
David Tschumperlé

Image Team, GREYC / CNRS (UMR 6072)
IPOL Workshop on Image Processing Libraries, Cachan/France, June 2012

Presentation layout

1 Image Processing : Get the Facts

2 The CImg Library : C++ Template Image Processing Library

3 G’MIC : GREYC’s Magic Image Converter

4 Conclusions

Presentation layout

1 Image Processing : Get the Facts

2 The CImg Library : C++ Template Image Processing Library

3 G’MIC : GREYC’s Magic Image Converter

4 Conclusions

Diversity of People and Applications

Fact 1 : The image processing research world is wide.
Many different people compose it, each with a different scientific
background :

Mathematicians Physicists Computer geeks Biologists ...

Fact 2 : They all work on images, trying to solve many different
problems, involving a wide diversity of image data.
Photography, medical imaging, astronomy, robot vision, fluid
dynamics, etc...

Diversity of Image Data

Fact 3 : Digital images are generic objects by nature.

On a computer, image data are usually stored as discrete arrays
of values (pixels or voxels), But the diversity of acquired images
is important.

Diversity of Image Data

2D → [0, 255] 2D → [0, 255]3 (2D + t) → [0, 255]3

3D → [0, 16383] 3D → R6 (2D + t) → [0, 16384]

Diversity of Image Data

Acquired digital images may be of different types :
I Domain dimensions : 2D (static image), 2D + t (image sequence),

3D (volumetric image), 3D + t (sequence of volumetric images), ...
I Pixel dimensions : Pixels can be scalars, colors, N − D vectors,

matrices, ...
I Pixel value range : depends on the sensors used for acquisition,

can be N-bits (usually 8,16,24,32...), sometimes (often)
float-valued.

I Type of sensor grid : Square, Rectangular, Octagonal, Graph, ...

All these different image data are digitally stored using dedicated
file formats :

I PNG, JPEG, BMP, TIFF, TGA, DICOM, ANALYZE, AVI, MPEG, ...

Image Processing Algorithms

Fact 4 : Usual image processing algorithms are mostly image
type independent.
e.g. : Binarization of an image I : Ω→ Γ by a threshold ε ∈ R.

Ĩ : Ω→ {0,1} such that ∀p ∈ Ω, Ĩ(p) =

{
0 if ‖I(p)‖ < ε
1 if ‖I(p)‖ >= ε

Implementing an image processing algorithm should be as much
independent as possible of the image format and coding.

Question

How to help those various people implementing image processing
algorithms working on generic images in an easy way ?

CImg and G’MIC Philosophy

Based on these facts, we designed CImg and G’MIC, two
lightweight image processing toolboxes fitting these constraints :

I Easy to install, easy to take control. Two different scales of uses
(C++ and script).

Generic enough for managing a wide variety of data types.
(template-based).

Provides useful, classical and must-have algorithms and tools.

Extensible frameworks by nature.

Easy to spread from/to any computer
(portable to various architectures and OS).

Distributed under open-Source licenses

CImg and G’MIC Philosophy

Based on these facts, we designed CImg and G’MIC, two
lightweight image processing toolboxes fitting these constraints :

I Easy to install, easy to take control. Two different scales of uses
(C++ and script).

Generic enough for managing a wide variety of data types.
(template-based).

Provides useful, classical and must-have algorithms and tools.

Extensible frameworks by nature.

Easy to spread from/to any computer
(portable to various architectures and OS).

Distributed under open-Source licenses

CImg and G’MIC Philosophy

Based on these facts, we designed CImg and G’MIC, two
lightweight image processing toolboxes fitting these constraints :

I Easy to install, easy to take control. Two different scales of uses
(C++ and script).

Generic enough for managing a wide variety of data types.
(template-based).

Provides useful, classical and must-have algorithms and tools.

Extensible frameworks by nature.

Easy to spread from/to any computer
(portable to various architectures and OS).

