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Context : Data Regularization

• Goal : Transform a noisy signal into a more regular signal, while preserving the
important signal features (discontinuities).

1D Noisy Signal Regularized Signal

⇒ Do the same thing for 2D images.

• Applications : Denoising, Data Simplification, Multi-Scale Analysis, Solving ill-
posed inverse problems.



What is a “good regularization” process ? (1)

• A “good” regularization process can adapt itself to the considered data type as
well as to the targeted application. A “best regularization method” does not exist.

Original color image Regularization 1 (Tikhonov)

Regularization 2 (Total Variation) Regularization 3 (Tensor-directed)



What is a “good regularization” process ? (2)

Original color image Regularization 1 (Tikhonov)

Regularization 2 (Total Variation) Regularization 3 (Tensor-directed)

⇒ Methods based on non-linear PDE’s are able to design such flexible and
customizable regularization processes.



PDE’s in Image Processing (1)

• EDP = Partial Differential Equation.
Example : Let I : Ω→ R be a scalar image.

∀(x, y) ∈ Ω,
∂I

∂t
(x,y) = βt(x,y) where for instance βt(x,y) =

∂2I

∂x2 (x,y) +
∂2I

∂y2 (x,y)

• PDE’s in image processing are often defined like this.

- I represents the data to process (1D signals or 2D/3D images), or the
parameters of the model we want to compute (image, curve,...)

- A PDE tells how the pixel values of the image (or the model parameters) are
evolving, between given times t and t+ dt (βt(x,y) = evolution velocity).

- t is a virtual variable which stands for the evolution time. One generally stops
the evolution after a finite time tend, or when βt = 0 (convergence).



PDE’s in Image Processing (2)

⇒ Iterative Algorithm

- We start from an image I(t=0) which evolves until convergence, or until a finite
number of iterations (t = tend).


I(t=0) = I0

∂I
∂t (x,y)

= βt(x,y)

implemented as


I(t=0) = I0

repeat It+dt
(x,y) = It(x,y) + dt βt(x,y)

until t < tend

- The evolution speed βt gives the kind of processing done on the data.

- βt may be obtained via the Euler-Lagrange Equations (gradient descent that
minimizes an energy functional), or can be designed more “manually”.



Diffusion PDE’s and Image Regularization (1)

• Convolution and Isotropic Diffusion PDE (Koenderink:84, Alvarez-Guichard-etal:92, ...) :

I(t) = I(t=0) ∗Gσ where Gσ =
1

4πt
e−

x2+y2

4t ⇐⇒ ∂I

∂t
= ∆I = div (∇I)

Noisy Image Heat Flow (∂I∂t = ∆I)

• This heat flow corresponds also to the gradient descent that minimizes the
Tikhonov regularization functional :

E(I) =

∫
Ω

‖∇I‖2dp



Diffusion PDE’s and Image Regularization (2)

• Convolution and Isotropic Diffusion PDE (Koenderink:84, Alvarez-Guichard-etal:92, ...) :

I(t) = I(t=0) ∗Gσ where Gσ =
1

4πt
e−

x2+y2

4t ⇐⇒ ∂I

∂t
= ∆I = div (∇I)

• Anisotropic Diffusion PDE’s (nonlinear) (Perona-Malik[90], Alvarez [92], ...) :

∂I

∂t
= div (c(‖∇I‖) ∇I) with c : R −→ R

Noisy Image Heat Flow (∂I∂t = ∆I) Perona-Malik (∂I∂t = div
(
c(.) ∇I

)
)



How to find the best βt(x,y) ?

• More generally, how to find the “best” possible evolution speed βt(x,y), i.e. the more
general and flexible one ?

⇒ 3 principal ways proposed in the literature.
(Alvarez, Aubert, Barlaud, Blanc-Feraud, Blomgren, Charbonnier, Chan, Cohen, Deriche, Kornprobst, Kimmel, Malladi, Munford, Morel,

Nordström, Osher, Perona, Malik, Rudin, Sapiro, Sochen, Weickert,...)



