

Reconstruction of Smooth 3D Color Functions from Keypoints: Application to Lossy Compression and Examplar-Based Generation of Color LUTs

D. Tschumperlé C. Porquet A. Mahboubi

Normandie Univ, UNICAEN, ENSICAEN, CNRS GREYC, F-14000 Caen, France

June 2020

GREYC 🏞 🔐 ENSI INGEN All [Collage] Color Presets Available filters (519) **Boost Chromatici** Coffee 44 Color Blindness Elegance 38 Input / Output Preview mode 1st Equalize HSV

GREYC's Magic for Image Computing https://qmic.eu

• Application context:

Context

Provide various colorimetric transformations available in our open-source framework for image processing.

71.00 % - 🛟 C

· Fullscreen 🛛 🕉 Apply

(a) CLUT $\mathbf{F} : RGB \rightarrow RGB$, visualized in 3D

(b) Original color image

(c) Image after transformation F

Original image

"60's"

"Color Negative"

"Bleach Bypass"

"Orange Tone"

"Late Sunset"

"Ilford Delta 3200"

"Backlight Filter"

Standard ways of storing a CLUT

In both cases, lossless compression, but restricted to small sizes:

- . cube file: ASCII zipped format (CLUT $64^3 \approx 1$ Mo)
- 2 .png file: 2D image (CLUT $64^3 \approx 64$ to 100 Ko)

 \Rightarrow **Issue:** Promote a large-scale distribution of *CLUT*s (**500+**), by limiting the number of parameters as much as possible.

Our approach: CLUT compression

Compression: Let \mathbf{F} : *RGB* \rightarrow *RGB* be a 3*D CLUT*.

We generate \mathcal{K} , a smaller representation based on the storage of a set of color keypoints.

Decompression: A 3*D* interpolation based on anisotropic diffusion *PDEs* is applied to \mathcal{K} in order to generate a reconstructed CLUT \tilde{F} visually close to F.

Our approach: CLUT decompression

Input image

Original mapping

Compressed mapping

Stockage in compressed form

Decompressed CLUT F No visible perceptual differences between the two transformations

Let \mathbf{F} : $RGB \rightarrow RGB$ be a 3D CLUT. It is assumed that its sparse representation is known.

 $\mathcal{K} = \{\mathbf{K}_k \in \mathbf{RGB} \times \mathbf{RGB} \mid k = 1 \dots N\}$

i.e the color keypoints *N*, located in the *RGB* cube.

The k^{th} keypoint of \mathcal{K} is defined by vecteur

 $\mathbf{K}_k = (\mathbf{X}_k, \mathbf{C}_k) = (x_k, y_k, z_k, R_k, G_k, B_k),$

where $\mathbf{X}_k = (x_k, y_k, z_k)$ is the 3*D* keypoint position in the *RGB* cube, and $\mathbf{C}_k = (R_k, G_k, B_k)$ its associated color.

Reconstruction principles (2/3)

We propagate/average the colors C_k of the keypoints in the whole *RGB* domain through an **anisotropic diffusion** process

• Let $d_{\mathcal{K}} : RGB \to \mathbb{R}^+$, the distance function to the set of keypoints \mathcal{K} :

 $\forall \mathbf{X} \in RGB, \quad d_{\mathcal{K}(\mathbf{X})} = \inf_{k \in 0...N} \|\mathbf{X} - \mathbf{X}_k\|$

• CLUT F is reconstructed by solving the following anisotropic diffusion PDE :

$$\forall \mathbf{X} \in RGB, \quad \frac{\partial \mathbf{F}}{\partial t}(\mathbf{X}) = m_{(\mathbf{X})} \frac{\partial^2 \mathbf{F}}{\partial \eta^2}(\mathbf{X})$$

where $\eta = \frac{\nabla d_{\mathcal{K}(\mathbf{X})}}{\|\nabla d_{\mathcal{K}(\mathbf{X})}\|}$ and $m_{(\mathbf{X})} = \begin{cases} 0 & \text{if } \exists k, \ \mathbf{X} = \mathbf{X}_k \\ 1 & \text{otherwise} \end{cases}$

 $d_{\mathcal{K}}$ is not derivable on its local maxima.