Distributed under open-Source licenses

CImg and G’MIC Philosophy

Based on these facts, we designed CImg and G’MIC, two
lightweight image processing toolboxes fitting these constraints :

I Easy to install, easy to take control. Two different scales of uses
(C++ and script).

Generic enough for managing a wide variety of data types.
(template-based).

Provides useful, classical and must-have algorithms and tools.

Extensible frameworks by nature.

Easy to spread from/to any computer
(portable to various architectures and OS).

Distributed under open-Source licenses

CImg and G’MIC Philosophy

Based on these facts, we designed CImg and G’MIC, two
lightweight image processing toolboxes fitting these constraints :

I Easy to install, easy to take control. Two different scales of uses
(C++ and script).

Generic enough for managing a wide variety of data types.
(template-based).

Provides useful, classical and must-have algorithms and tools.

Extensible frameworks by nature.

Easy to spread from/to any computer
(portable to various architectures and OS).

Distributed under open-Source licenses

CImg and G’MIC Philosophy

Based on these facts, we designed CImg and G’MIC, two
lightweight image processing toolboxes fitting these constraints :

I Easy to install, easy to take control. Two different scales of uses
(C++ and script).

Generic enough for managing a wide variety of data types.
(template-based).

Provides useful, classical and must-have algorithms and tools.

Extensible frameworks by nature.

Easy to spread from/to any computer
(portable to various architectures and OS).

Distributed under open-Source licenses

Presentation layout

1 Image Processing : Get the Facts

2 The CImg Library : C++ Template Image Processing Library

3 G’MIC : GREYC’s Magic Image Converter

4 Conclusions

The CImg Library : Overview

What ? : Small C++ library aiming to simplify the development
of image processing algorithms for generic-enough datasets.

For whom ? : For Researchers and Students in Image Processing
and Computer Vision, having basic notions of C++.

How ? : Defines a minimal set of templated C++ classes able to
manipulate and process image datasets.

Since when ? : Started in late 1999, hosted on Sourceforge since
December 2003 (about 1200 visits and 100 downloads/day).

http://cimg.sourceforge.net/

Easy to get : CImg is distributed as a .zip package (≈ 12.7 Mo)
containing the library code (≈ 40.000 loc), examples of use,
documentations and resource files.
Easy to use : Using CImg requires only the include of a single
C++ header file. No complex installation, no pre-compilation :
#include “CImg.h” // Just do that...
using namespace cimg_library; // ..Ready to go !

Easy to understand : It defines only four C++ classes :
CImg<T>, CImgList<T>, CImgDisplay, CImgException
Image processing algorithms are methods of these classes :
CImg<T>::blur(), CImgList<T>::insert(),
CImgDisplay::resize(), ...

CImg Motto : KIS(I)S, Keep it Small and (Insanely) Simple.

Easy to get : CImg is distributed as a .zip package (≈ 12.7 Mo)
containing the library code (≈ 40.000 loc), examples of use,
documentations and resource files.
Easy to use : Using CImg requires only the include of a single
C++ header file. No complex installation, no pre-compilation :
#include “CImg.h” // Just do that...
using namespace cimg_library; // ..Ready to go !

Easy to understand : It defines only four C++ classes :
CImg<T>, CImgList<T>, CImgDisplay, CImgException
Image processing algorithms are methods of these classes :
CImg<T>::blur(), CImgList<T>::insert(),
CImgDisplay::resize(), ...

CImg Motto : KIS(I)S, Keep it Small and (Insanely) Simple.

Easy to get : CImg is distributed as a .zip package (≈ 12.7 Mo)
containing the library code (≈ 40.000 loc), examples of use,
documentations and resource files.
Easy to use : Using CImg requires only the include of a single
C++ header file. No complex installation, no pre-compilation :
#include “CImg.h” // Just do that...
using namespace cimg_library; // ..Ready to go !

Easy to understand : It defines only four C++ classes :
CImg<T>, CImgList<T>, CImgDisplay, CImgException
Image processing algorithms are methods of these classes :
CImg<T>::blur(), CImgList<T>::insert(),
CImgDisplay::resize(), ...

