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Abstract
The photometric stereo (PS) problem consists in recon-
structing the 3D-surface of an object, thanks to a set of
photographs taken under different lighting directions. In
this paper, we propose a multi-scale architecture for PS
which, combined with a new dataset, yields state-of-the-art
results. Our proposed architecture is flexible: it permits to
consider a variable number of images as well as variable
image size without loss of performance. In addition, we de-
fine a set of constraints to allow the generation of a relevant
synthetic dataset to train convolutional neural networks for
the PS problem. Our proposed dataset is much larger than
pre-existing ones, and contains many objects with challeng-
ing materials having anisotropic reflectance (e.g. metals,
glass). We show on publicly available benchmarks that
the combination of both these contributions drastically im-
proves the accuracy of the estimated normal field, in com-
parison with previous state-of-the-art methods.

1. Introduction
Photometric stereo (PS) is a 3D-reconstruction technique
that estimates the 3D normal at each point of the surface
of an object, using three or more photographs taken from
the same viewpoint but with different lighting directions.
Early works in this field (e.g. [36]) considered the ideal
case of a perfect Lambertian surface. However, most im-
ages of real world objects exhibit a wide variety of complex
lighting effects, which are not well predicted by Lambert’s
law. Especially, objects’ reflectance often includes a spec-
ular component, giving a more or less shiny appearance to
the image surface. Translucent surfaces, such as glass and
acrylic, do not respect Lambert’s law either. These kind of
materials remain in most cases, poorly managed by tradi-
tional photometric stereo solutions [29]. In order to manage
non-Lambertian surfaces, deep learning methods based on
convolutional neural networks have recently emerged as the
most efficient ones [29, 32]. The quality of results obtained
by such approaches relies on two main factors:

PS-FCN [6] Ours

Figure 1. From a set of images taken under different illumina-
tion directions (left), photometric stereo estimates a normal map
(right). Our proposed method is particularly efficient when used
on challenging anisotropic materials, e.g. metal and glass as with
this aluminium bunny from [29].

1. The architecture of the network, which must ensure a
good capacity for generalization on new data, including data
with a different size from the training set.
2. The quality of the learning dataset, which must be as rep-
resentative as possible of the diversity of observable light
phenomena, for the network to be able to differentiate ma-
terials from each other.

Contributions Here, we propose a deep learning-based
method for the problem of calibrated PS (known lighting
direction and intensities), with the following features:
• A multi-scale network architecture for PS, which analyzes
the input images simultaneously at different scales;
• A new synthetic training set featuring an unprecedented
variety of geometry and non-Lambertian reflectance.

Using these two contributions together, we show that chal-
lenging materials with anisotropic reflectance (e.g. metal,
glass) can be handled appropriately in the PS problem
(Fig. 1). The underlying core idea is that information over
the whole image is indeed necessary to infer the 3D normal.
Otherwise, complex lighting effects like inter-reflections in
metallic objects or sub-surface scattering inside glass can-
not be analyzed. On the contrary, our proposed multi-scale
architecture takes advantage of all available complex geo-
metric/lighting information and long-distance pixel correla-
tions when inferring the 3D normal map.
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(a) Blobby [15] (b) Structure [15] (c) CyclePS [11] (d) DiLiGenT [32] (e) DiLiGenT102 [29]

Figure 2. Samples from existing datasets. The first three [11, 15] are synthetic ones, used for training the neural networks. Both the last
ones [29, 32] are real-world datasets used for benchmarking. Our proposed multi-scale architecture is evaluated on both benchmarking
datasets, and trained on a new synthetic training set, which contains much more objects with non-Lambertian reflectance.

2. Related Work
Deep learning techniques for photometric stereo are all
based on the use of Convolutional Neural Networks (CNN).
Typically, a fully CNN architecture requires a fixed num-
ber of input images. However, in photometric stereo, the
number of images depends on the acquisition procedure.
To avoid having to train a different network model for each
possible number of input images, two alternatives have been
considered in the literature.