(1) Image Regularization as an Energy Minimization (1)

• Minimizing image variations, expressed as an energy functional E(I) :

min
I:Ω→R

E(I) =

∫
Ω

φ(‖∇I‖) dΩ
(E.L)
=⇒

∂I

∂t
= div

(
φ
′
(‖∇I‖)
‖∇I‖

∇I

)

• The Euler-Lagrange equations give the “gradient” of the functional E to minimize :

if E(I) =

∫
Ω

F (I,
∂I

∂x
,
∂I

∂y
), then the following flow

∂I

∂t
= −

(
∂F

∂I
− d

dx

∂F

∂Ix
− d

dy

∂F

∂Iy

)
(locally) minimizes the functional E.



(1) Image Regularization as an Energy Minimization (2)

• Minimizing image variations, expressed as an energy functional E(I) :

min
I:Ω→R

E(I) =

∫
Ω

φ(‖∇I‖) dΩ
(E.L)
=⇒

∂I

∂t
= div

(
φ
′
(‖∇I‖)
‖∇I‖

∇I

)

• E(I) can be seen as a global energy depending on a global property of the image
(for instance : the area of the image, seen as a surface, φ(s) = 1/

√
1 + s2)

⇒ Global Approach.



(2) Image Regularization as Pixel Diffusion (1)

• Pixel values are seen as chemical concentrations or temperatures.



(2) Image Regularization as Pixel Diffusion (2)

• Pixel values are seen as chemical concentrations or temperatures.

• Diffusion PDE’s modeling a chemical or heat transfer between pixels :

∂I

∂t
(x,y) = div

(
c(x,y)∇I(x,y)

)
or

∂I

∂t
(x,y) = div

(
D(x,y)∇I(x,y)

)
• The diffusivity c(x,y) or the diffusion tensor D(x,y) locally characterize the diffusion

process. They often depend on local geometric features of the image (gradients
∇I, edges, corners, etc.), for instance c = exp(− 1

K ‖∇I‖
2) (Perona-Malik).

⇒ Local Approach.



(3) Image Regularization as Oriented 1D Laplacians

• Two simultaneous 1D heat flows, oriented in orthogonal directions ξ(x,y) and η(x,y),
and weighted by two coefficients c1(x,y) and c2(x,y) > 0 :

∂I

∂t
= c1

∂2I

∂ξ2
+ c2

∂2I

∂η2
where η =

∇I
‖∇I‖

and ξ = η⊥

• Anisotropic filtering is then done in spatially varying directions.

⇒ Local approach.



Link between these three approaches

• From the global approach to the more local one :

Functional minimization

Divergence expression

Oriented laplacians

min
I:Ω→R

E(I) =

∫
Ω

φ(‖∇I‖) dΩ

∂I

∂t
= div

(
φ
′
(‖∇I‖)
‖∇I‖

∇I

)
= div (c∇I)

∂I

∂t
=
φ
′
(‖∇I‖)
‖∇I‖

Iξξ + φ
′′
(‖∇I‖) Iηη

= c1
∂2I
∂ξ2 + c2

∂2I
∂η2

• Flexibility : Choosing different φ, c, c1, c2 leads to different regularization behaviors.

⇒ Oriented Laplacians are the most “flexible” approach, from a local point of view.



Illustration of different smoothing behaviors

• All results below have been obtained with the Oriented Laplacian PDE, stopped
after 20 iterations, using the same time step dt, and η = ∇I/‖∇I‖.

Original image I(t=0) Using c1 = 1
1+‖∇I‖ and c2 = 1

1+‖∇I‖2

Using c1 = c2 = 1 Using c1 = 1 and c2 = 0
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Regularization PDE’s and Multi-Valued Images

• Image I : Ω→ N of multi-valued points : vectors (N = Rn), matrices (N =Mn).

Color image (N = R3) Scalar PDE’s applied on each channel Multi-valued PDE’s



Regularization PDE’s and Multi-Valued Images

• Image I : Ω→ N of multi-valued points : vectors (N = Rn), matrices (N =Mn).

Color image (N = R3) Scalar PDE’s applied on each channel Multi-valued PDE’s

(Histogram equalized)



Regularization PDE’s and Multi-Valued Images

• Image I : Ω→ N of multi-valued points : vectors (N = Rn), matrices (N =Mn).