CImg Motto : KIS(I)S, Keep it Small and (Insanely) Simple.

Easy to get : CImg is distributed as a .zip package (≈ 12.7 Mo)
containing the library code (≈ 40.000 loc), examples of use,
documentations and resource files.
Easy to use : Using CImg requires only the include of a single
C++ header file. No complex installation, no pre-compilation :
#include “CImg.h” // Just do that...
using namespace cimg_library; // ..Ready to go !

Easy to understand : It defines only four C++ classes :
CImg<T>, CImgList<T>, CImgDisplay, CImgException
Image processing algorithms are methods of these classes :
CImg<T>::blur(), CImgList<T>::insert(),
CImgDisplay::resize(), ...

CImg Motto : KIS(I)S, Keep it Small and (Insanely) Simple.

CImg is generic-enough for most cases :
CImg implements static genericity using C++ templates.
KISS philosophy : One template parameter only !
=⇒ the type of the image pixel (bool, char, int, float, ...).
A CImg<T> instance can handle hyperspectral volumetric images
(4D = width×height×depth×spectrum).
A CImgList<T> instance can handle sequences or collections of
4D images.

=⇒ CImg covers actually a lot of the image data types found in real
world applications, while defining straightforward structures that
are still understandable by non computer-geeks.

CImg is generic-enough for most cases :
CImg implements static genericity using C++ templates.
KISS philosophy : One template parameter only !
=⇒ the type of the image pixel (bool, char, int, float, ...).
A CImg<T> instance can handle hyperspectral volumetric images
(4D = width×height×depth×spectrum).
A CImgList<T> instance can handle sequences or collections of
4D images.

=⇒ CImg covers actually a lot of the image data types found in real
world applications, while defining straightforward structures that
are still understandable by non computer-geeks.

CImg is generic-enough for most cases :
CImg implements static genericity using C++ templates.
KISS philosophy : One template parameter only !
=⇒ the type of the image pixel (bool, char, int, float, ...).
A CImg<T> instance can handle hyperspectral volumetric images
(4D = width×height×depth×spectrum).
A CImgList<T> instance can handle sequences or collections of
4D images.

=⇒ CImg covers actually a lot of the image data types found in real
world applications, while defining straightforward structures that
are still understandable by non computer-geeks.

+

What we wanted to avoid at any price !

=⇒ Discouraging for any average C++ programmer !!
(i.e. most of the researchers in Image Processing).

+

What we actually have !

=⇒ Looks simpler ! ,

CImg has algorithms/methods everybody is looking for :
I Data inputs/outputs : supports a large number of image file formats

(e.g. float-valued multi-page tiff files).
I Usual IP operators : Convolution, gradients, histograms, color

conversions, interpolation, geometric transformations, non-linear
blur/sharpening, displacement field estimation, FFT, ...

I Arithmetic operators : Most usual mathematical operations
between images are defined (e.g. operator+(), sqrt(),...).

I Vector / matrix operations : SVD, matrix inversion, linear system
solving, eigenvalues, ...

I Image drawing functions : Lines, polygons, ellipses, text, vector
fields, graphs, 3D objects, ...

All methods and algorithms of CImg are designed to work
flawlessly on 4D images CImg<T>.

Methods of CImg<T> can be pipelined to write complex image
processing pipelines in few lines :

#include "CImg.h"
using namespace cimg_library;
int main() {

// Load 521x512 lena color image.
CImg<> img(”lena.bmp”);

// Do some weird pipelines.
img.RGBtoYCbCr().channel(0).quantize(10,false).
map(CImg<>(3,1,1,3).rand(0,255).resize(10,1,1,3,3));
// Display result.
img.display(”My nice image”);

}

CImg owns a mathematical expressions evaluator :

#include "CImg.h"
using namespace cimg_library;
int main() {

// Construct 256x256 color image.
CImg<> img(256,256,1,3);

// Fill pixel values from a formula.
img = ”X=x-w/2;Y=y-h/2;D=sqrt(Xˆ2+Yˆ2);”

”if(D+u*20<80,abs(255*cos(D/(5+c))),”
”10*(y%(20+c)))”;

// Display result.
(img,img.get_gradient(”xy”)).display();

}

CImg has a lot of methods to draw things on images, as well as a
class (CImgDisplay) to display images on windows and interact
with the user.