Observation map VS pooling The first alternative con-
sists in using an observation map [11, 13, 21, 23, 39], which
projects all observations corresponding to each same pixel
under different illuminations into a fixed-size space - typi-
cally a sampled hemisphere. Therefore, an observation map
makes a fixed-size summary of the information contained in
a variable-size set of images. However, the spatial informa-
tion (intra image) is lost, and the performance drops when
the number of input images is small (typically, <10) [12].
The second alternative rather resorts to specific pooling
modules [5,7,16,18,35], which aggregate the different fea-
tures of each image extracted by previous convolution lay-
ers. This allows to obtain fixed-size image features from a
variable number of input images. Different pooling meth-
ods can be considered. It is shown in [7] that max pooling
performs better than average pooling as soon as the num-
ber of images exceeds 16. The latter tends to over-smooth
the salient features and to be too sensitive to the regions
of images with little interest, although a max pooling can
also sometimes ignore a large proportion of the features ex-
tracted [17]. Still, in contrast to the observation map ap-
proach, pooling methods pay attention to intra image in-
formation, despite using less the variations of pixel values
across the images.

Architectural variants To overcome the drawbacks of
both these approaches, Yao et al. [38] introduced a graph
method called GPS-NET. It first aggregates the inter-image
information by using a graph structure, and then uses a
CNN to predict a 3D normal map. This graph structure
therefore allows to preserve the spatial information. More
recently, Ikehata [12] proposed a dual-branch transformer
(PS-transformer). One branch takes as input the pixels un-
der different illuminations to get the inter-information, the
other branch processes the images to get the spatial one.
The features extracted are then aggregated, and a CNN fi-
nally gives the 3D normal map. However, as mentioned
in [12] transformers are not particularly suitable for dense
problems (in our case, a large number of input images).
In the present paper, we will rather consider the pooling-
based scheme from [7] as a baseline model, and broaden it
to a multi-scale architecture.

Existing training datasets Regardless of its architecture,
a neural network needs to be trained on a proper dataset
to perform well. In practice though, it is very difficult
to acquire a large dataset of real images with 3D ground
truths of photographed objects. For this reason, deep pho-
tometric stereo networks proposed in the literature often
rely on training datasets of synthetic 3D object, notably the
Blobby and Structure datasets introduced in [7], and Cy-
clePS in [11]. The Blobby dataset is composed of 10 geo-
metric shapes, each one observed from 1296 distinct view-
points. As the name suggests, the shapes in Blobby are
rather smooth and regular (Fig. 2a). The Structure dataset
consists in objects with complex geometry containing fine
details (Fig. 2b). It is composed of 8 objects, rendered in
3D from 1387 to 6874 viewpoints. To simulate surfaces
with non-Lambertian light reflectance, a material from the
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MERL [26] dataset is randomly drawn and applied in each
rendering, providing a total of 25920 samples for Blobby
and 59292 for Structure. In both cases, each sample is ren-
dered under 64 different light directions, randomly selected
on the hemisphere (Fig. 3c). Finally, the CyclePS [11]
dataset is also composed of complex objects, but contains
only 18 objects rendered from 10 views (Fig. 2c). However,
the number of materials available is substantial because Dis-
ney’s principled BSDF [3] parametric reflectance model is
used. It allows the variation of the base colour, roughness,
proportion of specular reflectance, etc., thus the objects can
be rendered using a near infinite number of materials. The
training dataset presented in the present paper will also fea-
ture the possibility to generate as many materials as needed,
while also considering much more geometric shapes than in
existing sets.

Existing benchmarking datasets To validate the rele-
vance of the training datasets, and to verify that the mo-
dels trained on these synthetic data are able to generalize to
real images, two real-world datasets exist: DiLiGenT [32]
and DiLiGenT102 [29]. The DiLiGenT dataset contains 10
different objects, taken from the same viewpoint under 96
different illuminations (Fig. 3a). For each photographed ob-
ject, the ground truth normal map is provided, as well as the
calibrated lighting directions and intensities. Therein, the
ground truth geometry was acquired by manually register-
ing laser scans with the images. The DiLiGenT102 dataset
contains 10 different objects. Each object was explicitly
machined with 10 different materials and photographed un-
der 100 calibrated illuminations (Fig. 3b). The ground truth
was not obtained by scanning the objects, but from the 3D
digital models used to machine the objects. This real dataset
is particularly interesting for evaluating performances on
highly specular materials and translucent ones. Indeed, it
contains metallic materials, such as aluminium or steel, and
a translucent one (acrylic). This dataset also contains dif-
fuse and slightly specular materials, hence most of real-
world material characteristics are present. The diversity of
object shapes is also high as it contains objects with sim-
ple geometry like balls but also complex ones like turbines.
It offers the opportunity to test the impact of diverse inter-
reflection, shadow and shading effects. Today, it is the most
complete dataset composed of real images available in PS.