Color image (N = R3) Scalar PDE’s applied on each channel Multi-valued PDE’s

Color image Direction field (+ constraint) Tensor field (+ constraint)



How to Extend Scalar PDE’s to the Multi-Valued Case ?

• How to correctly extend scalar diffusion PDE’s to the multi-valued case, without
applying them channel by channel ?

⇒ Introducing Diffusion Tensors and Structure Tensors.



Introducing Diffusion Tensors (1)

• A second-order tensor is a symmetric and semi-positive definite p× p matrix.
(p = 2 for images, p = 3 for volumetric images).

• It has p positive eigenvalues λi and p orthogonal eigenvectors u[i] :

T = λ1 u[1]u[1]T + λ2 u[2]u[2]T



Introducing Diffusion Tensor (2)

• A second-order tensor is a symmetric and semi-positive definite p× p matrix.
(p = 2 for images, p = 3 for volumetric images).

• It has p positive eigenvalues λi and p orthogonal eigenvectors u[i] :

T = λ1 u[1]u[1]T + λ2 u[2]u[2]T

• Representation using ellipses and ellipsoïds :

2× 2 Tensor 3× 3 Tensor

• Tensors can describe a smoothing process, by telling how much the pixel values
diffuse along given orthogonal orientations, i.e. the “geometry” of the smoothing.



Writting Diffusion PDE’s using Diffusion Tensors

• Divergence-based diffusion PDE’s :

∂I

∂t
= div (D∇I) (simple diffusivity case is D(x,y) = c(x,y) Id )



Writting Diffusion PDE’s using Diffusion Tensors

• Divergence-based diffusion PDE’s :

∂I

∂t
= div (D∇I) (simple diffusivity case is D(x,y) = c(x,y) Id )

• Oriented Laplacians :

∂I

∂t
= c1

∂2I

∂ξ2
+ c2

∂2I

∂η2
= trace (TH)

where T = c1 ξξ
T + c2 ηη

T is the Diffusion Tensor having eigenvalues c1, c2 and
eigenvectors ξ, η, and H is the Hessian matrix : Hi,j = ∂2I

∂xi∂xj
.



Writting Diffusion PDE’s using Diffusion Tensors

• Divergence-based diffusion PDE’s :

∂I

∂t
= div (D∇I) (simple diffusivity case is D(x,y) = c(x,y) Id )

• Oriented Laplacians :

∂I

∂t
= c1

∂2I

∂ξ2
+ c2

∂2I

∂η2
= trace (TH)

where T = c1 ξξ
T + c2 ηη

T is the Diffusion Tensor having eigenvalues c1, c2 and
eigenvectors ξ, η, and H is the Hessian matrix : Hi,j = ∂2I

∂xi∂xj
.

⇒ Fields of Diffusion Tensors are then able to define complex (anisotropic) local
regularization geometries.



What would be “Good” Diffusion Tensors ?

• What is the desired behavior for a regularization algorithm ?

⇒ Depends on the application ! Common “good” smoothing rules are :

– On a edge, smoothing must be done only along the edge direction
(anisotropic smoothing) : =⇒ D(x,y) ≈ ε ξξT , with ξ = ∇I⊥

‖∇I‖.
– On homogeneous regions, smoothing must be done equally in all directions

(isotropic smoothing) : =⇒ D(x,y) ≈ α Id



Modeling Regularization Behavior with Diffusion Tensors

⇒ Tensor field D : Ω → P(2) should tell about the desired smoothing directions and
smoothing amplitudes that must be locally applied.

Top of the Lena hat Desired diffusion tensor field D

⇒ Separating the regularization geometry from the diffusion process itself.



Designing Diffusion Tensors for Multi-Valued Images

• Goal : Estimate the local geometry of I : Ω → Rn, a multi-valued image. Can be
done by computing the smoothed Structure Tensor Field Gσ : Ω→ P(2) :

Gσ(x,y)
=

(∑
i

∇Ii∇ITi

)
∗Gσ

• For 2D (R,G,B) color images :

Gσ(x,y)
=

 R2
x +G2

x +B2
x Rx Ry +Gx Gy +Bx By

Rx Ry +Gx Gy +Bx By R2
y +G2

y +B2
y

 ∗Gσ

• Sum of channel by channel structure tensors ∇Ii∇ITi . Take care of all image
variations at the same time, with a notion of incertitude.



