:�I[k℄�t = mXl=1 � L(E)[l℄ : I[k℄� I[l℄ � L(E)[k℄ (6)

whereL(E)[k℄i = � (I [k℄i � I [k℄i0 )� div

 �0(krI[k℄k)krI[k℄k rI [k℄i !
is the vector Lagrangian of the correspondinguncon-
strained functional. It can be seen as apure diffusion vector
force(Section 4.2 provides a simple physical interpretation
of this vector).

The proposed equation (6) is a set ofm coupled vec-
tor PDE’s (where the coupling between vectorsand vec-
tor components is clearly present), which allows to regu-
larize any field of orthonormal vector sets, preserving the
orthonormal structure of the vectors during the PDE evolu-
tion. It is also worth to mention that it naturally preserves
the direct or indirect feature of the bases, since the evolu-
tion is smooth (rotation matrices as described in section 2
cannot then transform to rotoinversions).



4. The case of 3D orthonormal basis

4.1. Notations and equations

We are now interested in the constrained diffusion of 3D
orthonormal basis fields (m = n = 3), using eq.(6). For
simplicity reasons, we denote the three basis vectors by :I = I[1℄ ; J = I[2℄ and K = I[3℄ then B = f I;J;K g

J(M)

M
I(M)

K(M)

Figure 3. Example of a 3D orthonormal field.

In order to regularizeB while preserving discontinuities,
we minimize the functional (4), withm = n = 3 :E(B) = Z
 �2 (kI � I0k2 + kJ� J0k2 + kK�K0k2 )+�(krIk) + �(krJk) + �(krKk) d

Using eq.(6), we find the corresponding constrained set of
3D vector diffusion PDE’s :8<: It = f I � (f I:I) I� (fJ:I) J� (fK:I) KJt = fJ � (f I:J) I� (fJ:J) J� (fK:J) KKt = fK � (f I:K) I� (fJ:K) J� (fK:K) K (7)

wherefu is theunconstrained diffusion vectordefined by :fui = � (ui0�ui)+div

 �0(kruk)kruk rui ! (i = 1; 2; 3)
4.2. A physical interpretationB(M) = f I(M);J(M);K(M) g can be seen as a
solid object composed of three orthogonal rigid stems of
unit length, fixed at the same pointM , and submitted to
forcesf I, fJ andfK respectively (Fig.4).

A rotation aroundM is obviously the only motion that
can performB. Actually, each forcef I, fJ andfK induces
a mechanic momentum on this object :
I = I� f I ; 
J = J� fJ ; and 
K =K� fK
Where� designates the usual cross product inR3 . Then,
the total momentum applied to the objectB is given by :
 = 
I +
J +
K = I� f I + J� fJ +K� fK

I

J

M

f

f

f

(M)

(M)

(M)

(M)(M)

(M)

K

I

K

J

Figure 4. A solid object B,submitted to forces.

If we suppose thatB has an unit moment of inertia, we can
express the velocitiesvI, vJ andvK at each free extremity
of the stems, corresponding tothe constrained movementof
the solid :8<: vI = 
� IvJ = 
� JvK = 
�K with 
 = I� f I + J� fJ +K� fK
Developing these expressions, using the double vector prod-
uct formulau � (v � w) = (u:w) v � (u:v) w and the
orthogonal propertiesI[k℄ : I[l℄ = Ækl leads to :8<: vI = f I � (f I:I) I� (fJ:I) J� (fK:I) KvJ = fJ � (f I:J) I� (fJ:J) J� (fK:J) KvK = fK � (f I:K) I� (fJ:K) J� (fK:K) K
A velocity is an infinitesimal variation of a vector in the
time : �I�t = vI ; �J�t = vJ ; �K�t = vK
And, by choosing the following forces applied to the stems :fui = � (ui0 � ui) + div

� �(kruk)kruk rui �
We find the expected orthonormal constrained regulariza-
tion PDE’s eq.(7), coming from the variational formulation.
The interpretation is then simple : Constrained minimiza-
tion of the functional (4) is equivalent to perform a move-
ment of a rigid and fixed objectB submitted to threedif-
fusion forcesfu which tend to rotate the object in order to
minimize the mechanic energy of the system (a kind of vec-
tor basis gradient).