Uncalibrated PS In all the methods discussed above, the
light directions and intensities are assumed to be known, i.e.
we consider the calibrated PS problem. When these acqui-
sition parameters are unknown, the problem is called uncal-
ibrated. Uncalibrated PS has been studied e.g. in [5,14,20],
and partially solved by defining a first neural network that
predicts the lighting parameters associated with each ac-
quired image. This estimated data is then fed into a second
network that solves the problem of calibrated PS. Managing
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Figure 3. Distribution of illumination directions in the real DiLi-
GenT and DiLiGenT102 datasets, and an example of a random dis-
tribution. The z-axis corresponds to the optical axis of the camera,
with the imaged object at coordinates (0, 0, 0).

non-directional lighting, e.g. near point-light sources [24,
30] or natural illumination [9, 27], is another ongoing re-
search problem. In this paper we focus on the case of cali-
brated PS with known directional light sources.

3. Proposed Multi-Scale Architecture
The multi-scale architecture we propose builds upon the
normal estimation network introduced in [7]. Therein, each
image is first normalized by the calibrated lighting intensity,
and then concatenated with the calibrated direction. The
resulting “image” forms the input to the feature extractor
which processes each (image, direction) pair independently.
Then, all the independent features are aggregated through a
feature aggregation module, and lastly a regression module
predicts the normal map.
In order for the normal estimation to perform equivalently
well on low-frequency geometry and high-frequency de-
tails, we propose to embed this network in a multi-scale ap-
proach which progressively refines the result as the spatial
scale increases. Thus, our model first focuses on the global
aspect of the object, then progressively insert details such
as cracks, slight bumps, or holes as illustrated in Fig. 4.

Figure 4. Multi-scale normal estimation at three different scales
(bottom row is a contrast-enhanced zoom on the rectangle area).
Low-detail geometry is reconstructed from the first levels. High-
frequency details get refined as the scale increases.
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Figure 5. First two stages of the proposed multi-scale architecture. A first architecture, inspired by the PS-FCN method [7], takes as inputs
the calibrated lighting directions and downsampled images, and outputs a low-resolution 3D normal map. The latter is then up-sampled
and concatenated with lighting directions and higher-resolution images. A second architecture then infers higher-resolution normals, and
this part of the process is repeated until the resolution of the original images is reached (network weights being shared by all scales).

The proposed multi-scale network combines two indepen-
dent architectures (Fig. 5). The first stage takes as inputs the
calibrated lighting directions and the images (downsampled
from the original images to some initial resolution r0), and
outputs a low-resolution normal map with the same resolu-
tion r0. This first stage is essentially similar to the normal
estimation network proposed in [7]. In the second stage, the
low-resolution 3D normal map is up-sampled to a resolu-
tion r1 = 2r0 (using bilinear interpolation followed by nor-
malization to enforce the unit-length constraint on normal
vectors), and concatenated with the images (down-sampled
from the original input images to resolution r1) and lighting
directions. The process is then repeated until the resolution
of the original images is reached. In these sequential stages,
the inputs differ from the first stage, thus a new, independent
architecture is obviously necessary. Yet, let us emphasize
that since this new architecture is completely convolutional
(except the pooling layer) and as only the spatial resolution
changes from stage to stage, we can share the weights be-
tween each processed scale. Therefore, only two networks
actually need being trained, independently from the number
of scales. The network formed by these two sub-networks
is trained by minimizing the cosine similarity, which mea-
sures the angular difference between the estimated 3D nor-
mals and the ground truth ones. It is defined as follows:

lnormal = 1−
∑
ij

NijN̂ij , (1)

where N̂ij is the estimated normal at pixel (i, j), and Nij is
the ground truth one.