Diffusion Tensors and Image Variations

• Eigenvalues λ+, λ− and Eigenvectors θ+, θ− of Gσ are very efficient geometric
descriptors of the local configuration of I at (x, y).

• The eigenvectors θ+ and θ− gives the orientation of local maximum and minimum
multi-valued variations ‖dI‖ :

‖dI‖2 = dR2 + dG2 + dB2

=
(
∇RT dX

)2
+
(
∇GT dX

)2
+
(
∇BT dX

)2
= dXTGdX

• When n = 1 (scalar case), we have of course

λ+ = ‖∇I‖2, λ− = 0, θ+ =
∇I
‖∇I

, and θ− =
∇I⊥

‖∇I
,

⇒ Very natural extension of the notion of “gradient” for multi-valued images.
(Silvano Di-Zenzo:86, Joachim Weickert:98).



Regularization Functionals for Multi-Valued Images (1)

• Minimization of a ψ-functional specific to multivalued images I : Ω→ Rn :

min
I:Ω→Rn

∫
Ω

ψ(λ+, λ−) dΩ with ψ : R2 → R

where λ+, λ− are the eigenvalues of the structure tensor G =
∑n
i=1

(
∇Ii∇ITi

)
(non-smoothed version, i.e. σ = 0).



Regularization Functionals for Multi-Valued Images (2)

• Minimization of a ψ-functional specific to multivalued images I : Ω→ Rn :

min
I:Ω→Rn

∫
Ω

ψ(λ+, λ−) dΩ with ψ : R2 → R

where λ+, λ− are the eigenvalues of the structure tensor G =
∑n
i=1

(
∇Ii∇ITi

)
(non-smoothed version, i.e. σ = 0).

• Compute the Euler-Lagrange equations :

∂Ii
∂t

= div (D∇Ii) with D = 2
∂ψ

∂λ+
θ+θ

T
+ + 2

∂ψ

∂λ−
θ−θ

T
−

where θ± are the eigenvectors of G.

(joint work with Deriche, 2002).



Using Structure Tensors in Local Formulations (1)

• When considering local regularization approaches, the diffusion tensor field can
be designed directly from the structure tensor Gσ :

T = f1(λ+ + λ−) θ−θ
T
− + f2(λ+ + λ−) θ+θ

T
+ with


f1(s) = 1

1+sp

f2(s) = 1
1+sq



Using Structure Tensors in Local Formulations (2)

• When considering local regularization approaches, the diffusion tensor field can
be designed directly from the structure tensor Gσ :

T = f1(λ+ + λ−) θ−θ
T
− + f2(λ+ + λ−) θ+θ

T
+ with


f1(s) = 1

1+sp

f2(s) = 1
1+sq

• The smoothing itself is performed by the application of one or several iterations of
one of these “locally designed” PDE’s :

∂Ii
∂t

= div (T∇Ii) or
∂Ii
∂t

= trace (THi)

⇒ Most of existing PDE-based regularization methods for multi-valued images fit one
of these two equations.



Obtained Diffusion Tensor Field

Top of the Lena hat (I : Ω→ R3) Computed diffusion tensor field T : Ω→ P(2).

• We obtained the desired flexibility in designing different regularization behaviors,
while considering all image channels at the same time.

⇒ So, everything’s is OK ?



Application : Color image restoration

• Color image with real noise (digital snapshot under low luminosity conditions).

Noisy color image Restored color image



Application : Enhancement of compressed images.

Blocky JPEG Image (10% quality) Enhanced image



Application : Image inpainting

• Inpainting methods allow to remove real objects in images.

Original image Inpainting mask definition After image inpainting



Application : Free the bird !

Original image Inpainting mask definition After image inpainting



Application : Image inpainting

• PDE’s used for reconstruction of images with missing data.

Original image Removing 50% of the data Reconstruction

⇒ Possible applications in static image compression.



But... is the Smoothing Correctly Achieved ?

• We apply some iterations of one of these generic PDE’s, with a synthetic tensor
field T on a color image.

∂Ii
∂t

= div (T∇Ii) or
∂Ii
∂t

= trace (THi)

• Ideally, the performed smoothing complies with the diffusion tensor field T :



Is the Smoothing Correctly Achieved ?