CImg has its own 3d renderer (kind of mini OpenGL) :

#include "CImg.h"
using namespace cimg_library;
int main() {

// Load 3d object from a .off file.
CImgList<unsigned int> primitives;
CImgList<unsigned char> colors;
const CImg<float> points =

CImg<>::load_off(primitives,colors,”3dhisto.off”);

// Display 3d object in interactive window.
CImg<unsigned char>(800,600,1,3,128).

display_object3d(”3d
object”,points,primitives,colors);
}

You can add your own methods in the CImg<T> or CImgList<T>
classes, without having to modify the library code.

#define cimg_plugin ”foo.h”
#include "CImg.h"
using namespace cimg_library;
int main() {

CImg<> img(”lena.bmp”);
img.my_method();

}

=⇒ Plug-in mechanism !

Plug-in file foo.h contains :

CImg<T>& my_method() {
const CImgList<T> g = get_gradient(”xyz”);
(g[0].sqr() + g[1].sqr() + g[2].sqr()).

sqrt().move_to(*this);
return *this;

}

Some plug-ins are already distributed within the CImg package :
NLmeans, Skeleton, VRML reader, CImg<->Matlab conversion, ...

The CImg Library code is compiled on the fly.
⇒ The library configuration is decided by the CImg users, not by

the CImg developers.

Many existing configuration flags, allow to enable/disable extra
functionnalities, provided by external libraries :

cimg_use_png, cimg_use_openmp, cimg_use_lapack,
cimg_use_fftw3, cimg_use_opencv, cimg_use_jpeg,
cimg_use_tiff, cimg_use_ffmpeg, cimg_use_zlib,
cimg_use_openexr,

+

CImg is distributed under the CeCILL-C license
(permissive, LGPL-like).

The code of CImg is small and easy to maintain.
→ portable library (multi-CPU, multi-OS, multi-compilers).

The CImg structures are insanely simple
→ CImg is easy to integrate and to communicate with other image
processing libraries.

=⇒ Isn’t it the perfect image processing library ? ,

Presentation layout

1 Image Processing : Get the Facts

2 The CImg Library : C++ Template Image Processing Library

3 G’MIC : GREYC’s Magic Image Converter

4 Conclusions

Motivations

Observation 1 : CImg requires (basic) C++ knowledge.
Some people don’t know C++ but could be interested by the CImg
capabilities anyway.
Observation 2 : When we get new image data, we often want to
perform the same basic operations on them (visualization,
gradient computation, noise reduction, ...).
Observation 3 : It is not optimal to create C++ code specifically for
these minor tasks (requires code edition, compilation time, ..).

=⇒ G’MIC defines a script language which interfaces the CImg
functionalities.

=⇒ No compilation required, all CImg features usable from the shell.

Motivations

Observation 1 : CImg requires (basic) C++ knowledge.
Some people don’t know C++ but could be interested by the CImg
capabilities anyway.
Observation 2 : When we get new image data, we often want to
perform the same basic operations on them (visualization,
gradient computation, noise reduction, ...).
Observation 3 : It is not optimal to create C++ code specifically for
these minor tasks (requires code edition, compilation time, ..).

=⇒ G’MIC defines a script language which interfaces the CImg
functionalities.

=⇒ No compilation required, all CImg features usable from the shell.

Motivations

Observation 1 : CImg requires (basic) C++ knowledge.
Some people don’t know C++ but could be interested by the CImg
capabilities anyway.
Observation 2 : When we get new image data, we often want to
perform the same basic operations on them (visualization,
gradient computation, noise reduction, ...).
Observation 3 : It is not optimal to create C++ code specifically for
these minor tasks (requires code edition, compilation time, ..).