As remarked in [22], one of the most interesting features
of a multi-scale architecture is its ability to process images
with arbitrary size (small or large) without loss of perfor-
mance. Indeed, even if a single-scale model is fully con-
volutional and so can process high-resolution images, such
a model with a fixed number of convolution layers may
not have enough convolutions to synthesize the information
over a whole, large image. And, a network trained to handle
a specific resolution may not behave well for much larger
images. For example, information from the bottom left of
the image may not be used to infer the normal at the top
right. Yet, such an ability would be particularly useful for
handling non-local reflectance effects such as translucency.
See for instance the acrylic ball shown in the experiments
section in Fig. 10, where light passes through the object.
By propagating global information at different scales, such
a limitation of local methods is overcome.

More importantly, the proposed multi-scale architecture
with shared weights allows one to process images with
higher resolution than the ones used during training. For
example, in our implementation the first processing resolu-
tion is 8 × 8 pixels. By taking a resolution multiplier of
two between two scales, four scales are necessary to reach a
resolution of 128×128 (training resolution in our test), and
seven scales for the DiLiGenT102 images which have a res-
olution of 1001 × 1001. Yet, the same weights are used in
both cases, hence a resolution-specific training is not neces-
sary. In practice, this removes the need for either rescaling
the input images to the resolution of the training images, or
resorting to a (too local) patch-based approach.
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# objects # views # total number of samples # lighting # materials
Blobby 10 1 296 25 920 64 100
Structure 8 1387-6874 59 292 64 100
CyclePS 18 10 180 1 300 90 000
DiLiGenT 10 1 10 96 10
DiLiGenT102 10 10 100 100 10
Our Blobby 3000 5 15 000 100 1 100 + infinity
Our Object 76 267 45 000 100 1 100 + infinity

Table 1. Summary of the characteristics of the different learning datasets used in photometric stereo.

4. Proposed Learning Dataset
As discussed in Section 2, the existing Blobby and Struc-
ture synthetic datasets lack of diversity in terms of geometry
and textures. For example, although the Structure dataset is
composed of complex objects, all these objects are statues.
Similarly, the number of different materials in the MERL
material base is only 100. This is clearly not enough to
model the huge diversity of materials present in the nature.
The CyclePS dataset partially solves this issue, by allowing
to generate infinitely many materials by randomly selecting
parameters from a parametric BSDF model. Still, it remains
limited in terms of geometry. Overall, a greater diversity of
shapes and materials in the images of the training dataset
would be beneficial for training networks for photometric
stereo. For these reasons, we propose here a new dataset,
which includes a large variety of shapes and materials.
In order to create this dataset, we implemented our own im-
age data generation pipeline. We used the Blender [8] soft-
ware with the Cycles rendering engine. As a result, our new
dataset is composed of two parts:

• Our Blobby contains objects with smooth surfaces;

• Our Object contains objects with complex geometry:
strong discontinuities, edges, corners, textures details,
etc.

Samples from our training dataset are shown in Fig. 6.
Our Blobby has 3000 distinct objects, generated by the sum
of random Gaussian potentials, followed by iso-surface ex-
traction using the Marching Cubes algorithm [25]. Our Ob-
ject contains 76 detailed objects which are 3D meshes from
the Sketchfab [2] website. Moreover, to allow the learn-
ing of non-Lambertian surfaces, more than 1100 different
“real” materials, extracted from the ambientCG [1] web-
site, are randomly applied to the objects, much more than
the 100 materials of Structure and Blobby. To complete a
lack of diversity of the most complicated materials (metals,
glasses, etc.) that could persist, we generated additional ma-
terials by randomly setting the values of somes parameters
(metallic, specular, roughness, anisotropic, etc.) of Disney’s
principled BSDF [3]. To ensure that all possible materials
are represented, during the rendering we choose to apply to

Figure 6. Examples of images from the proposed dataset.

the object with a probabilty of 50% a “real” material (from
ambientCG), with 17% a glass material and with 17% a
metal one. The remaining 16% materials are constructed
by randomly selecting all possible parameters in the Princi-
pled BSDF (which may result in non-realistic materials).