• We apply some iterations of one of these generic PDE’s, with a synthetic tensor
field T on a color image.

∂Ii
∂t

= div (T∇Ii) or
∂Ii
∂t

= trace (THi)

• Ideally, the performed smoothing complies with the diffusion tensor field T :

Tensor-directed PDE applied on a color image.



Issues Encountered with Classical Formulations

• Slow iterative process : Many iterations needed to get a result that is regularized
enough (since dt→ 0).

• Problems with Divergence formulations :

– Non-unicity of the tensor field : ∃D1 6= D2, div(D1∇I) = div(D2∇I).

– Tensor shapes not always representative of the intuitive smoothing behavior :

D1 = Id and D2 =
∇I∇IT

‖∇I‖2
⇒ ∂I

∂t
= ∆I.

– More generally :

D1 = αξξT + βηηT and D2 = βηηT ⇒ div (D1∇I) = div (D2∇I)

with η = ∇I
‖∇I‖ and ξ = η⊥.



Non-unicity of Diffusion Tensors

D1 = and D2 =

gives the same result (heat flow)



Issues Encountered with Classical Formulations

• Problems with Trace formulations :

– Better respect of the considered tensor-valued geometry.
– But tends to over-smooth high-curvature structures (corners) :

∂Ii
∂t
≈ α∂

2I

∂ξ2
on image countours ⇒ Problems at corners !



A Geometrical Interpretation of trace (TH)

∂Ii
∂t

= trace (THi)

• If T is a constant tensor, the solution at time t is a convolution of the image I by
an oriented Gaussian kernel G[T,t] :

Ii(t) = Ii(t=0)
∗ G[T,t] with G[T,t](x, y) =

1

4πt
e−

XTT−1X
4t



A Geometrical Interpretation of trace (TH)

∂Ii
∂t

= trace (THi)

• If T is a non-constant tensor field : Geometrical Interpretation in terms of local
filtering, using gaussian kernels that are temporally and spatially varying.

(Link with the ’Bilateral Filtering’ (Tomasi-Manduchi:98), and the ’Short Time Kernels’ (Sochen-

Kimmel-etal:01).



Issues encountered with the trace formulation

• On curved image structures, the structure tensor is often not so well directed.

• Even with a small smoothing, rounded corners appear after several iterations.

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

⇒ Needs for specific PDE’s avoiding smoothing of structures having high curvatures.

• We want to avoid an explicit curvature computation (perturbed by the noise).



Motivations

Original image Trace-based PDE (200 iter.) Curvature-Preserving (200 iter.)
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Curvature-preserving constraint

• For the mono-directional case, let us consider the following PDE :

∂Ii
∂t

= trace
(
wwT Hi

)
+∇ITi Jww

where Jw =


∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

 and Hi =


∂2Ii
∂x2

∂2Ii
∂x∂y

∂2Ii
∂x∂y

∂2Ii
∂y2

.

⇒ Classical “Trace” formulation oriented along w

+ Constraint term depending on the variations of w.



Interpretation of the Constraint Term

• Ths PDE can be written in fact as :

∂Ii
∂t

=
∂2Ii(CX

(a))

∂a2 |a=0
= ∆X

C Ii

where CX is the integral line of w starting from X, and parameterized as :

CX
(0) = X and

∂CX
(a)

∂a
= w(CX

(a))

⇒ PDE equivalent to a heat flow on the integral lines of w.

• If w is chosen to be the directions of the image contours (eigenvector θ− of Gσ),
the smoothing will respect the shape of the contour, whatever its curvature is.



How did the Constraint Term Appear ?

• If CX stands for the integral curve of w starting from X = (x, y), and parameterized by a s.a :

CX
(0) = X et

∂CX
(a)
∂a = w(CX

(a)), then :

CX
(h) = CX

(0) + h
∂CX

(a)

∂a |a=0
+
h2

2

∂2CX
(a)

∂a2 |a=0
+O(h

3
) = X + hw(X) +

h2

2
Jw(X)

w(X) +O(h
3
)

with h→ 0, and O(hn) = hn εn. Thus, we get :

Ii(CX
(h)) = Ii

(
X + hw(X) +

h2

2
Jw(X)

w(X) +O(h
3
)

)

= Ii(X) + h∇IiT(X) (w(X) +
h

2
Jw(X)

w(X)) +
h2

2
trace

(
w(X)w

T
(X)Hi(X)

)
+O(h

3
)

• and then...