4.3. Application to 3D rotation matrices

If one wants to regularize rotation matrix fields, a natural
idea is to decompose the matrices into more simple data that
are easy to regularize (usually Euler angles, unit quaternions
or rotation vectors), then reconstruct the final rotation field
from these smoothed data (Fig.5).
Anyway this method has some drawbacks : The conversions
induce numerical errors and are not unique. It introduces



Simple data restoration

Rotation decomposition
(Euler angles/Quaternions)

Rotation reconstruction

Figure 5. A natural (but not effective) idea, for
3D rotations regularization.

annoying discontinuities in the decomposed data, even if
the initial rotation field is continuous.
These discontinuities are coming from :� The 2�-periodicity ambiguity of the Euler angles or

the rotation vector norms.� The double representation of a single rotation by two
equivalent quaternionsq and�q.

It has a large influence on the regularization process by de-
tecting non-existent discontinuities and modifying the dif-
fusion behaviour.

Actually, our proposed framework (section 3) deals eas-
ily with this problem : An image of 3D rotation matrices
can be represented as a field of 3D orthonormal direct bases
(as described in section 2), without any conversion and loss
of informations. Then, the orthonormal constrained PDE’s
eq.(6) allows to regularize the rotation field. The method is
direct and effective (coupling between vectors are explicitly
taken into account).

Orthonormal constrained

regularization PDE’s

Figure 6. A more simple method.

Rotation matrix regularization can be a part of restor-
ing a video camera sequence (Fig.7) : Taking a real movie
sequence as an input, a first process estimates the camera
motion, then outputs two sequences, one corresponding to
the camera translation (change of the view point) and the
second to the camera rotation (change of the view angle).
These outputs may be noisy (the motion estimation algo-
rithm often uses correspondence points which are very sen-
sitive to the noise). The rotation sequence is easily restored

using our orthonormal constrained equation (6), while the
translation part is regularized using a classic vector regular-
ization approach (as in [5, 14, 30, 32, 36, 37, 38]).

cam

real data

Rotation

...

Sequence of

vectors T(t)
translation

Sequence of

Estimation

Motion

Motion regularization

Unconstrained

Regularization
Vector

Orthonormal
Base PDE

Matrices R(t)

Figure 7. Camera motion regularization

For instance, this process allows smoother reprojections
of virtual 3D objects on the original movie. We show one
result of this method in section 6.

5. A parallel with direction diffusion

Vector direction diffusion of vectors has already been stud-
ied in [4, 8, 33, 37]. Actually, this problem can be seen as
a particular case of our orthonormal vector set framework,
where the vector setsB(M) are restricted to a single vectorB(M) = fI(M)g.
Indeed, the orthonormal constraints eq.(1) are reduced to
the unitary norm constraint :8M 2 
; kI(M)k = 1.
The corresponding functional eq.(4) also reduces to :E(I) = Z
 �� kI� I0k2 +�(krIk)� d

and the resulting constrained diffusion PDE is (eq.(6)) :�I�t = (L(E) : I) I� L(E) (8)

whereL(E)i = � (Ii � Ii0)� div

��0 (krIk)krIk rIi�.