If we set a single value for each parameter of the Prin-
cipled BSDF, we would obtain a material which is spa-
tially uniform in terms of reflectance, as in the example of
Fig. 7a. Yet, many real-world objects exhibit a spatially-
varying reflectance, which is a known limitation of existing
PS techniques [7]. To solve this problem in our generation
pipeline, we rather incorporated a few spatially-varying ma-
terial maps, as in the example of Fig. 7b. This technique
was used for 50% of the renderings. It allowed us to cre-
ate both objects with uniform reflectance, and others with
spatially-varying one, as illustrated in Fig. 6.

Finally, to generate data having realistic lighting conditions,
we rendered all the images with both random illumination
direction (Fig.3c) and random intensity. In total, 15 000
blobby samples and 45 000 object samples were generated
this way. Table 1 summarizes the characteristics of the ex-
isting datasets, versus the ones we propose. In order to en-
sure the reproducibility of our results, the code and these
learning datasets will be made publicly available online (not
done yet, to preserve author’s anonymity).

5



Uniform reflectance Spatially-varying reflectance

Figure 7. Rendering of the same ball with uniform base color, or
with spatially-varying one.

5. Experiments
In this section, we demonstrate the effectiveness of our pro-
posed multi-scale architecture on publicly available bench-
marks, namely DiLiGenT [32] and DiLiGenT102 [29]. To
evaluate the impact of our new training dataset, we trained
our network both on the pre-existing training datasets
Blobby and Structure (this training is referred to as “DS1” in
the following) and on our new training dataset (“DS2” in the
following). Similarly, to quantify the gain due to the multi-
scale architecture we trained both a single-scale version of
our network on 128 × 128 patches (“Mono” in the follow-
ing) and the multi-scale one (“Multi” in the following). In
the rest of this section, “Mono (DS1)” will thus refer to the
mono-scale architecture trained on the pre-existing dataset,
“Multi (DS1 + DS2)” to the multi-scale architecture trained
on both the pre-existing and the new datasets, etc. We will
first provide a few qualitative results to illustrate the impor-
tance of the two building blocks of our contribution, and
then provide a thorough quantitative evaluation on the two
benchmarks.

5.1. Qualitative evaluation

Let us start by showing two illustrative results on the
DiLiGenT102 [29] benchmark, on challenging metallic ob-
jects (the copper golf ball and the copper hexagon). As
we shall see, both the new training dataset and the new
multi-scale architecture contribute to improving the estima-
tion performances on such objects exhibiting an anisotropic
reflectance. Since we do not have access to the ground truth
normals, for visual purpose we show as “ground truth” the
result we obtained with our Multi (DS1+DS2) approach, ap-
plied to the same object but machined in PVC (a matte ma-
terial). The example of Fig. 8 shows that, independently
from the training set, the multi-scale architecture largely
contributes to improving the results on metals. In this ex-
ample, the same dataset is used for training both the mono-
scale and multi-scale architectures, and the latter offers vi-
sually more accuate results. Likely, the ability of the multi-
scale architecture to propagate information in a global man-
ner helps interpreting the anisotropic behavior.

Mono (DS1) Multi (DS1) “Ground truth”

Figure 8. Results of our mono- and multi-scale architectures (both
trained on the pre-existing dataset DS1) on the copper golf ball
from [29]. The multi-scale architecture yields much sharper re-
sults, especially around the holes.

The example of Fig. 9, on the contrary, shows the impor-
tance of the presence of metallic objects in the training
dataset, independently from the network architecture. It can
be observed that the network performs much better when it
is trained on our new training dataset, even without consid-
ering the multi-scale architecture.

Mono (DS1) Mono (DS1+DS2) “Ground truth”

Figure 9. Results of our mono-scale architecture on the copper
hexagon from [29]. Since the new dataset (DS2) contains much
more metallic objects than the existing one (DS1), training on our
new dataset yields largely improved results.