Spatial discretization (1/2)

We propose the following numerical scheme for discretization:

$$\nabla d_{\mathcal{K}(\mathbf{X})} = \begin{pmatrix} \max abs(\partial_x^{for} d_{\mathcal{K}}, \partial_x^{back} d_{\mathcal{K}}) \\ \max abs(\partial_y^{for} d_{\mathcal{K}}, \partial_y^{back} d_{\mathcal{K}}) \\ \max abs(\partial_z^{for} d_{\mathcal{K}}, \partial_z^{back} d_{\mathcal{K}}) \end{pmatrix}$$

where

$$maxabs(a,b) = \begin{cases} a & \text{if } |a| > |b| \\ b & \text{otherwise} \end{cases}$$

and

$$\partial_x^{\text{for}} d_{\mathcal{K}} = d_{\mathcal{K}(x+1,y,z)} - d_{\mathcal{K}(x,y,z)}$$

$$\partial_x^{\text{back}} d_{\mathcal{K}} = d_{\mathcal{K}(x,y,z)} - d_{\mathcal{K}(x-1,y,z)}$$

(Discrete forward/backward first derivative approximations).

(a) Keypoints and distance function $d_{\mathcal{K}}$

(b) Estimation of η using forward scheme $\partial^{\text{ for }} d_{\mathcal{K}}$

(c) Estimation of η using backward scheme $\partial^{\text{back}} d_{\mathcal{K}}$

(d) Estimation of η using *centred* scheme $\frac{1}{2}(\partial^{\text{for}} d_{\mathcal{K}} + \partial^{\text{back}} d_{\mathcal{K}})$

(e) Estimation of η using proposed scheme

For the sake of algorithmic efficiency, we discrete the *PDE* by a *semi-implicit* scheme:

$$\frac{\mathsf{F}^{t+dt}-\mathsf{F}^t}{dt}=m_{(\mathsf{X})}\;\left[\mathsf{F}^t_{(\mathsf{X}+\eta)}+\mathsf{F}^t_{(\mathsf{X}-\eta)}-2\;\mathsf{F}^{t+dt}_{(\mathsf{X})}\right]$$

By choosing dt appropriately, we simplify the scheme by:

$$\begin{cases} \mathbf{F}_{(\mathbf{X})}^{t+dt} = \mathbf{F}_{(\mathbf{X})}^{t} & \text{if } m_{(\mathbf{X})} = 0 \\ \\ \mathbf{F}_{(\mathbf{X})}^{t+dt} = \frac{1}{2} \left[\mathbf{F}_{(\mathbf{X}+\eta)}^{t} + \mathbf{F}_{(\mathbf{X}-\eta)}^{t} \right] & \text{otherwise} \end{cases}$$

where $\mathbf{F}_{(\mathbf{X}+\eta)}^{t}$ and $\mathbf{F}_{(\mathbf{X}-\eta)}^{t}$ are accurately estimated using tricubic spatial interpolation.

Multi-scale resolution

• Speed-up of convergence through multi-scale resolution.

- ightarrow Reduction of the number of required iterations per scale (pprox 20).
- → Total algorithmic complexity for a size r^3 : $O(log_2(r) r^3)$.
- \rightarrow Reconstruction of a 64³ CLUT in less than 1s.

Tschumperlé, Porquet, Mahboubi

Compression and Examplar-Based Generation of CLUTs

Isotropic/Anisotropic comparison

(a) Color Keypoints K
(b) Isotropic reconstruction, in O(log₂(r) r³)
(c) Anisotropic reconstruction, in O(log₂(r) r³)

Comparison with RBFs (Radial Basis Functions)

(a) Color Keypoints \mathcal{K}

- (b) **Anisotropic** reconstruction, in $O(log_2(r) r^3)$
- (c) **RBFs** reconstruction, in $O(N^3 + N r^3)$.

Let **F** be the *CLUT* to be compressed. The compression:

- Generates a set \mathcal{K} of N keypoints representing **F**.
- \tilde{F}_N the reconstructed *CLUT* from \mathcal{K} must be close enough to **F**. Two quality criteria for reconstruction:
 - $\Delta_{max} = 8$, maximum reconstruction error allowed,
 - $\Delta_{moy} = 2$, average reconstruction error for the entire *CLUT*

Initialization of $\mathcal{K} = \{ (\mathbf{X}_k, \mathbf{F}_{(\mathbf{X}_k)} \mid k = 1...8 \}$ (the 8 vertices of the cube).

Adding keypoints for CLUT compression

(a) max/average error

(b) PSNR evolution