∂2Ii(CX
(a))

∂a2 |a=0
= lim

h→0

1

h2

[
Ii(CX

(h)) + Ii(CX
(−h))− 2Ii(CX

(0))
]

= lim
h→0

1

h2

[
h

2 ∇ITi Jw(X)
w(X) + h

2 trace
(

w(X)w
T
(X)Hi(X)

)
+O(h

3
)
]

= trace
(

w(X)w
T
(X)Hi(X)

)
+∇ITi Jw(X)

w(X)



Smoothing Along Integral Lines

(a) An integral line CX (b) Some integral lines around a triple-junction.

⇒ The performed smoothing will preserve curved structures.



Extension to a Tensor-Based Geometry

• More generaly, we are more interested to a tensor-valued smoothing geometry T

than a vectorial one w.

• We decompose the field T along all orientations of the plane :

T =
2

π

∫ π

α=0

(
√

T aα) (
√

T aα)T dα where aα =
(

cosα sinα
)T

.



Extension to a Tensor-Based Geometry

• More generaly, we are more interested to a tensor-valued smoothing geometry T

than a vectorial one w.

• We decompose the field T along all orientations of the plane :

T =
2

π

∫ π

α=0

(
√

T aα) (
√

T aα)T dα where aα =
(

cosα sinα
)T

.

• This suggests to extend naturally the monodirectional formulation to this tensor-
directed one :

∂Ii
∂t

= trace(THi) +
2

π
∇ITi

∫ π

α=0

J√Taα

√
Taα dα



Extension to a Tensor-Based Geometry

• Local behavior of the equation :

– When the tensor T is isotropic, we are on an homogeneous region : the
smoothing is performed with the same strength in all directions aα.

– When the tensor T is anisotropic, we are on an image contour : the smoothing
is performed only along this contour (but taking care of its curvature !).



Line Integral Convolutions (LIC’s)

• [Cabral & Leedom, 93] : Way to create textured versions of 2D vector fields F .

⇒ From a pure noisy image Inoise, one computes for each pixel X = (x, y)

ILIC(x,y) =
1

N

∫ +∞

−∞
f(p) Inoise(CX

(p)) dp where

 CX
(0) = X

∂CX
(a)

∂a = F(CX
(a))



Curvature-Preserving PDE’s and LIC’s

• ∂Ii
∂t = trace

(
wwT Hi

)
+∇ITi Jww can be seen as a 1D heat flow on the integral

line CX.

⇒ Implementation can be done by convolving the data lying on the integral line CX of
w by a Gaussian kernel.



Curvature-Preserving PDE’s and LIC’s

• ∂Ii
∂t = trace

(
wwT Hi

)
+∇ITi Jww can be seen as a 1D heat flow on the integral

line CX.

⇒ Implementation can be done by convolving the data lying on the integral line CX of
w by a Gaussian kernel.

• Tensor version : ∂Ii∂t = trace(THi) + 2
π∇I

T
i

∫ π
α=0

J√Taα

√
Taα dα

can be implemented with several short LIC computations.

Iregul(X) =
1

N

∫ π

0

∫ dt

−dt
f(a) Inoisy(Cθ(X,a)) da dθ

where f() is a 1D Gaussian function, N =
∫ ∫

f(a)dadθ, and dt corresponds to
the PDE time step (global smoothing strength for one iteration).



Algorithm Properties

⇒ The maximum principle is verified (only local means of pixel intensities are
computed).
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⇒ The maximum principle is verified (only local means of pixel intensities are
computed).

⇒ Very stable and fast algorithm, compared to classical PDE implementations. The
time step (dt) can be very large (' 50) while process remains stable.

⇒ LIC-based numerical schemes allows a sub-pixel accuracy (4th-order Runge-
Kutta integration)⇒ Very good preservation of small structures.



Algorithm Properties

⇒ The maximum principle is verified (only local means of pixel intensities are
computed).