Fig. 10 illustrates a particularly visible improvement
brought by the multi-scale architecture, which is the cor-
rect handling of translucent materials. In this example, we
consider again the gulf ball from [29], but this time coated
with an acrylic material. Acrylic is a glass-like material,
with some of the light passing through the object. As can
be seen in the top of Fig. 10, even when light comes from
the right side of the ball, part of its left side appears illumi-
nated. Without seeing the whole object the model could not
imagine that there exists a path underneath the surface that
lets the light go through. On the contrary, the multi-scale
approach being global by construction, such non-local phe-
nomena are better managed by the network and the overall
reconstruction is clearly more accurate.
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ball bear buddha cat cow goblet harvest pot1 pot2 reading average
L2 (Baseline) [36] 4.10 8.39 14.92 8.41 25.60 18.5 30.62 8.89 14.65 19.80 15.39

GPS-NET [38] 2.92 5.07 7.77 5.42 6.14 9.00 15.14 6.04 7.01 13.58 7.81
CHR-PSN [19] 2.26 6.35 7.15 5.97 6.05 8.32 15.32 7.04 6.76 12.52 7.77

PS-transformer (10 images) [12] 3.27 4.88 8.65 5.34 6.54 9.28 14.41 6.06 6.97 11.24 7.66
MT-PS-CNN [4] 2.29 5.87 6.92 5.79 6.89 6.85 7.88 11.94 7.48 13.71 7.56

PS-FCN [6] 2.67 7.72 7.52 4.75 6.72 7.84 12.39 6.17 7.15 10.92 7.39
CNN-PS [11] 2.2 4.6 7.9 4.1 8.0 7.3 14.0 5.4 6.0 12.6 7.2
Mono (DS1) 2.63 6.66 8.27 4.47 4.77 8.24 12.78 6.00 5.38 9.68 6.88
Multi (DS1) 1.60 7.82 7.55 4.33 4.18 7.85 12.36 5.22 5.36 9.04 6.54
OB-Cnn [10] 2.49 3.59 7.23 4.69 4.89 6.89 12.79 5.10 4.98 11.08 6.37
PX-NET [23] 2.03 3.58 7.61 4.39 4.69 6.90 13.10 5.08 5.10 10.26 6.28

Multi (DS1+DS2) 2.05 4.24 7.03 3.9 4.00 7.57 11.01 4.94 5.22 8.47 5.84

Table 2. Mean angular error (in degrees) on the DiLiGenT [32] benchmark.The best result for each object is indicated in bold, and the
second best one is underlined. The lines in blue indicate our results. Combining the proposed multi-scale architecture “Multi” and proposed
training dataset “DS2” yields state-of-the-art results, by a large margin.

Acrylic ball

Mono
(DS1+DS2)

Multi
(DS1+DS2)

“Ground truth”

Figure 10. An image of an acrylic ball from [29], illuminated
from the right, and results of our mono- and multi-scale architec-
tures (both trained on the new dataset DS2) on the acrylic golf ball
from [29]. The reconstruction of translucent objects is improved a
lot by using the multi-scale approach.

Fig. 11 shows several additional qualitative comparisons of
the result obtained with our baseline (mono-scale architec-
ture trained on the existing dataset) and with both our build-
ing blocks included (multi-scale architecture trained on the
new dataset). The convex objects (Bunny and Propeller)
are very well reconstructed, despite being machined with
anisotropic (Aluminium) or moderately specular (ABS, a
type of plastic) materials. The steel turbine reconstruc-
tion is also improved, although on this object our approach
shows its limitations. Indeed, this object exhibits concavi-
ties, which create many inter-reflections which are not very
well handled by the network.