=⇒ G’MIC defines a script language which interfaces the CImg
functionalities.

=⇒ No compilation required, all CImg features usable from the shell.

Motivations

Observation 1 : CImg requires (basic) C++ knowledge.
Some people don’t know C++ but could be interested by the CImg
capabilities anyway.
Observation 2 : When we get new image data, we often want to
perform the same basic operations on them (visualization,
gradient computation, noise reduction, ...).
Observation 3 : It is not optimal to create C++ code specifically for
these minor tasks (requires code edition, compilation time, ..).

=⇒ G’MIC defines a script language which interfaces the CImg
functionalities.

=⇒ No compilation required, all CImg features usable from the shell.

G’MIC : Language properties
G’MIC manage a list of images (i.e. an instance of
CImgList<T>).
Each G’MIC instruction runs an image processing algorithm, or
control the program execution : -blur, -rgb2hsv,
-isosurface3d, -if, -endif ...

A G’MIC pipeline is executed by calls to CImg methods.
User-defined functions can be saved as G’MIC script files.
The G’MIC interpreter can be called from the command line or
from any external project (itself provided as a stand-alone library).

G’MIC : Examples of use (1/6)

gmic lena.bmp -blur 3 -sharpen 1000 -noise 30 -+
"’cos(x/3)*30’"

G’MIC : Examples of use (2/6)

gmic reference.inr -flood 23,53,30,50,1,1000 -flood[-2]
0,0,0,30,1,1000 -blur 1 -isosurface3d 900 -opacity3d[-2] 0.2
-color3d[-1] 255,128,0 -+3d

G’MIC : Examples of use (3/6)

gmic -isosurface3d
"’sin(x*y*z)’",0,-10,-10,-10,10,10,10,128,128,64

G’MIC : Examples of use (4/6)
gmic milla.bmp -f ’255*(i/255)ˆ1.7’ -histogram 128,0,255 -a c -plot

is the G’MIC equivalent code to

#include "CImg.h"
using namespace cimg_library;
int main(int argc,char **argv) {
const CImg<>
img("milla.bmp"),
hist = img.get_histogram(128,0,255),
img2 = img.get_fill("255*((i/255)ˆ1.7)",true),
hist2 = img2.get_histogram(128,0,255);
(hist,hist2).get_append(’c’).display_graph("Histograms");
return 0;

}

G’MIC : Examples of use (5/6)
gmic lena.jpg -pencilbw 0.3 -o gmic_lena1.jpg; gmic lena.jpg
-cubism 160 -o gmic_lena3.jpg
gmic lena.jpg -flower 10 -o gmic_lena4.jpg; gmic lena.jpg
-stencibw 30 -o gmic_lena2.jpg

=⇒ A better ImageMagick’s “convert” ? ,

Plug-in G’MIC for GIMP

CImg functionalities available for everyone !

=⇒ ≈ 400-500 downloads/day (+600.000 dl since 2008).

Presentation layout

1 Image Processing : Get the Facts

2 The CImg Library : C++ Template Image Processing Library

3 G’MIC : GREYC’s Magic Image Converter

4 Conclusions

Conclusion and Links

The CImg Library is a very small and easy-to-use C++ library that
eases the coding of image processing algorithms.

http://cimg.sourceforge.net/

G’MIC is the script-based counterpart of CImg.

http://gmic.sourceforge.net/

These projects are Open-Source and can be used, modified and
redistributed without hard restrictions.
Generic (enough) libraries to do generic things.
Small, open and easily embeddable libraries : can be
integrated in third parties applications.

The end

Thank you for your attention.
Time for questions if any ..

	Image Processing : Get the Facts
	The CImg Library : C++ Template Image Processing Library
	G'MIC : GREYC's Magic Image Converter
	Conclusions