⇒ Very stable and fast algorithm, compared to classical PDE implementations. The
time step (dt) can be very large (' 50) while process remains stable.

⇒ LIC-based numerical schemes allows a sub-pixel accuracy (4th-order Runge-
Kutta integration)⇒ Very good preservation of small structures.

(a) Original image
(b) PDE Regul.

(explicit Euler scheme)
(c) LIC-base scheme



Application : Image Denoising

“Babouin” (détail) - 512x512 - (1 iter., 19s)



Application : Image Denoising

“Tunisie” - 555x367



Application : Image Denoising

“Tunisie” - 555x367 - (1 iter., 11s)



Application : Image Denoising

“Tunisie” - 555x367 - (1 iter., 11s)



Application : Image Denoising

“Baby” - 400x375



Application : Image Denoising

“Baby” - 400x375 - (2 iter, 5.8s)



Application : Image Denoising

“Baby” - 400x375 - (2 iter, 5.8s)



Application : Image Denoising

“La pêche aux moules”.



Application : Image Denoising

“La pêche aux moules” (1 iter. 3.2s)).



Application : Image Denoising

“Chloé”



Application : Reducing JPEG artefacts

“Van Gogh”



Application : Reducing JPEG artefacts

“Van Gogh” - (1 iter, 5.122s).



Application : Reducing JPEG artefacts

“Flowers” (JPEG, 10% quality).



Application : Creating Painting Effects

“Corail” (1 iter.)



Application : Image Inpainting

“Bird”, original color image.



Application : Image Inpainting

“Bird”, inpainting mask definition.



Application : Image Inpainting

“Bird”, inpainted with our PDE.



Application : Image Inpainting

“Bird”, inpainted with our PDE.



Application : Image Inpainting

“Chloé au zoo”, original color image.



Application : Image Inpainting

“Chloé au zoo”, inpainting mask definition.



Application : Image Inpainting

“Chloé au zoo”, inpainted with our PDE.



Application : Image Resizing

“Nude” - (1 iter., 20s)



Application : Image Resizing

“Forest” - (1 iter., 5s)



Application : Image Resizing

(c) Details from the image resized by bicubic interpolation.

(d) Details from the image resized by a non-linear regularization PDE.



Application : Image Resizing

(a) Original

color image

(b) Bloc Interpolation (c) Linear Interpolation (d) Bicubic Interpolation (e) PDE/LIC Interpolation



What if I try to smooth constrained vector-data ?

• Goal : Regularizing multi-valued images where vector pixels are constrained.
Ex : The Unit Norm Constraint , ∀(x,y) ∈ Ω, ‖I(x,y)‖ = 1.

Noisy direction field Non-constrained Regularization



Adding A Priori Constraints on the Image Points

• An additional term can be added to the non-constrained PDE in order to respect
the unit norm constraint.

(Chan-Shen[99], Kimmel-Sochen[00], Pardo-Sapiro[00], Perona[98], Tang-Sapiro-Caselles[98], ...)

Noisy direction field Non-constrained Regularization Constrained Regularization



Other interesting constrained datasets

Orthogonal matrices, Diffusion tensors :

Camera motion regularization DT-MRI image regularization



The Orthonormal Vector Set Constraints

• Let us consider images of orthonormal vector sets :

B(M) = { I[1](M) , I[2](M) , . . . , I[m](M) } with ∀k, I[k] : Ω→ Rn

∀M ∈ Ω, ∀k, l, ‖I[k](M)‖ = 1 with I[k] ⊥ I[l] (k 6= l)

• Can be used to represent several data types :

Directions (m = 1) Fields of Rotations and Tensor Orientations (m = n)



A constrained variational framework

• One minimizes the following extended ψ-functional :

min
B

∫
Ω

∑
k

ψ(λ
[k]
+ , λ

[k]
− ) +

∑
p,q

λp,q(I
[p].I[q] − δp,q) dΩ

• Lagrange multipliers have been added to force the orthonormal constraints :

∀M ∈ Ω, I[p](M) . I[q](M) = δpq =

{
1 si p = q

0 si p 6= q

• The minimization is done through the gradient descent (i.e. a PDE evolution).

• Hopefully, Lagrange multipliers can be finally removed in the final expression.