5.2. Quantitative evaluation on DiLiGenT [32]

Next, we compare in Table 2 our results against the most
recent state-of-the-art methods, on the DiLiGenT bench-
mark [32]. Let us however remark that PS-transformer [12]
takes as inputs no more than 10 images, hence the com-
parison is biased. Besides, we emphasize that our mono-
scale architecture is largely inspired from PS-FCN [6, 7],
hence Mono (DS1) can be considered as an optimized ver-
sion of [6, 7], where we let the training phase run for much
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(a) Buny - Aluminium (b) Propeller - ABS (c) Turbine - Steel

Figure 11. Visual comparison of the improvements brought by the
combination of the new architecture and our new training set, on
three objects from [29]. All three objects are much better recon-
structed, although there the steel turbine remains challenging.

longer. This table shows that the proposed multi-scale ar-
chitecture provides a significant gain of 4.6%, in compari-
son with the mono-scale approach – compare Mono (DS1)
and Multi (DS1). And, as soon as our new training dataset
is considered, the state-of-the-art is outperformed and we
reach an average angular error below 6◦, with a particularly
visible improvement on the most difficult “reading” object.

5.3. Quantitative evaluation on DiLiGenT 102 [29]

We now quantatively evaluate the impact of the multi-scale
architecture on the DiLiGenT 102 benchmark [29]. To this
end, we show in Table 4 the difference between the mono-
and the multi-scale approaches, when they are both trained
on the pre-existing dataset. As can be observed, a signifi-
cant gain of 9.3% is observed with the multi-scale architec-
ture. The gain is most visible on objects which have a spher-
ical shape and anisotropic material (top right of Tab 4c, see
also Fig. 8 for a qualitative result on the Golf - CU object),
as well as for the most challenging “acrylic” material, which
is translucent.
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(a) Mono (DS1+DS2) (b) Multi (DS1+DS2) (c) CNN-PS [11] (DS1)
Table 3. Mean angular error on the DiLiGenT102 benchmark, with the results of CNN-PS [11] indicated for comparison. When incorpo-
rating both the new dataset and the multi-scale architecture, the state-of-the-art is largely outperformed.

(a) Mono (DS1) (b) Multi (DS1)

(c) Multi (DS1) - Mono (DS1)

Table 4. Mean angular on the DiLiGenT102 benchmark, consider-
ing either the mono-scale architecture or the multi-scale one, both
trained on the pre-existing dataset DS1. The multi-scale approach
yields a significant gain, most visible on the top-right part of the
table (spherical shapes with anisotropic reflectance).

We repeat this experiment in Table 3, but this time with
our networks trained on the new dataset. Comparing Ta-
bles 4 and 3 allows one to quantify the benefits of using
our new training dataset: the mono-scale architecture gets
improved by 14%, and the multi-scale one by 30%. Com-
paring Tables 3a and 3b also allows one to quantify the
impact of switching to the multi-scale architecture: the re-
sults improve by 26%. A particularly large improvement
can be observed on the Turbine object, which is partly con-
cave with many inter-reflections between the blades. For
such an object, a model needs to get access to the whole
geometry to be able to analyze the light path. This is prob-
ably why the multi-scale approach yields such an improve-
ment, although the results remain perfectible, as illustrated
in Fig. 11c. Another impressive example of improvement is
the Acrylic Gulf object: by using a global approach, the re-
sults improve on such translucent materials with non-local
light transport, as also illustrated in Fig. 10.

Overall, the combination of the new architecture and dataset
allows one to reach an unprecedented average error of
11.33◦ on this benchmark. This is to be compared with
the 15.78◦ achieved by CNN-PS [11] (Table 3c), which
was the best performing method so far [29]. By compar-
ing our results with all available state-of-the-art methods
[5, 7, 11, 28, 31, 33, 34, 37–39], we found out that the pro-
posed method is the best performer on 73% of the objects
of this benchmark, as indicated in Table 5.

Table 5. Mean angular error achieved by the best performer
among [5, 7, 11, 28, 31, 33, 34, 37–39] and us, on the 100 objects
of [29]. Green cases indicate when the proposed architecture,
combined with the new dataset, gives the best results.

6. Conclusion and Future Work
In this paper, we have proposed a novel deep normal es-
timation framework for the calibrated photometric stereo
problem. It builds upon a multi-scale architecture which
is independent from the resolution of the images, as well
as a new comprehensive learning dataset. We have shown
on publicly available benchmarks that the combination of
these two features yields state-of-the-art results, with per-
formances particularly improved on challenging anisotropic
materials. In the future, we plan to extend our approach to
handle observation maps [11] as well, which have recently
been shown to benefit from physical interpretability [13].
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