This equation can be highly simplified : From the spatial
derivation ofkI(M)k2 = 1, we find :I : Ix = I : Iy = 0 and �I : I = �krIk2 (9)

Developing the divergence for eachL(E)i :

div (A) = �0(krIk)krIk �Ii +r �0(krIk)krIk ! : rIi



whereA = �0 (krIk)krIk rIi.
If we note[ a ; b ℄T = r��0 (krIk)krIk �

, then :

div (A) : I = �0(krIk)krIk (�I : I) + a (Ix : I) + b (Iy : I)
Using eq.(9), we get : div(A) : I = ��0(krIk) krIk
Then, the proposed diffusion PDE eq.(8) becomes :�Ii�t = 8<: div��0 (krIk)krIk rIi�+�0(krIk) krIk Ii+� (Ii0 � (I0 : I) Ii)

(10)
This vector diffusion PDE can be used to regularize vec-

tor direction fields, using various�-functions. Note that the
PDE’s proposed in [8, 33] are a restriction of the eq.(10) to� = 0 and �(s) = sr (r = 1; 2). The beautiful thing of
our orthonormal vector sets regularizationmethod, is the
implicit unification of previous works on normalized vec-
tors diffusion, into a larger framework. It naturally extends
norm constrained regularizations to arbitrary�-functions,
as well as it shows the corresponding physical interpreta-
tion.

6. Results

We illustrate the applications of the equations (6),(7),(10)
proposed in this paper with some examples :

- Fig.8 and Fig.9,d,e,f show applications of our orthonor-
mal constrained PDE’s on synthetic 2D and 3D basis fields.
Note how the constraints are necessary to get an acceptable
result.
- Fig.9,a,b,c illustrates an useful application : the regular-
ization of real camera orientation sequence, using eq.(7),
as described in section 4.3. The corresponding Euler an-
gles of the sequences are displayed (but were not used
for the regularization !). Virtual 3D objects reprojected
on this movie, using the restored motion sequence have
then a smoother motion (sequence provided by REALVIZ
: http://www.realviz.com).
- We can also use our orthonormal PDE’s eq.(6) reduced
to eq.(10), in order to smooth vector direction fields, while
preserving discontinuities (Fig.9,g,h,i). This example use
the hypersurface�-function :� = 2(p1 + u2 � 1).
- This last equation allows also to restore chromaticity data
in color images (Fig.9,j,k,l), as mentioned in [8, 33, 37] :
The chromaticity information is given by the orientation
of the color vector, while the brightness is its norm. The
knowledge of a chromaticity noise allows a better restora-
tion than with unconstrained diffusion PDE’s.

Conclusions & Perspectives

In this paper, we addressed the problem of restoring, while
preserving possible discontinuities, fields of noisy orthonor-
mal vector sets. We have formulated the problem in a varia-
tional framework based on the�-function principle, where
discontinuities and orthonormal basis constraints are pre-
served thanks to coupled anisotropic diffusion PDE’s. The
importance of the basis constraint was clearly shown, as
well as the physical interpretation of the proposed equa-
tions, in the simple 3D case. We also made the link with
the previous work on norm constrained evolution of vec-
tor fields. We applied these constrained diffusion equa-
tions in order to restore 2D and 3D orthonormal basis fields,
and shown an original application : The regularization of a
video camera motion. As a perspective, we are in the pro-
cess to use the corresponding PDE’s, in order to restoredif-
fusion tensor MRI images.
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Synthetic field of 2D bases. With noisy orientations (� = 70o). With unconstrained PDE’s. With our orthonormal constrained PDE’s.

Figure 8. Importance of the orthonormal constraints for the regularization process.
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a) One Euler angle of areal
camera sequence.

d) Synthetic 3D rotation field. g) Vector direction field. j) Noisy chromaticity color image.
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b) Rotation regularization
with eq(7) ( after 10 it.).

e) Noisy 3D rotation field. h) Noisy direction field. k) Unconstrained color restoration.

60 80 100 120 140 160 180
0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

c) Rotation regularization
with eq(7) ( after 50 it.).

f) Restored field (eq.(7)). i) Restored direction field (eq.(10)). l) Constrained restoration (eq.(10)).

Figure 9. Some possible applications of our orthonormal vec tor set framework : camera orientation
regularization, rotation field restoration, direction dif fusion, color image restoration, : : : (arranged
column by column)