Orthonormal constraints-preserving PDE’s

∂I[k]

∂t
=

m∑
l=1

(
L(E)[l] . I[k]

)
I[l] − L(E)[k]

where

L(E)
[k]
i = α (I

[k]
i − I

[k]
i0

)− div

([
∂ψ

∂λ
[k]
+

θ
[k]
+ θ

[k]
+

T
+

∂ψ

∂λ
[k]
−
θ

[k]
− θ

[k]
−
T

]
∇I [k]

i

)

• Regularizing PDE’s acting on fields of orthonormal vector sets.

• Physical interpretation with mechanical momentum for 3D vectors.

• Accurate numerical schemes exist, avoiding the classical reprojection problem into
the orthonormal space.



Direction field regularization

• Direction field regularization is a particular case of the orthonormal vector set
formalism (m = 1) :

∀M ∈ Ω, B(M) = { I(M) } with ‖I(M)‖ = 1

• In this case, the functional is simply : minI

∫
Ω

[
α ‖I− I0‖2 + ψ(λ+, λ−)

]
dΩ

• The corresponding norm-preserving PDE is then :

∂Ii
∂t

= L(E)i − (L(E) . I) Ii

(Chan-Shen (Constrained Total Variation), Perona (Polar angle diffusion), Tang-Sapiro-Caselles



Direction regularization

Synthetic vector field With angular noise Restored field

Noisy chromaticity image with unconstrained PDE’s with constrained PDE’s



Regularization of orthogonal matrix fields

• The columns of an orthogonal matrix R form an orthonormal vector basis (I,J,K).

R =

 I1 J1 K1

I2 J2 K2

I3 J3 K3

 where


I = (I1, I2, I3)

J = (J1, J2, J3)

K = (K1,K2,K3)

• In this case, the orthonormal-preserving PDE is (for m = n) :

∂R

∂t
= L −RLTR

where L is an unconstrained regularization term.

⇒ Allow to regularize field of rotation matrices.



Illustration with 3× 3 orthogonal matrices

Noisy rotation field Unconstrained PDE’s Orthonormal-preserving PDE

Tensor orientations Isotropic regularization Anisotropic regularization



Proposed Method

A camera motion can be estimated from a video sequence (software as Realviz’s
MatchMover.).

⇒ Translation Sequence T(t), and Rotation Sequence R(t).

• T(t) is regularized with unconstrained multivalued
PDE’s.
• R(t) is regularized with orthonal constrained PDE’s.

• Allow to insert virtual 3D objects in video sequences.



Illustration

Original sequence Estimated rotation (angles) Regularized rotation (angles)

Virtual 3D object Incrustation (original) Incrustation (restored)



DT-MRI Images

• MRI-based image modality that measures the water molecule diffusion in tissues.

• Acquisition or a set of multiple “raw MRI images, under different magnetic field
configurations.



DT-MRI Images (2)

• A volume of Diffusion Tensors can be estimated from these raw images.

• Diffusion tensors represent gaussian models of the water diffusion within voxels,
and are 3x3 symetric and positive matrices.

• Representation of a DT-MRI image with a volume of ellipsoids :



DT-MRI Images (3)

• DT-MRI Images give structural informations on the fibers network in the tissues.

• A fiber map reconstruction can be done by following at each voxel the principal
tensor directions.

• The regularization of these DT-MRI images can be necessary to compute more
coherent fiber networks (original images are very noisy)



Illustration on synthetic data

(b) With noise. (c) Regularization of the tensor orientations.



Fiber tracking on real data

(a) Average diffusivity (left) and Fractional Anisotropy (droite)

(b) Original tensors and computed fibers (c) Regularized tensors and computed fibers



Fiber Scale space (1)

Tensors (left) & Fibers (right)
(Original data)

Regularized volume (after 20 it.)



Fiber Scale space (2)

Regularization after 20 it. Regularization after 40 it.

⇒ Scale-space model of the fiber network.



Conclusion

• Generic Multi-valued and Tensor-driven PDE’s for
Multi-Valued Image Regularization.

• Algorithm ’GREYCSTORATION’ available on the web :

http://www.greyc.ensicaen.fr/˜dtschump/greycstoration/

• Open source, GIMP plug-in available.



Un grand merci pour votre attention !

Questions ?


